Changes in Spatiotemporal Distribution of the Potato Tuber Moth (Phthorimaea operculella) in South Korea in Response to Climate Change Determined Using a Field Survey
Abstract
:1. Introduction
2. Materials and Methods
2.1. Distribution Record of the Potato Tuber Moth
2.2. Field Survey for Potato Tuber Moth
2.3. Species Distribution Modeling: CLIMEX Model
2.4. Parameter Estimation
2.5. Meteorological Data and Climate Change Scenario
3. Results and Discussion
3.1. Field Survey Result
3.2. CLIMEX Model Validation
3.3. Climatic Suitability Assessment
3.4. Spatiotemporal Risk Assessment of Major Potato Growing Areas in South Korea
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- RDA (Rural Development Administration) Rediscovering Potatoes-From the Old Crop to the Food of the World. Available online: http://www.nongsaro.go.kr/portal/ps/psv/psvr/psvrc/rdaInterDtl.ps?menuId=PS00063&cntntsNo=34240 (accessed on 25 August 2018).
- Beukema, H.P.; van der Zaag, D.E. Introduction to Potato Production (No. 633.491 B4); Wageningen: Gelderland, The Netherlands, 1990. [Google Scholar]
- Oerke, E.C.; Dekne, H.W.; Schonbeck, F.; Weber, A. Crop Production and Crop Protection-Estimated Losses in Major Food and Cash Crops; Elsevier Science: Amsterdam, The Netherlands, 1994. [Google Scholar]
- Haines, C.P. The potato tuber moth. Phthorimaea operculella (Zeller): A bibliography of recent literature and review of its biology and control on potatoes in the field and in stores. In Report of the Tropical Production Institute; Tropical Products Institute: London, UK, 1977; p. 15. [Google Scholar]
- Kroschel, J. Integrated Pest Management in Potato Production in Yemen with Special Reference to the Integrated Biological Control of the Potato Tuber Moth (Phthorimaea Operculella Zeller); Tropical Agriculture: Weikersheim, Germany, 1995. [Google Scholar]
- Keller, S. Integrated pest management of the potato tuber moth in cropping systems of different agro-ecological zones. In Advances in Crop Research; Kroschel, J., Ed.; Margraf Verlag: Weikersheim, Germany, 2003; Volume 1. [Google Scholar]
- Kroschel, J.; Sporleder, M.; Tonnang, H.E.Z.; Juarez, H.; Carhuapoma, P.; Gonzales, J.C.; Simon, R. Predicting climate-change-caused changes in global temperature on potato tuber moth Phthorimaea operculella (Zeller) distribution and abundance using phenology modeling and GIS mapping. Agric. For. Meteorol. 2013, 170, 228–241. [Google Scholar] [CrossRef]
- Bale, J.S.; Masters, G.J.; Hodkinson, I.D.; Awmack, C.; Bezemer, T.M.; Brown, V.K.; Good, J.E. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob. Chang. Biol. 2002, 8, 1–16. [Google Scholar] [CrossRef]
- Hof, A.R.; Svahlin, A. The potential effect of climate change on the geographical distribution of insect pest species in the Swedish boreal forest. Scand. J. For. Res. 2016, 31, 29–39. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, Y.C.; Feng, C.C.; Wan, P.H.M.; Chang, K.T.T. Potential distributional changes of invasive crop pest species associated with global climate change. Appl. Geogr. 2017, 82, 83–92. [Google Scholar] [CrossRef]
- Byeon, D.H.; Jung, S.; Mo, C.; Lee, W.H. Effectiveness of sensitivity analysis for parameter selection in CLIMEX modeling of Metcalfa pruinosa distribution. J. Biosyst. Eng. 2018, 43, 410–419. [Google Scholar]
- Pattison, R.R.; Mack, R.N. Potential distribution of the invasive tree Triadica sebifera (Euphorbiaceae) in the United States: Evaluating CLIMEX predictions with field trials. Glob. Chang. Biol. 2008, 14, 813–826. [Google Scholar] [CrossRef]
- Yonow, T.; Hattingh, V.; de Villiers, M. CLIMEX modelling of the potential global distribution of the citrus black spot disease caused by Guignardia citricarpa and the risk posed to Europe. Crop Prot. 2013, 44, 18–28. [Google Scholar] [CrossRef]
- Taylor, S.; Kumar, L.; Reid, N.; Kriticos, D.J. Climate change and the potential distribution of an invasive shrub, Lantana camara L. PLoS ONE 2012, 7, e35565. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.M.; Jung, S.; Ahmed, M.R.; Cho, B.K.; Lee, W.H. Invasion risk of the yellow crazy ant (Anoplolepis gracilipes) under the Representative Concentration Pathways 8.5 climate change scenario in South Korea. J. Asia Pac. Biodivers. 2017, 10, 548–554. [Google Scholar] [CrossRef]
- Jung, J.M.; Lee, J.W.; Kim, C.J.; Jung, S.; Lee, W.H. CLIMEX-based Analysis of potential geographical distribution of Aedes albopictus and Aedes aegypti in South Korea. J. Biosyst. Eng. 2017, 42, 217–226. [Google Scholar]
- Byeon, D.H.; Jung, J.M.; Lohumi, S.; Cho, B.K.; Jung, S.; Lee, W.H. Predictive analysis of Metcalfa pruinosa (Hemiptera: Flatidae) distribution in South Korea using CLIMEX software. J. Asia Pac. Biodivers. 2017, 10, 379–384. [Google Scholar] [CrossRef]
- Kim, D.E.; Lee, H.J.; Kim, M.J.; Lee, D.H. Predicting the potential habitat, host plants, and geographical distribution of Pochazia shantungensis (Hemiptera: Ricaniidae) in Korea. Korean J. Appl. Entomol. 2015, 54, 179–189. [Google Scholar] [CrossRef]
- RDA (Rural Development Administration) Agricultural Management (Potato Management). Available online: http://www.nongsaro.go.kr/portal/ps/pst/pstb/pstbc/mngmtDtaDtl.ps?menuId=PS03213&nttSn=255&totalSearchYn=Y (accessed on 19 May 2018).
- Aryal, S.; Jung, C. A review on the ecological characteristics of potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). Korean J. Soil Zool. 2015, 19, 35–41. [Google Scholar]
- Choe, K.R.; Park, J.S. Distribution of the potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), in Korea. Korean J. Appl. Entomol. 1980, 19, 103–107. [Google Scholar]
- An, J.J.; Park, J.W.; Kim, J.I.; Kim, H.K.; Koo, H.N.; Kim, G.H. Insecticidal activity and effect on biological characteristic of 16 insecticides against Phthorimaea Operculella (Lepidoptera: Gelechiidae). Korean J. Pestic. Sci. 2013, 17, 363–370. [Google Scholar] [CrossRef] [Green Version]
- Kroschel, J.; Schaub, B. Biology and ecology of potato tuber moths as major pests of potato. In Insect Pests of Potato: Global Perspectives on Biology and Management; Academic Press: London, UK, 2013; pp. 165–192. [Google Scholar]
- Sporleder, M.; Simon, R.; Juarez, H.; Kroschel, J. Regional and seasonal forecasting of the potato tuber moth using a temperature-driven phenology model linked with geographic information systems. In Integrated Pest Management for the Potato Tuber Moth Phthorimaea Operculella Zeller—A Potato Pest of Global Importance; Margraf Publishers: Weikersheim, Germany, 2008; pp. 15–30. [Google Scholar]
- Kwon, M. Screening of Potato Cultivars for Infestation by Major Pest Insects and Analysis on Infestation-Related Factors. Ph.D. Thesis, Seoul National University, Seoul, Korea, 2000. [Google Scholar]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef] [Green Version]
- Graf, J.E. The Potato Tuber Moth (No. 427); US Department of Agriculture: Washington, WA, USA, 1917.
- Das, G.P.; Raman, K.V. Alternate hosts of the potato tuber moth, Phthorimaea operculella (Zeller). Crop Prot. 1994, 13, 83–86. [Google Scholar] [CrossRef]
- Kroschel, J.; Sporleder, M. Ecological approaches to integrated pest management of the potato tuber moth, Phthorimaea operculella Zeller (Lepidoptera, Gelechidae). In Proceedings of the 45th Annual Washington State Potato Conference, Washington, DC, USA, 13 January 2006; pp. 85–94. [Google Scholar]
- Cisneros, F.; Gregory, P. Potato pest management. Asp. Appl. Biol. 1994, 39, 113–124. [Google Scholar]
- CABI (Centre for Agriculture and Bioscience International). Available online: https://www.cabi.org/ISC/datasheet/50569 (accessed on 12 October 2018).
- Kwon, M.; Kim, J.; Maharjan, R.; Choi, J.Y.; Kim, G.H. Change in the distribution of the potato tuber moth, Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae), in Korea. J. Asia Pac. Entomol. 2017, 20, 1249–1253. [Google Scholar] [CrossRef]
- Kriticos, D.J.; Maywald, G.F.; Yonow, T.; Zurcher, E.J.; Herrmann, N.I.; Sutherst, R.W. CLIMEX Version 4: Exploring the Effects of Climate on Plants, Animals and Diseases; CSIRO: Canberra, Australia, 2015. [Google Scholar]
- Jung, J.M.; Lee, W.H.; Jung, S. Insect distribution in response to climate change based on a model: Review of function and use of CLIMEX. Entomol. Res. 2016, 46, 223–235. [Google Scholar] [CrossRef]
- Venette, R.C.; Cohen, S.D. Potential climatic suitability for establishment of Phytophthora ramorum within the contiguous United States. For. Ecol. Manag. 2006, 231, 18–26. [Google Scholar] [CrossRef]
- Chejara, V.K.; Kriticos, D.J.; Kristiansen, P.; Sindel, B.M.; Whalley, R.D.B.; Nadolny, C. The current and future potential geographical distribution of Hyparrhenia hirta. Weed Res. 2010, 50, 174–184. [Google Scholar] [CrossRef]
- Sutherst, R.W.; Maywald, G.F.; Kriticos, D.J. CLIMEX Version 3: User’s Guide; Hearne: Melbourne, Austalia, 2007. [Google Scholar]
- Zalucki, M.P.; Shabbir, A.; Silva, R.; Adamson, D.; Shu-Sheng, L.; Furlong, M.J. Estimating the economic cost of one of the world’s major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): Just how long is a piece of string? J. Econ. Entomol. 2012, 105, 1115–1129. [Google Scholar] [CrossRef]
- Jung, J.M.; Lee, S.G.; Kim, K.H.; Jeon, S.W.; Jung, S.; Lee, W.H. The potential distribution of the potato tuber moth (Phthorimaea Operculella) based on climate and host availability of potato. Agronomy 2020, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- KMA (Korea Meteorological Administration). Available online: http://www.kma.go.kr (accessed on 14 October 2016).
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Rafaj, P. RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33. [Google Scholar] [CrossRef] [Green Version]
- Ruosteenoja, K.; Jylhä, K.; Kämäräinen, M. Climate projections for Finland under the RCP forcing scenarios. Geophysica 2016, 51, 17–50. [Google Scholar]
- Byeon, D.H.; Jung, J.M.; Jung, S.; Lee, W.H. Effect of types of meteorological data on species distribution predicted by the CLIMEX model using an example of Lycorma delicatula (Hemiptera: Fulgoridae). J. Asia Pac. Biodivers. 2020, 13, 1–6. [Google Scholar] [CrossRef]
- Trivedi, T.P.; Rajagopal, D.; Tandon, P.L. Environmental correlates of the potato tuber moth Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). Int. J. Pest Manag. 1994, 40, 305–308. [Google Scholar] [CrossRef]
- RDA (Rural Development Administration) (Potato Tuber Moth, Phthouimaea Operculella Zeller). Available online: http://www.nongsaro.go.kr/portal/ps/psb/psbk/kidofcomdtyDtl.ps?menuId=PS00067&kidofcomdtyNo=22995 (accessed on 8 August 2018).
- KOSIS (KOrean Statistical Information Service). Available online: https://www.kosis.kr (accessed on 23 July 2018).
- Sutherst, R.W.; Maywald, G. A climate model of the red imported fire ant, Solenopsis invicta Buren (Hymenoptera: Formicidae): Implications for invasion of new regions, particularly Oceania. Environ. Entomol. 2005, 34, 317–335. [Google Scholar] [CrossRef]
- Rondon, S.I. The potato tuberworm: A literature review of its biology, ecology, and control. Am. J. Potato Res. 2010, 87, 149–166. [Google Scholar] [CrossRef] [Green Version]
Parameters | Code | Values 1 |
---|---|---|
Temperature | ||
Limiting low temperature (°C) | DV0 | 9 |
Lower optimal temperature (°C) | DV1 | 20 |
Upper optimal temperature (°C) | DV2 | 30 |
Limiting high temperature (°C) | DV3 | 38 |
PDD | 497 | |
Moisture | ||
Limiting low soil moisture | SM0 | 0.1 |
Lower optimal soil moisture | SM1 | 0.15 |
Upper optimal soil moisture | SM2 | 1.0 |
Limiting high soil moisture | SM3 | 1.5 |
Cold stress | ||
CS temperature threshold (°C) | TTCS | 5 |
CS temperature rate | THCS | −0.00013 |
Heat stress | ||
HS temperature threshold (°C) | TTHS | 38 |
HS temperature rate | THHS | 0.005 |
Dry stress | ||
DS threshold | SMDS | 0.1 |
DS rate | HDS | −0.02 |
Wet stress | ||
WS threshold | SMWS | 1.5 |
WS threshold | HWS | 0.001 |
Irrigation scenario 2 | 2.5 mm/day of top-up irrigation throughout the year |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byeon, D.-h.; Jung, S.; Lee, S.-G.; Jeon, S.-W.; Kwon, M.; Kim, J.; Kim, K.-H.; Lee, W.-H. Changes in Spatiotemporal Distribution of the Potato Tuber Moth (Phthorimaea operculella) in South Korea in Response to Climate Change Determined Using a Field Survey. Agronomy 2020, 10, 1270. https://doi.org/10.3390/agronomy10091270
Byeon D-h, Jung S, Lee S-G, Jeon S-W, Kwon M, Kim J, Kim K-H, Lee W-H. Changes in Spatiotemporal Distribution of the Potato Tuber Moth (Phthorimaea operculella) in South Korea in Response to Climate Change Determined Using a Field Survey. Agronomy. 2020; 10(9):1270. https://doi.org/10.3390/agronomy10091270
Chicago/Turabian StyleByeon, Dae-hyeon, Sunghoon Jung, Sang-Guei Lee, Sung-Wook Jeon, Min Kwon, Juil Kim, Kwang-Ho Kim, and Wang-Hee Lee. 2020. "Changes in Spatiotemporal Distribution of the Potato Tuber Moth (Phthorimaea operculella) in South Korea in Response to Climate Change Determined Using a Field Survey" Agronomy 10, no. 9: 1270. https://doi.org/10.3390/agronomy10091270
APA StyleByeon, D.-h., Jung, S., Lee, S.-G., Jeon, S.-W., Kwon, M., Kim, J., Kim, K.-H., & Lee, W.-H. (2020). Changes in Spatiotemporal Distribution of the Potato Tuber Moth (Phthorimaea operculella) in South Korea in Response to Climate Change Determined Using a Field Survey. Agronomy, 10(9), 1270. https://doi.org/10.3390/agronomy10091270