Mapping of Adult Plant Leaf Rust Resistance in Aus27506 and Validation of Underlying Loci by In-Planta Fungal Biomass Accumulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Development of Mapping Population
2.2. Greenhouse Tests
2.3. Field Evaluation
2.4. Molecular Mapping
2.4.1. DNA Isolation and Quantification
2.4.2. iSelect 90K Infinium Bead Chip Array Genotyping
2.4.3. Linkage Map Construction and QTL Analysis
2.4.4. Genotyping with Markers Linked with Known APR Genes
2.5. Statistical Analysis
2.6. Fungal Quantification Using Chitin Assay
2.6.1. Sample Collection
2.6.2. Wheat Germ Agglutinin Chitin Assay (WAC)
3. Results
3.1. Greenhouse Tests
3.2. Genotyping with Markers Linked with Known Genes
3.3. Field Tests
3.4. Linkage Map Construction
3.5. QTL Analysis
4. Interaction among QTL
4.1. Average Disease Severity among RILs with Different Combinations of QTL
4.2. Quantification of Fungal Biomass by Chitin Assay
5. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kolmer, J.; Chen, X.; Jin, Y. Diseases which challenge global wheat production-The wheat rusts. In Wheat Science and Trade; Carver, B.F., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2009; pp. 89–124. [Google Scholar]
- Watson, I. Wheat and its rust parasites in Australia. In Wheat Science-Today and Tomorrow; Cambridge University Press: Cambridge, UK, 1981; pp. 129–147. [Google Scholar]
- Park, R.; Karaoglu, H.; Wallwork, H. Exotic Wheat Leaf Rust Pathotype Detected in South Australia; 2014 Cereal Rust Report; Plant Breeding Institute, University of Sydney: Sydney, Australia, 2014; p. 3. Available online: http://sydney.edu.au/agriculture/documents/pbi/cereal_rust_report_2014.pdf (accessed on 15 February 2017).
- Bariana, H.S.; Brown, G.N.; Bansal, U.K.; Miah, H.; Standen, G.E.; Lu, M. Breeding triple rust resistant wheat cultivars for Australia using conventional and marker assisted selection technologies. Aust. J. Agric. Res. 2007, 58, 576–587. [Google Scholar] [CrossRef]
- Bariana, H.S.; Miah, H.; Brown, G.N.; Willey, N.; Lehmensiek, A. Molecular mapping of durable rust resistance in wheat and its implication in breeding. In Wheat Production in Stressed Environments: Proceedings of the 7th International Wheat Conference, 27 November–2 December 2005, Mar del Plata, Argentina; Buck, H.T., Nisi, J.E., Salomón, N., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 723–728. [Google Scholar]
- Bariana, H.S.; Bansal, U.K. Breeding for disease resistance. In Encyclopedia of Applied Plant Sciences, 2nd ed.; Murray, B.G., Murphy, D.J., Eds.; Academic Press: Oxford, UK, 2017; pp. 69–76. [Google Scholar]
- Bariana, H.S.; McIntosh, R.A. Genetics of adult plant stripe rust resistance in four Australian wheats and the French cultivar ‘Hyhride-de-Bersee’. Plant Breed. 1995, 114, 485–491. [Google Scholar] [CrossRef]
- Singh, R.; Huerta-Espino, J.; Rajaram, S.; Barna, B.; Kiraly, Z. Achieving near-immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes. Acta Phytopathol. Entomol. Hung. 2000, 35, 133–139. [Google Scholar]
- Jeger, M.J.; Viljanen-Rollinson, S.L.H. The use of the area under the disease-progress curve (AUDPC) to assess quantitative disease resistance in crop cultivars. Theor. Appl. Genet. 2001, 102, 32–40. [Google Scholar] [CrossRef]
- Kuhn, R.; Ohm, H.; Shaner, G. Slow leaf-rusting resistance in wheat against twenty-two isolates of Puccinia recondita. Phytopathology 1978, 68, 651–656. [Google Scholar] [CrossRef]
- Shaner, G. Growth of uredinia of Puccinia recondita in leaves of slow- and fast-rusting wheat cultivars. Phytopathology 1983, 73, 931–935. [Google Scholar] [CrossRef]
- Ayliffe, M.; Periyannan, S.K.; Feechan, A.; Dry, I.; Schumann, U.; Wang, M.-B.; Pryor, A.; Lagudah, E. A simple method for comparing fungal biomass in infected plant tissues. MPMI 2013, 26, 658–667. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Lan, C.; He, Z.; Singh, R.P.; Rosewarne, G.M.; Chen, X.; Xia, X. Overview and application of QTL for adult plant resistance to leaf rust and powdery mildew in wheat. Crop Sci. 2014, 54, 1907–1925. [Google Scholar] [CrossRef]
- Bansal, U.K.; Arief, V.N.; DeLacy, I.H.; Bariana, H.S. Exploring wheat landraces for rust resistance using a single marker scan. Euphytica 2013, 194, 219–233. [Google Scholar] [CrossRef]
- Daetwyler, H.D.; Bansal, U.K.; Bariana, H.S.; Hayden, M.J.; Hayes, B.J. Genomic prediction for rust resistance in diverse wheat landraces. Theor. Appl. Genet. 2014, 127, 1795–1803. [Google Scholar] [CrossRef]
- Dyck, P.L.; Kerber, E.R.; Lukow, O.M. Chromosome location and linkage of a new gene (Lr33) for reaction to Puccinia recondita. Genome 1987, 29, 463–466. [Google Scholar] [CrossRef]
- McIntosh, R.A.; Wellings, C.R.; Park, R.F. Wheat Rusts, an Atlas of Resistance Genes; CSIRO Publications: East Melbourne, Victoria, Australia, 1995. [Google Scholar]
- Chhetri, M.; Bansal, U.; Toor, A.; Lagudah, E.; Bariana, H. Genomic regions conferring resistance to rust diseases of wheat in a W195/BTSS mapping population. Euphytica 2016, 209, 637–649. [Google Scholar] [CrossRef]
- Bansal, U.K.; Kazi, A.G.; Singh, B.; Hare, R.A.; Bariana, H.S. Mapping of durable stripe rust resistance in a durum wheat cultivar Wollaroi. Mol. Breed. 2014, 33, 51–59. [Google Scholar] [CrossRef]
- Wang, S.; Wong, D.; Forrest, K.; Allen, A.; Chao, S.; Huang, B.E.; Maccaferri, M.; Salvi, S.; Milner, S.G.; Cattivelli, L. Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotech. J. 2014, 12, 787–796. [Google Scholar] [CrossRef] [Green Version]
- Cavanagh, C.R.; Chao, S.; Wang, S.; Huang, B.E.; Stephen, S.; Kiani, S.; Forrest, K.; Saintenac, C.; Brown-Guedira, G.L.; Akhunova, A. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc. Natl. Acad. Sci. USA 2013, 110, 8057–8062. [Google Scholar] [CrossRef] [Green Version]
- Manly, K.F.; Cudmore, R.H., Jr.; Meer, J.M. Map Manager QTX, cross-platform software for genetic mapping. Mamm. Genome 2001, 12, 930–932. [Google Scholar] [CrossRef]
- Kosambi, D. The estimation of map distances from recombination values. Ann. Eugen. 1943, 12, 172–175. [Google Scholar] [CrossRef]
- Wang, S.; Basten, C.J.; Zeng, Z.B. Windows QTL Cartographer 2.5; Department of Statistics, North Carolina State University: Raleigh, NC, USA, 2012. [Google Scholar]
- Lagudah, E.S.; McFadden, H.; Singh, R.P.; Huerta-Espino, J.; Bariana, H.S.; Spielmeyer, W. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor. Appl. Genet. 2006, 11, 21–30. [Google Scholar] [CrossRef]
- Herrera-Foessel, S.A.; Singh, R.P.; Huerta-Espino, J.; Rosewarne, G.M.; Periyannan, S.K.; Viccars, L.; Calvo-Salazar, V.; Lan, C.; Lagudah, E.S. Lr68: A new gene conferring slow rusting resistance to leaf rust in wheat. Theor. Appl. Genet. 2012, 124, 1475–1486. [Google Scholar] [CrossRef]
- Wright, S. Evolution and genetics of populations. In Genetics and Biometric Foundations; University of Chicago Press: Chicago, IL, USA, 1968; Volume 1. [Google Scholar]
- Mago, R.; Miah, H.; Lawrence, G.J.; Wellings, C.R.; Spielmeyer, W.; Bariana, H.S.; McIntosh, R.A.; Pryor, A.J.; Ellis, J.G. High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1. Theor. Appl. Genet. 2005, 112, 41–50. [Google Scholar] [CrossRef]
- Dyck, P.L.; Sykes, E.E. Genetics of leaf-rust resistance in three spelt wheats. Can. J. Plant Sci. 1994, 74, 231–233. [Google Scholar] [CrossRef]
- Singh, R.; Mujeeb-Kazi, A.; Huerta-Espino, J. Lr46: A gene conferring slow-rusting resistance to leaf rust in wheat. Phytopathology 1998, 88, 890–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helguera, M.; Vanzetti, L.; Soria, M.; Khan, I.A.; Kolmer, J.; Dubcovsky, J. PCR markers for Triticum speltoides leaf rust resistance gene Lr51 and their use to develop isogenic hard red spring wheat lines. Crop Sci. 2005, 45, 728–734. [Google Scholar] [CrossRef] [Green Version]
- McIntosh, R.A.; Devos, K.M.; Dubcovsky, J.; Rogers, W.J.; Morris, C.F.; Appels, R.; Anderson, O.D. Catalogue of Gene Symbols for Wheat: 2005 Supplement. pp. 1–56. Available online: https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2005.pdf (accessed on 25 June 2020).
- Singh, D.; Mohler, V.; Park, R.F. Discovery, characterisation and mapping of wheat leaf rust resistance gene Lr71. Euphytica 2012, 190, 131–136. [Google Scholar] [CrossRef]
- Singla, J.; Lüthi, L.; Wicker, T.; Bansal, U.; Krattinger, S.G.; Keller, B. Characterization of Lr75: A partial, broad-spectrum leaf rust resistance gene in wheat. Theor. Appl. Genet. 2017, 130, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Mateos-Hernandez, M.; Singh, R.P.; Hulbert, S.H.; Bowden, R.L.; Huerta-Espino, J.; Gill, B.S.; Brown-Guedira, G. Targeted mapping of ESTs linked to the adult plant resistance gene Lr46 in wheat using synteny with rice. Funct. Integr. Genom. 2005, 6, 122–131. [Google Scholar] [CrossRef]
- Kumar, S.; Phogat, B.S.; Vikas, V.K.; Sharma, A.K.; Saharan, M.S.; Singh, A.K.; Kumari, J.; Singh, R.; Jacob, S.R.; Singh, G.P.; et al. Mining of Indian wheat germplasm collection for adult plant resistance to leaf rust. PLoS ONE 2019. [Google Scholar] [CrossRef] [Green Version]
- Rosewarne, G.M.; Singh, R.P.; Huerta-Espino, J.; Herrera-Foessel, S.A.; Forrest, K.L.; Hayden, M.J.; Rebetzke, G.J. Analysis of leaf and stripe rust severities reveals pathotype changes and multiple minor QTLs associated with resistance in an Avocet × Pastor wheat population. Theor. Appl. Genet. 2012, 124, 1283–1294. [Google Scholar] [CrossRef]
- Rosewarne, G.M.; Singh, R.P.; Huerta-Espino, J.; Rebetzke, G.J. Quantitative trait loci for slow-rusting resistance in wheat to leaf rust and stripe rust identified with multi-environment analysis. Theor. Appl. Genet. 2008, 116, 1027–1034. [Google Scholar] [CrossRef]
- Nsabiyera, V.; Qureshi, N.; Bariana, H.S.; Wong, D.; Forrest, K.L.; Hayden, M.J.; Bansal, U.K. Molecular markers for adult plant leaf rust resistance gene Lr48 in wheat. Mol. Breed. 2016, 36, 1–9. [Google Scholar] [CrossRef]
- Buerstmayr, M.; Matiasch, L.; Mascher, F.; Vida, G.; Ittu, M.; Robert, O.; Holdgate, S.; Flath, K.; Neumayer, A.; Buerstmayr, H. Mapping of quantitative adult plant field resistance to leaf rust and stripe rust in two European winter wheat populations reveals co-location of three QTL conferring resistance to both rust pathogens. Theor. Appl. Genet. 2014, 127, 2011–2028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faris, J.; Li, W.; Liu, D.; Chen, P.; Gill, B. Candidate gene analysis of quantitative disease resistance in wheat. Theor. Appl. Genet. 1999, 98, 219–225. [Google Scholar] [CrossRef]
- Messmer, M.M.; Seyfarth, R.; Keller, M.; Schachermayr, G.; Winzeler, M.; Zanetti, S.; Feuillet, C.; Keller, B. Genetic analysis of durable leaf rust resistance in winter wheat. Theor. Appl. Genet. 2000, 100, 419–431. [Google Scholar] [CrossRef]
- Xu, X.; Bai, G.; Carver, B.F.; Shaner, G.E.; Hunger, R.M. Molecular characterization of slow leaf-rusting resistance in wheat. Crop Sci. 2005, 45, 758–765. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.Y.; Bai, G.H.; Carver, B.F.; Shaner, G.E.; Hunger, R.M. Mapping of QTLs prolonging the latent period of Puccinia triticina infection in wheat. Theor. Appl. Genet. 2005, 110, 244–251. [Google Scholar] [CrossRef]
- Schnurbusch, T.; Paillard, S.; Schori, A.; Messmer, M.; Schachermayr, G.; Winzeler, M.; Keller, B. Dissection of quantitative and durable leaf rust resistance in Swiss winter wheat reveals a major resistance QTL in the Lr34 chromosomal region. Theor. Appl. Genet. 2003, 108, 477–484. [Google Scholar] [CrossRef]
- Somers, D.J.; Isaac, P.; Edwards, K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 2004, 109, 1105–1114. [Google Scholar] [CrossRef]
QTL | Season/Site | Peak Marker | Flanking Markers | LOD | R2 | Parent |
---|---|---|---|---|---|---|
QLr.sun-1BL | 2014-LDN | IWA8332 | IWB74914-IWB72835 | 6.90 | 22 | Aus27506 |
2015-KAR | IWA8332 | IWB74914-IWB72835 | 4.76 | 18 | Aus27506 | |
2016-HRU | IWA8332 | IWB74914-IWB72835 | 2.70ns | 11 | Aus27506 | |
QLr.sun-2B | 2014-LDN | IWB63020 | IWB68511-IWB16756 | 3.53 | 12 | Aus27229 |
2015-KAR | IWB63020 | IWB68511-IWB16756 | 2.98 | 09 | Aus27229 | |
2016-HRU | IWB63020 | IWB68511-IWB16756 | 1.48ns | 06 | Aus27229 | |
QLr.sun-2DL | 2014-LDN | IWB64805 | IWB25696-IWB23831 | 4.89 | 19 | Aus27506 |
2015-KAR | IWB64805 | IWB25696-IWB23831 | 2.30ns | 06 | Aus27506 | |
2016-HRU | IWB64805 | IWB25696-IWB23831 | 3.40 | 12 | Aus27506 |
Mean Leaf Severities | ||||
---|---|---|---|---|
QTL | 2014-LDN | 2015-KAR | 2016-HRU | Average |
QLr.sun-1BL | 18.2 b | 20.00 b | 19.20 b | 19.13 b |
QLr.sun-2B | 31.00 c | 28.00 c | 37.00 c | 32.00 c |
QLr.sun-2DL | 17.00 b | 19.00 b | 19.00 b | 18.33 b |
QLr.sun-1BL+QLr.sun-2B | 17.50 b | 18.46 b | 19.00 b | 18.32 b |
QLr.sun-2B+QLr.sun-2DL | 17.00 b | 19.44 b | 19.28 b | 18.57 b |
QLr.sun-1BL+QLr.sun-2DL | 12.25 a | 14.28 a | 14.44 a | 13.74 a |
QLr.sun-1BL+QLr.sun-2B+QLr.sun-2DL | 11.42 a | 12.85 a | 13.21 a | 12.49 a |
RILs not carrying any QTL (Nil) | 42.00 d | 41.00 d | 40.83 d | 40.87 d |
LSD | 4.05 | 3.00 | 2.98 | 3.34 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kandiah, P.; Chhetri, M.; Hayden, M.; Ayliffe, M.; Bariana, H.; Bansal, U. Mapping of Adult Plant Leaf Rust Resistance in Aus27506 and Validation of Underlying Loci by In-Planta Fungal Biomass Accumulation. Agronomy 2020, 10, 943. https://doi.org/10.3390/agronomy10070943
Kandiah P, Chhetri M, Hayden M, Ayliffe M, Bariana H, Bansal U. Mapping of Adult Plant Leaf Rust Resistance in Aus27506 and Validation of Underlying Loci by In-Planta Fungal Biomass Accumulation. Agronomy. 2020; 10(7):943. https://doi.org/10.3390/agronomy10070943
Chicago/Turabian StyleKandiah, Pakeerathan, Mumta Chhetri, Matthew Hayden, Michael Ayliffe, Harbans Bariana, and Urmil Bansal. 2020. "Mapping of Adult Plant Leaf Rust Resistance in Aus27506 and Validation of Underlying Loci by In-Planta Fungal Biomass Accumulation" Agronomy 10, no. 7: 943. https://doi.org/10.3390/agronomy10070943
APA StyleKandiah, P., Chhetri, M., Hayden, M., Ayliffe, M., Bariana, H., & Bansal, U. (2020). Mapping of Adult Plant Leaf Rust Resistance in Aus27506 and Validation of Underlying Loci by In-Planta Fungal Biomass Accumulation. Agronomy, 10(7), 943. https://doi.org/10.3390/agronomy10070943