Implications of the Symbiotic Nitrogen Fixation in Common Bean under Seasonal Water Stress
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Greenhouse Experiment
3.2. Field Experiment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duke, J.A. Handbook of Legumes of World Economic Importance; Plenum Press: New York, NY, USA, 1981. [Google Scholar]
- Wondatir, Z.; Mekasha, Y. Feed resources availability and livestock production in the central rift valley of Ethiopia. Int. J. Livest. Prod. 2014, 5, 30–35. [Google Scholar] [CrossRef]
- Beebe, S.E.; Rao, I.M.; Blair, M.W.; Acosta-Gallegos, J.A. Phenotyping common beans for adaptation to drought. Front. Physiol. 2013, 4, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Reinoso, A.D.; Ligarreto-Moreno, G.A.; Restrepo-Díaz, H. Evaluation of drought índices to identify tolerant geno-types in common bean bush (Phaseolus vulgaris, L.). J. Integr. Agric. 2020, 19, 99–107. [Google Scholar] [CrossRef]
- Asfaw, A.; Blair, M.W. Quantification of drought tolerance in Ethiopian common bean varieties. Agric. Sci. 2014, 5, 124–139. [Google Scholar] [CrossRef]
- White, J.W.; Singh, S.P. Breeding for adaptation to drought. In Common Beans: Research for Crop Improvement; Van Shoonhoven, A., Voysest, O., Eds.; CABI: Wallingford, UK; CIAT: Cali, Colombia, 1991; pp. 501–560. [Google Scholar]
- Cuellar-Ortiz, S.M.; Arrieta-Montiel, M.D.L.P.; Acosta-Gallegos, J.; Covarrubias, A.A. Relationship between carbohydrate partitioning and drought resistance in common bean. Plant Cell Environ. 2008, 31, 1399–1409. [Google Scholar] [CrossRef] [PubMed]
- Asfaw, A.; Demissie, D.A.; Shah, T.; Blair, M. Trait associations in diversity panels of the two common bean (Phaseolus vulgaris L.) gene pools grown under well-watered and water-stress conditions. Front. Plant Sci. 2017, 8, 733. [Google Scholar] [CrossRef] [PubMed]
- Miklas, P.N.; Kelly, J.D.; Beebe, S.E.; Blair, M.W. Common bean breeding for resistance against biotic and abiotic stresses: From classical to MAS breeding. Euphytica 2006, 147, 105–131. [Google Scholar] [CrossRef]
- Muñoz-Perea, C.G.; Terán, H.; Allen, R.G.; Wright, J.L.; Westermann, D.T.; Singh, S.P. Selection for Drought Resistance in Dry Bean Landraces and Cultivars. Crop. Sci. 2006, 46, 2111–2120. [Google Scholar] [CrossRef]
- Nielsen, D.C.; Nelson, N.O. Black Bean Sensitivity to Water Stress at Various Growth Stages. Crop Sci. 1998, 38, 422–427. [Google Scholar] [CrossRef]
- Yonts, C.D. Deficit Irrigation of Dry Edible Beans during Early, Mid and Late Season. In Proceedings of the 5th National Decennial Irrigation Conference Proceedings, Phoenix, AZ, USA, 5–8 December 2010; American Society of Agricultural and Biological Engineers (ASABE): St. Joseph, MI, USA, 2010; p. 1. [Google Scholar]
- Broughton, W.J.; Zhang, F.; Perret, X.; Staehelin, C. Signals exchanged between legumes and Rhizobium: Agricultural uses and perspectives. Plant Soil 2003, 252, 129–137. [Google Scholar] [CrossRef]
- Martínez-Romero, E. Diversity of Rhizobium-Phaseolus vulgaris symbiosis: Overview and perspectives. Plant Soil 2003, 252, 11–23. [Google Scholar] [CrossRef]
- Kuykendall, L.D. Family I Rhizobiaceae. In Bergey’s Manual of Systematic Bacteriology, 2rd ed.; Garrity, G., Krieg, N.R., Holt, J.G., Eds.; Springer: New York, NY, USA, 2005; pp. 324–340. ISBN 9780387241456. [Google Scholar]
- Herrera-Cervera, J.A.; Caballero-Mellado, J.; Laguerre, G.; Tichy, H.-V.; Requena, N.; Amarger, N.; Martínez-Romero, E.; Olivares, J.; Sanjuán, J. At least five rhizobial species nodulate Phaseolus vulgaris in a Spanish soil. FEMS Microbiol. Ecol. 1999, 30, 87–97. [Google Scholar] [CrossRef]
- Drevon, J.J.; Alkama, N.; Bargaz, A.; Rodiño, A.P.; Sungthongwises, K.; Zaman-Allah, M. The Legume–Rhizobia Symbiosis. In Grain Legumes; De Ron, A.M., Ed.; Springer Science + Business Media: New York, NY, USA, 2015. [Google Scholar]
- Kaymakanova, M.; Mincheva, T. Salinity and its effects on the physiological response of bean (Phaseolus vulgaris L.). J. Cent. Eur. Agric. 2008, 9, 749–755. [Google Scholar]
- Wilmowicz, E.; Kucko, A.; Golinska, P.; Burchardt, S.; Przywieczerski, T.; Świdziński, M.; Brzozowska, P.; Kapuścińska, D. Abscisic acid and ethylene in the control of nodule-specific response on drought in yellow lupine. Environ. Exp. Bot. 2020, 169, 103900. [Google Scholar] [CrossRef]
- Bouhmouch, I.; Souad-Mouhsine, B.; Brhada, F.; Aurag, J. Influence of host cultivars and Rhizobium species on the growth and symbiotic performance of Phaseolus vulgaris under water stress. J. Plant Physiol. 2005, 162, 1103–1113. [Google Scholar] [CrossRef]
- Chemining, G.N.; Vessey, J.K. The abundance and efficacy of Rhizobium leguminosarum bv. viciae in cultivated soils of the eastern Canadian prairie. Soil Biol. Biochem. 2006, 38, 294–302. [Google Scholar]
- SAS Institute Inc. SAS/STAT 15.1; SAS Institute Inc.: Cary, NC, USA, 2018. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D.A. Principle and Procedures of Statistics: A Biometrical Approach, 3rd ed.; Mc Graw Hill: New York, NY, USA, 1997; p. 666. ISBN 0070610282. [Google Scholar]
- Hungria, M.; Franchini, J.C.; Campo, R.J.; Crispino, C.C.; Moraes, J.Z.; Sibaldelli, R.N.; Mendes, I.C.; Arihara, J. Nitrogen nutrition of soybean in Brazil: Contributions of biological N2 fixation and N fertilizer to grain yield. Can. J. Plant Sci. 2006, 86, 927–939. [Google Scholar] [CrossRef]
- Rodiño, A.P.; De La Fuente, M.; De Ron, A.M.; Lema, M.J.; Drevon, J.-J.; Santalla, M. Variation for nodulation and plant yield of common bean genotypes and environmental effects on the genotype expression. Plant Soil 2011, 346, 349–361. [Google Scholar] [CrossRef]
- Van Kessel, C.; Hartley, C. Agricultural management of grain legumes: Has it led to an increase in nitrogen fixation? Field Crops Res. 2000, 65, 165–181. [Google Scholar] [CrossRef]
- Rengel, Z. Breeding for better symbiosis. Plant Soil 2002, 245, 147–162. [Google Scholar] [CrossRef]
- Dorcinvil, R.; Sotomayor-Ramírez, D.; Beaver, J. Agronomic performance of common bean (Phaseolus vulgaris L.) lines in an Oxisol. Field Crops Res. 2010, 118, 264–272. [Google Scholar] [CrossRef]
- Mostasso, L.; Mostasso, F.L.; Dias, B.G.; Vargas, M.A.; Hungria, M. Selection of bean (Phaseolus vulgaris L.) rhizobial strains for the Brazilian Cerrados. Field Crops Res. 2002, 73, 121–132. [Google Scholar] [CrossRef]
- Oka-Kira, E.; Kawaguchi, M. Long-distance signaling to control root nodule number. Curr. Opin. Plant Biol. 2006, 9, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Bourion, V.; Laguerre, G.; Depret, G.; Voisin, A.S.; Salon, C.; Duc, G. Genetic variability in nodulation and root growth affects nitrogen fixation and accumulation in pea. Ann. Bot. 2007, 100, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Schultze, M.; Kondorosi, A. Regulation of symbiotic root nodule development. Annu. Rev. Genet. 1998, 32, 33–57. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, T.R.; Purcell, L.C.; King, C.A.; Sneller, C.H.; Chen, P.; Vadez, V. Drought tolerance and yield increase of soybean resulting from improved symbiotic N2 fixation. Field Crops Res. 2007, 101, 68–71. [Google Scholar] [CrossRef]
- Mahieu, S.; Germon, F.; Aveline, A.; Hauggaard-Nielsen, H.; Ambus, P.; Jense, E.S. The influence of water stress on biomass and N accumulation, N partitioning between above and below ground parts and on N rhizodeposition during reproductive growth of pea (Pisum sativum L.). Soil Biol. Biochem. 2008, 41, 380–387. [Google Scholar] [CrossRef]
- Voisin, A.S.; Munier-Jolain, G.; Salon, C. The nodulation process is tightly adjusted to plant growth an analysis using environmentally and genetically induced variation of nodule. Plant Soil 2010, 337, 399–412. [Google Scholar] [CrossRef]
- Voisin, A.-S.; Bourion, V.; Duc, G.; Salon, C. Using an Ecophysiological Analysis to Dissect Genetic Variability and to Propose an Ideotype for Nitrogen Nutrition in Pea. Ann. Bot. 2007, 100, 1525–1536. [Google Scholar] [CrossRef]
- Graham, P.H. Ecology of the Root-Nodule Bacteria of Legumes. In Nitrogen-Fixing Leguminous Symbioses; Springer: Berlin/Heidelberg, Germany, 2008; pp. 23–58. [Google Scholar] [CrossRef]
- Muchero, W.; Ehlers, J.; Close, T.J.; Roberts, P.A. Mapping QTL for drought stress-induced premature senescence and ma-turity in cowpea. Theor. Appl. Genet. 2009, 118, 849–863. [Google Scholar] [CrossRef]
- Muchero, W.; Ehlers, J.D.; Roberts, P.A. Restriction site polymorphism-based candidate gene mapping for seedling drought tolerance in cowpea [Vigna unguiculata (L.) Walp.]. Theor. Appl. Genet. 2010, 120, 509–518. [Google Scholar] [CrossRef] [PubMed]
- Mergaert, P.; Uchiumi, T.; Alunni, B.; Evanno, G.; Cheron, A.; Catrice, O.; Mausset, A.-E.; Barloy-Hubler, F.; Galibert, F.; Kondorosi, A.; et al. Eukaryotic control on bacterial cell cycle and differentiation in the Rhizobium-legume symbiosis. Proc. Natl. Acad. Sci. USA 2006, 103, 5230–5235. [Google Scholar] [CrossRef] [PubMed]
- Park, S.O.; Coyne, D.P.; Jung, G.; Skroch, P.W.; Arnaud-Santana, E.; Steadman, J.R.; Ariyarathne, H.; Nienhuis, J. Mapping of QTL for Seed Size and Shape Traits in Common Bean. J. Am. Soc. Hortic. Sci. 2000, 125, 466–475. [Google Scholar] [CrossRef]
- González, A.; Rodiño, A.; Santalla, M.; De Ron, A.M. Genetics of intra-gene pool and inter-gene pool hybridization for seed traits in common bean (Phaseolus vulgaris L.) germplasm from Europe. Field Crops Res. 2009, 112, 66–76. [Google Scholar] [CrossRef]
- Michiels, J.; Dombrecht, B.; Vermeiren, N.; Xi, C.; Luyten, E.; Vanderleyden, J. Phaseolus vulgaris is a non-selective host for nodulation. FEMS Microbiol. Ecol. 1998, 26, 193–205. [Google Scholar] [CrossRef][Green Version]
- Graham, P. Some problems of nodulation and symbiotic nitrogen fixation in Phaseolus vulgaris L.: A review. Field Crops Res. 1981, 4, 93–112. [Google Scholar] [CrossRef]
- Romdhane, S.B.; Aouani, M.E.; Trabelsi, M.; de Lajudie, P.; Mhamdi, R. Selection of high nitrogen-fixing Rhizobia modulating chickpea (Cicer arietinum) for Semi-Arid Tunisia. J. Agron. Crop Sci. 2008, 194, 413–420. [Google Scholar]
- Hungria, M.; Campo, R.J.; Mendes, I.C. Benefits of inoculation of the common bean (Phaseolus vulgaris) crop with efficient and competitive Rhizobium tropici strains. Biol. Fertil. Soils 2003, 39, 88–93. [Google Scholar] [CrossRef]
- Rennie, R.J.; Kemp, G.A. N2-Fixation in Field Beans Quantified by 15N Isotope Dilution. II. Effect of Cultivars of Beans 1. Agron. J. 1983, 75, 645–649. [Google Scholar] [CrossRef]
- Vessey, J.K. Cultivar differences in assimilate partitioning and capacity to maintain N2 fixation rate in pea during pod-filling. Plant Soil 1992, 139, 185–194. [Google Scholar] [CrossRef]
- Araya, T.; Noguchi, K.; Terashima, I. Effect of nitrogen nutrition on the carbohydrate repression of photosynthesis in leaves of Phaseolus vulgaris L. J. Plant Res. 2009, 123, 371–379. [Google Scholar] [CrossRef] [PubMed]
- Hardarson, G.; Atkins, G. Optimising biological N2 fixation by legumes in farming systems. Plant Soil 2003, 252, 41–54. [Google Scholar] [CrossRef]
- Mutschler, M.A.; Bliss, F.A. Inheritance of bean seed globulin content and its relationship to protein content on quality. Crop Sci. 1981, 21, 289–294. [Google Scholar] [CrossRef]
- Escribano, M.; Santalla, M.; De Ron, A.M. Genetic diversity in pod and seed quality traits of common bean populations from northwestern Spain. Euphytica 1997, 93, 71–81. [Google Scholar] [CrossRef]
- Vasilas, B.L.; Nelson, R.L.; Fuhrmann, J.J.; Evans, T.A. Relationship of Nitrogen Utilization Patterns with Soybean Yield and Seed-Fill Period. Crop Sci. 1995, 35, 809–813. [Google Scholar] [CrossRef]
- Kurdali, F.; Kalifa, K.; Al-Shamma, M. Cultivar differences in nitrogen assimilation, partitioning and mobilization in rain-fed grown lentil. Field Crops Res. 1997, 54, 235–243. [Google Scholar] [CrossRef]
- Naya, L.; Ladrea, R.; Ramos, J.; González, E.M.; Arrese-Igor, C.; Minchin, F.R.; Becana, M. The response of carbon metabolism and antioxidant defenses of alfalfa nodules to drought stress and to the subsequent recovery of plants. Plant Physiol. 2007, 144, 1104–1114. [Google Scholar] [CrossRef]
- Singh, S.P. Drought Resistance in the Race Durango Dry Bean Landraces and Cultivars. Agron. J. 2007, 99, 1219–1225. [Google Scholar] [CrossRef]
- Sadras, V.O. Evolutionary aspects of the trade-off between seed size and number in crops. Field Crops Res. 2007, 100, 125–138. [Google Scholar] [CrossRef]
- Harper, L.A.; Giddens, J.E.; Angdale, G.W.; Sharpe, R.R. Environmental effects on nitrogen dynamics in soybean under conservation and clean tillage systems. Agron. J. 1989, 81, 623–631. [Google Scholar] [CrossRef]
- Boutraa, T.; Sanders, F.E. Effects of interactions of moisture regime and nutrient addition on nodulation and carbon partitioning in two cultivars of bean (Phaseolus vulgaris L.). J. Agron. Crop Sci. 2001, 186, 229–237. [Google Scholar] [CrossRef]
- Silva, A.d.N.; Gerosa, M.L.; Ribeiro, W.Q.; Rodrigues, E.; Carvalhoda, P.; Andreade, C.; Cleo, C.; Vanderlei, M.A. Water stress alters physical and chemical quality in grains of common bean, triticale and wheat. Agric. Water Manag. 2020, 231, 106023. [Google Scholar] [CrossRef]
- Hungria, M.; Vargas, M.A. Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Res. 2000, 65, 151–164. [Google Scholar] [CrossRef]
- Mnasri, B.; Aouani, M.E.; Mhamdi, R. Nodulation and growth of common bean (Phaseolus vulgaris) under water deficiency. Soil Biol. Biochem. 2007, 39, 1744–1750. [Google Scholar] [CrossRef]
- Güereña, D.T.; Lehmann, J.; Thies, J.E.; Vanek, S.; Karanja, N.; Neufeldt, H. Nodulation of beans with inoculant carriers from pyrolyzed and non-pyrolyzed sugarcane bagasse in response to different pre-planting water availability. Appl. Soil Ecol. 2019, 143, 126–133. [Google Scholar] [CrossRef]
- Kipe-Nolt, J.A.; Vargas, H.; Giller, K.E. Nitrogen fixation in breeding lines of Phaseolus vulgaris L. Plant Soil 1993, 152, 103–106. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Muchow, R.C.; Ludlow, M.M.; Leach, G.J.; Lawn, R.J.; Foale, M.A. Field and model analysis of the effect of water deficits on carbon and nitrogen accumulation by soybean, cowpea and black gram. Field Crops Res. 1987, 17, 121–140. [Google Scholar] [CrossRef]
- Pfeiffer, N.E.; Malik, N.S.A.; Wagner, F.W.; Wang, C.Y.; Adams, D.O. Reversible Dark-Induced Senescence of Soybean Root Nodules. Plant Physiol. 1983, 71, 393–399. [Google Scholar] [CrossRef]
- Kumarasinghe, K.S.; Danso, S.K.A.; Zapata, F. Field evaluation of fixation and N partitioning in climbing bean (Phaseolus vulgaris L.) using 15N. Biol. Fertil. Soils 1992, 13, 142–146. [Google Scholar]
- Ramos, M.L.G.; Gordon, A.J.; Minchin, F.R.; Sprent, J.I.; Parsons, R. Effect of water stress on nodule physiology and bio-chemistry of a drought tolerant cultivar of common bean (Phaseolus vulgaris L.). Ann. Bot. 1999, 83, 57–63. [Google Scholar] [CrossRef]
- Gálvez, L.; González, E.M.; Arrese-Igor, C. Evidence for carbon flux shortage and strong carbon/nitrogen interactions in pea nodules at early stages of water stress. J. Exp. Bot. 2005, 56, 2551–2561. [Google Scholar] [CrossRef] [PubMed]
- Peña-Cabriales, J.J.; Castellanos, J.Z. Effects of water stress on N2 fixation and grain yield of Phaseolus vulgaris L. In Enhancement of Biological Nitrogen Fixation of Common Bean in Latin America; Springer: Dordrecht, The Netherlands, 1993; Volume 52, pp. 151–155. [Google Scholar] [CrossRef]
- Araújo, A.P.; Teixeira, M.G. Nitrogen and phosphorus harvest indices of common bean cultivars: Implications for yield quantity and quality. Plant Soil 2003, 257, 425–433. [Google Scholar] [CrossRef]
- Vadez, V.; Drevon, J.J. Genotypic variability in phosphorus use efficiency for symbiotic N2 fixation in common bean (Phaseolus vulgaris). Agronomie 2001, 21, 691–699. [Google Scholar] [CrossRef]
- Remans, R.; Croonenborghs, A.; Gutierrez, R.T.; Michiels, J.; Vanderleyden, J. Effects of plant growth-promoting rhizobacteria on nodulation of Phaseolus vulgaris L. are dependent on plant P nutrition. Eur. J. Plant Pathol. 2007, 119, 341–351. [Google Scholar] [CrossRef]
- Wakelin, S.A.; Macdonald, L.; Rogers, S.; Gregg, A.; Bolger, T.; Baldock, J. Habitat selective factors influencing the structural composition and functional capacity of microbial communities in agricultural soils. Soil Biol. Biochem. 2008, 40, 803–813. [Google Scholar] [CrossRef]
A. Bean genotypes used in this study, name, commercial class and performance under drought. | |||
Bean Genotypes | Name | Commercial Class | Drought Performance |
PHA-0155 | local variety | White Kidney | unknown |
PHA-0432 | local variety | Marrow | unknown |
PHA-0471 | local variety | Navy | unknown |
PHA-0483 | local variety | Guernikesa | unknown |
PHA-0683 | local variety | Cranberry | unknown |
PMB-0220 | Mattherhorn | Great Northern | tolerant |
PMB-0222 | Almonga | Great Northern | unknown |
PMB-0244 | Linex (R) | Cannellini | unknown |
PMB-0285 | L88-18 (R) | Black Turtle | sensitive |
PMB-0286 | L88-63 (R) | Black Turtle | tolerant |
B. Rhizobia strains used. | |||
Strains of Rhizobia | Type | ||
SLL2 | local strain | ||
EXIC | local strain | ||
EXIB | local strain | ||
EG | local strain | ||
EF | local strain | ||
EPOB | local strain | ||
APAFI | local strain | ||
LTMF | local strain | ||
CIAT899 (R) | R. tropici | ||
CFN42 (R) | R. etli |
Traits Measured | Acronym | Units |
---|---|---|
Shoot dry weight, F, G | SDW | grams plant−1 |
Root dry weight, G | RDW | grams plant−1 |
Nodules number, F, G | NN | number plant−1 |
Nodule dry weight, F, G | NDW | milligrams plant −1 |
Medium nodular dry weight, F, G | MNDW | milligrams |
100 seed weight, F | 100SW | grams 100 seeds−1 |
Seed dry matter, F | SDM | grams plant−1 |
Percentage of nitrogen in shoot dry matter, F | PNSDW | % |
Quantity of nitrogen in shoot dry matter, F | NSDW | grams plant−1 |
Percentage of nitrogen in seed dry matter, F | PNSEDM | % |
Nitrogen content in seed dry matter, F | NSEDM | grams plant−1 |
Source of Variation | SDW | RDW | NN | NDW |
---|---|---|---|---|
G | *** | *** | ** | ** |
T | *** | *** | ** | ns |
I | ns | ns | ns | ns |
G×T | *** | *** | * | ns |
G×I | ns | * | ns | ns |
T×I | ns | ns | ns | ns |
G×T×I | ns | ns | ns | ns |
SDW | NSDW | PNSDW | SDM | NSEDM | PNSEDM | NN | NDW | 100SW | |
---|---|---|---|---|---|---|---|---|---|
G | *** | *** | *** | *** | *** | *** | *** | *** | *** |
T | *** | *** | *** | *** | *** | *** | *** | *** | *** |
I | *** | *** | *** | *** | *** | * | ns | ns | *** |
G×T | *** | *** | *** | ** | ** | *** | ** | ns | * |
G×I | *** | *** | ns | ns | ns | ns | ns | ns | * |
T×I | *** | ** | *** | *** | *** | * | ns | ns | *** |
G×T×I | *** | *** | ns | ns | ns | ns | ns | ns | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodiño, A.P.; Riveiro, M.; De Ron, A.M. Implications of the Symbiotic Nitrogen Fixation in Common Bean under Seasonal Water Stress. Agronomy 2021, 11, 70. https://doi.org/10.3390/agronomy11010070
Rodiño AP, Riveiro M, De Ron AM. Implications of the Symbiotic Nitrogen Fixation in Common Bean under Seasonal Water Stress. Agronomy. 2021; 11(1):70. https://doi.org/10.3390/agronomy11010070
Chicago/Turabian StyleRodiño, Ana P., Manuel Riveiro, and Antonio M. De Ron. 2021. "Implications of the Symbiotic Nitrogen Fixation in Common Bean under Seasonal Water Stress" Agronomy 11, no. 1: 70. https://doi.org/10.3390/agronomy11010070
APA StyleRodiño, A. P., Riveiro, M., & De Ron, A. M. (2021). Implications of the Symbiotic Nitrogen Fixation in Common Bean under Seasonal Water Stress. Agronomy, 11(1), 70. https://doi.org/10.3390/agronomy11010070