Development of Pea Breeding Lines with Resistance to Orobanche crenata Derived from Pea Landraces and Wild Pisum spp.
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smýkal, P.; Aubert, G.; Burstin, J.; Coyne, C.J.; Ellis, N.T.H.; Flavell, A.J.; Ford, R.; Hýbl, M.; Macas, J.; Neumann, P.; et al. Pea (Pisum sativum L.) in the Genomic Era. Agronomy 2012, 2, 74–115. [Google Scholar] [CrossRef]
- Parker, C. Parasitic Weeds: A World Challenge. Weed Sci. 2012, 60, 269–276. [Google Scholar] [CrossRef]
- Rubiales, D.; Pérez-de-Luque, A.; Cubero, J.I.; Sillero, J.C. Crenate broomrape (Orobanche crenata) infection in field pea cultivars. Crop Prot. 2003, 22, 865–872. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Flores, F.; Rubiales, D. The effect of Orobanche crenata infection severity in faba bean, field pea, and grass pea productivity. Front. Plant Sci. 2016, 7, 1409. [Google Scholar] [CrossRef]
- Rubiales, D.; Fernández-Aparicio, M. Innovations in parasitic weeds management in legume crops. A review. Agron. Sustain. Dev. 2012, 32, 433–449. [Google Scholar] [CrossRef]
- Rubiales, D.; Pérez-de-Luque, A.; Fernández-Aparicio, M.; Sillero, J.C.; Román, B.; Kharrat, M.; Khalil, S.; Joel, D.M.; Riches, C. Screening techniques and sources of resistance against parasitic weeds in grain legumes. Euphytica 2006, 147, 187–199. [Google Scholar] [CrossRef]
- Maalouf, F.; Khalil, S.; Ahmed, S.; Akintunde, A.N.; Kharrat, M.; El Shama’a, K.; Hajjar, S.; Malhotra, R.S. Yield stability of faba bean lines under diverse broomrape prone production environments. Field Crops Res. 2011, 124, 288–294. [Google Scholar] [CrossRef]
- Rubiales, D. Can we breed for durable resistance to broomrapes? Phytopathol. Medit. 2018, 57, 170–185. [Google Scholar]
- Pérez-de-Luque, A.; Jorrín, J.; Cubero, J.I.; Rubiales, D. Orobanche crenata resistance and avoidance in pea (Pisum spp.) operate at different developmental stages of the parasite. Weed Res. 2005, 45, 379–387. [Google Scholar] [CrossRef]
- Rubiales, D.; Moreno, M.T.; Sillero, J.C. Search for resistance to crenate broomrape (Orobanche crenata) in pea germplasm. Gen. Resour. Crop Evol. 2005, 52, 853–861. [Google Scholar] [CrossRef]
- Rubiales, D.; Fernández-Aparicio, M.; Pérez-de-Luque, A.; Prats, E.; Castillejo, M.A.; Sillero, J.; Rispail, N.; Fondevilla, S. Breeding approaches for crenate broomrape (Orobanche crenata Forsk.) management in pea (Pisum sativum L.). Pest Manag. Sci. 2009, 65, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Fondevilla, S.; Fernández-Aparicio, M.; Satovic, Z.; Emeran, A.A.; Torres, A.M.; Moreno, M.T.; Rubiales, D. Identification of quantitative trait loci for specific mechanisms of resistance to Orobanche crenata Forsk. in pea (Pisum sativum L.). Mol. Breed. 2010, 25, 259–272. [Google Scholar] [CrossRef]
- Pérez-de-Luque, A.; González-Verdejo, C.I.; Lozano, M.D.; Dita, M.A.; Cubero, J.I.; González-Melendi, P.; Risueño, M.C.; Rubiales, D. Protein cross-linking, peroxidase and β-1,3-endoglucanase involved in resistance of pea against Orobanche crenata. J. Exp. Bot. 2006, 57, 1461–1469. [Google Scholar] [CrossRef] [PubMed]
- Castillejo, M.A.; Fernández-Aparicio, M.; Rubiales, D. Proteomic analysis by two-dimensional differential in gel electrophoresis (2D DIGE) of the early response of Pisum sativum to Orobanche crenata. J. Exp. Bot. 2012, 63, 107–119. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Rubiales, D. Differential response of pea (Pisum sativum) to Orobanche crenata, O. foetida and Phelipanche aegyptiaca. Crop Prot. 2012, 31, 27–30. [Google Scholar] [CrossRef]
- Fondevilla, S.; Flores, F.; Emeran, A.A.; Kharrat, M.; Rubiales, D. High productivity of dry pea genotypes resistant to crenate broomrape in Mediterranean environments. Agron. Sustain. Dev. 2017, 37, 61. [Google Scholar] [CrossRef]
- Pérez-de-Luque, A.; Fondevilla, S.; Pérez-Vich, B.; Aly, R.; Thoiron, S.; Simier, S.; Castillejo, M.A.; Fernández-Martínez, J.M.; Jorrín, J.; Rubiales, D.; et al. Understanding Orobanche and Phelipanche—host plant interaction and developing resistance. Weed Res. 2009, 49, 8–22. [Google Scholar] [CrossRef]
- Rubiales, D. Parasitic plants, wild relatives and the nature of resistance. New Phytol. 2003, 160, 459–461. [Google Scholar] [CrossRef]
- Fernández-Aparicio, M.; Flores, F.; Rubiales, D. Escape and true resistance to crenate broomrape (Orobanche crenata Forsk.) in grass pea (Lathyrus sativus L.) germplasm. Field Crops Res. 2011, 125, 92–97. [Google Scholar] [CrossRef]
- Pavan, S.; Schiavulli, A.; Marcotrigiano, A.R.; Bardaro, N.; Bracuto, V.; Ricciardi, F.; Charnikova, T.; Lotti, C.; Bouwmeester, H.; Ricciardi, L. Characterization of low-strigolactone germplasm in pea (Pisum sativum L.) resistant to crenate broomrape (Orobanche crenata Forsk.). Mol. Plant Microbe Interact. 2016, 29, 743–749. [Google Scholar] [CrossRef]
- Goldwasser, Y.; Kleifeld, Y.; Plakhine, D.; Rubin, B. Variation in vetch (Vicia spp.) response to Orobanche aegyptiaca. Weed Sci. 1997, 45, 756–762. [Google Scholar] [CrossRef]
- Labrousse, P.; Arnaud, M.C.; Serieys, H.; Bervillé, A.; Thalouarn, P. Several mechanisms are involved in resistance of Helianthus to Orobanche cumana Wallr. Ann. Bot. 2001, 88, 859–868. [Google Scholar] [CrossRef]
- Rubiales, D.; Alcántara, C.; Joel, D.M.; Pérez-de-Luque, A.; Sillero, J.C. Characterization of the resistance to Orobanche crenata in chickpea. Weed Sci. 2003, 51, 702–707. [Google Scholar] [CrossRef]
- Rubiales, D.; Rojas-Molina, M.M.; Sillero, J.C. Characterization of Resistance Mechanisms in Faba Bean (Vicia faba) against Broomrape Species (Orobanche and Phelipanche spp.). Front. Plant Sci. 2016, 7, 1747. [Google Scholar] [CrossRef]
- Pérez-de-Luque, A.; Moreno, M.T.; Rubiales, D. Host plant resistance against broomrapes (Orobanche spp.): Defence reactions and mechanisms of resistance. Ann. Appl. Biol. 2008, 152, 131–141. [Google Scholar] [CrossRef]
- Thorogood, C.J.; Hiscock, S.J. Compatibility interactions at the cellular level provide the basis for host specificity in the parasitic plant Orobanche. New Phytol. 2010, 186, 571. [Google Scholar] [CrossRef]
- Gutiérrez, N.; Palomino, C.; Satovic, Z.; Ruiz-Rodríguez, M.D.; Vitale, S.; Gutiérrez, M.V.; Rubiales, D.; Kharrat, M.; Amri, M.; Emeran, A.A.; et al. QTLs for Orobanche spp. resistance in faba bean: Identification and validation across different environments. Mol. Breed. 2013, 32, 909–922. [Google Scholar] [CrossRef]
- Kreplak, J.; Madoui, M.A.; Cápal, P.; Novák, P.; Labadie, K.; Aubert, G.; Bayer, P.E.; Gali, K.K.; Syme, R.A.; Main, D.; et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 2019, 51, 1411–1422. [Google Scholar] [CrossRef]
- Westwood, J.H.; Depamphilis, C.W.; Das, M.; Fernández-Aparicio, M.; Honaas, L.; Timko, M.P.; Wafula, E.; Wickett, N.; Yoder, J.I. The parasitic plant genome project: New tools for understanding the biology of Orobanche and Striga. Weed Sci. 2012, 60, 295–306. [Google Scholar] [CrossRef]
- Gouzy, J.; Pouill, N.; Boniface, M.C.; Bouchez, O.; Carrère, S.; Catrice, O.; Cauet, S.; Claudel, C.; Cottret, L.; Faure, S.; et al. The complete genome sequence of Orobanche cumana (sunflower broomrape). In Proceedings of the 14th World Congress on Parasitic Plants, Pacific Grove, CA, USA, 25–30 June 2017. [Google Scholar]
- Duriez, P.; Vautrin, S.; Auriac, M.C.; Bazerque, J.; Boniface, M.C.; Callot, C.; Carrère, S.; Cauet, S.; Chabaud, M.; Gentou, F.; et al. A receptor-like kinase enhances sunflower resistance to Orobanche cumana. Nat. Plants 2019, 5, 1211–1215. [Google Scholar] [CrossRef]
- Cvejić, S.; Radanović, A.; Dedić, B.; Jocković, M.; Jocić, S.; Miladinović, D. Genetic and Genomic Tools in Sunflower Breeding for Broomrape Resistance. Genes 2020, 11, 152. [Google Scholar] [CrossRef] [PubMed]
Line | Pedigree | FC/LT | Field Studies | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Cor07 | Cor08 | Cor09 | Esc08 | Esc09 | ||||||||
Oc/pl | Kg/ha | Oc/pl | Kg/ha | lOc/pl | Kg/ha | Oc/pl | Kg/ha | Oc/pl | Kg/ha | |||
Messire | Check cv | WF/NL | 3.50 | 1051 | 3.89 | 491 | 1.54 | 1264 | 1.83 | - | 0.02 | 1537 |
GC248-NS46 | Ps624/Messire | WF/NL | 0.13 *** | 1638 | 0.43 ** | 3002 ** | 0.15 ** | 709 | 0.17 *** | - | 0.00 | 640 ** |
GC233-J5 | Ps565/Ps624 | WF/NL | 0.13 *** | 3417 *** | 0.59 ** | 1934 * | 0.18 ** | 1517 | 0.07 *** | - | 0.00 | 1338 |
GCC136-J24 | Ps624/Ps423/Radley | WF/AT | 0.23 *** | 2411 * | 1.44 * | 804 | 0.18 ** | 388 * | 1.03 * | - | 0.03 | 568 ** |
BC20-J10 | Messire/P660 | WF/NL | 0.17 *** | 1003 | 0.51 ** | 2493 ** | 0.12 ** | 719 | 0.08 *** | - | 0.00 | 735 |
BC20-J11 | Messire/P660 | WF/NL | 0.20 *** | 3456 *** | 0.54 ** | 1643 | 0.08 ** | 697 | 0.13 *** | - | 0.01 | 998 |
BC20-J13 | Messire/P660 | WF/NL | 0.27 *** | 1955 | 0.70 ** | 2431 ** | 0.20 ** | 765 | 0.17 *** | - | 0.00 | 1251 |
BC20-J15 | Messire/P660 | WF/NL | 0.17 *** | 2077 | 0.51 ** | 1854 * | 0.21 ** | 690 | 0.17 *** | - | 0.00 | 855 * |
GCC99-J17 | P675/P665/JI1760/Messire/Ballet | CF/AT | 0.07 *** | 1671 | 0.39 *** | 1472 | 0.06 *** | 54 | 0.07 *** | - | 0.01 | 514 ** |
GCC124-J19 | Messire/P660/Ballet | CF/NL | 0.20 *** | 3579 *** | 0.47 ** | 1855 * | 0.26 ** | 918 | 0.10 *** | - | 0.03 | 1533 |
Genotype | In Vitro Study | |||
---|---|---|---|---|
Oc Tubercle(%) | Tubercle Necrosis (%) | Tubercle Developmental Stage | ||
30 dai | 45 dai | 30 dai | 45 dai | |
Messire | 71.1 | 0.0 | T2–T3 | T3–T4 |
GC248-NS46 | 34.7 ** | 0.0 | T1–T3 | T2–T3 |
GC233-J5 | 31.2 *** | 0.0 | T1–T3 | T3–T4 |
GCC136-J24 | 12.5 *** | 0.0 | T1–T3 | T3–T4 |
BC20-J10 | 29.2 ** | 0.0 | T2–T3 | T3–T4 |
BC20-J11 | 25.3 *** | 50.0 * | T1–T2 | T2–T4 |
BC20-J13 | 30.6 ** | 0.0 | T1–T3 | T2–T3 |
BC20-J15 | 0.5 *** | 0.0 | T2 | T2 |
GCC99-J17 | 15.6 *** | 0.0 | T1–T3 | T3–T4 |
GCC124-J19 | 8.3 *** | 100.0 *** | T3 | T3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubiales, D.; Fondevilla, S.; Fernández-Aparicio, M. Development of Pea Breeding Lines with Resistance to Orobanche crenata Derived from Pea Landraces and Wild Pisum spp. Agronomy 2021, 11, 36. https://doi.org/10.3390/agronomy11010036
Rubiales D, Fondevilla S, Fernández-Aparicio M. Development of Pea Breeding Lines with Resistance to Orobanche crenata Derived from Pea Landraces and Wild Pisum spp. Agronomy. 2021; 11(1):36. https://doi.org/10.3390/agronomy11010036
Chicago/Turabian StyleRubiales, Diego, Sara Fondevilla, and Mónica Fernández-Aparicio. 2021. "Development of Pea Breeding Lines with Resistance to Orobanche crenata Derived from Pea Landraces and Wild Pisum spp." Agronomy 11, no. 1: 36. https://doi.org/10.3390/agronomy11010036
APA StyleRubiales, D., Fondevilla, S., & Fernández-Aparicio, M. (2021). Development of Pea Breeding Lines with Resistance to Orobanche crenata Derived from Pea Landraces and Wild Pisum spp. Agronomy, 11(1), 36. https://doi.org/10.3390/agronomy11010036