Ensiling Total Mixed Ration for Ruminants: A Review
Abstract
:1. Introduction
2. Ensiling Sole or Mixed Ration Ingredients
3. Effects of Moisture Content on the Conservation of TMR Silages
4. Nutrient Changes during Silage Fermentation
4.1. Carbohydrates
4.1.1. Soluble Carbohydrates and Fermentation End-Products
4.1.2. Starch
4.1.3. Cell Wall Polysaccharides
4.2. Proteins
4.3. Lipids
4.4. Minerals
4.5. Vitamins
4.6. Feed Additives
5. Feeding Value of TMR Silages for Ruminants
5.1. Performance of Dairy Cows
5.2. Performance of Growing Ruminants
6. Final Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Schingoethe, D.J. A 100-Year Review: Total mixed ration feeding of dairy cows. J. Dairy Sci. 2017, 100, 10143–10150. [Google Scholar] [CrossRef] [PubMed]
- Owen, F.; Howard, W. Effect of ration moisture level on value of alfalfa plus cracked corn as a complete-feed silage for lactating cows. J. Dairy Sci. 1965, 48, 1310–1314. [Google Scholar] [CrossRef]
- Schmidt, P.; Restelatto, R.; Zopollatto, M. Ensiling total mixed rations—An innovative procedure. In Proceedings of the V International Symposium on Forage Quality and Consservation, Piracicaba, Brazil, 16–17 July 2017; Nussio, L.G., Sousa, D.O., Gritti, V.C., Salvati, G.G.S., Santos, W.P., Salvo, P.A.R., Eds.; FEALQ: Piracicaba, Brazil, 2017; pp. 7–20. [Google Scholar]
- Borreani, G.; Ferrero, F.; Tabacco, E. Baled silage management. In Proceedings of the 6th International Symposium on Forage Quality and Conservation, Piracicaba, Brazil, 7–8 November 2019; Nussio, L.G., Da Silva, E.B., Oliveira, K.S., Gritti, V.C., Salvo, P.A.R., Salvati, G.G.S., De Sousa, D.O., Eds.; ESALQ: Piracicaba, Brazil, 2019; pp. 219–246. [Google Scholar]
- Nishino, N.; Harada, H.; Sakaguchi, E. Evaluation of fermentation and aerobic stability of wet brewers’ grains ensiled alone or in combination with various feeds as a total mixed ration. J. Sci. Food Agric. 2003, 83, 557–563. [Google Scholar] [CrossRef]
- Weinberg, Z.; Chen, Y.; Miron, D.; Raviv, Y.; Nahim, E.; Bloch, A.; Yosef, E.; Nikbahat, M.; Miron, J. Preservation of total mixed rations for dairy cows in bales wrapped with polyethylene stretch film—A commercial scale experiment. Anim. Feed. Sci. Technol. 2011, 164, 125–129. [Google Scholar] [CrossRef]
- Xu, C.C.; Cai, Y.; Zhang, J.G.; Ogawa, M. Fermentation quality and nutritive value of a total mixed ration silage containing coffee grounds at ten or twenty percent of dry matter1. J. Anim. Sci. 2007, 85, 1024–1029. [Google Scholar] [CrossRef] [Green Version]
- Restelatto, R.; Novinski, C.O.; A Silva, E.P.; Pereira, L.M.; Volpi, D.; Zopollatto, M.; Daniel, J.L.P.; Schmidt, P. Effects of holes in plastic film on the storage losses in total mixed ration silage in round bales. Transl. Anim. Sci. 2019, 3, 1543–1549. [Google Scholar] [CrossRef] [Green Version]
- Gusmão, J.; Danes, M.; Casagrande, D.; Bernardes, T. Total mixed ration silage containing elephant grass for small-scale dairy farms. Grass Forage Sci. 2018, 73, 717–726. [Google Scholar] [CrossRef]
- Weissbach, F.; Schmidt, L.; Hein, E. Method of anticipation of the run fermentation in silage making based on the chemical composition of the green fodder. In Proceedings of the 12th International Grassland Congress, Moscow, Russia, 11–20 June 1974; Iglovikov, V.G., Movsisyants, A.P., Eds.; Russian Academy of Agricultural Sciences: Lugovaya, Russia, 1974; pp. 663–673. [Google Scholar]
- Kaiser, E.; Weiss, K.; Polip, I.V. A new concept for the estimation of the ensiling potential of forages. In Proceedings of the 13th International Silage Conference, Auchincruive, Scotland, 11–13 September 2002; Gechie, L.M., Thomas, C., Eds.; Scottish Agricultural College: Auchincruive, Scotland, 2002; pp. 344–358. [Google Scholar]
- Pahlow, G.; Muck, R.E.; Driehuis, F.; Elferink, S.J.W.H.O.; Spoelstra, S.F. Microbiology of Ensiling. In Silage Science and Technology; Buxton, D.R., Muck, R.E., Harrison, J.H., Eds.; American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America: Madison, WI, USA, 2003; pp. 31–93. [Google Scholar]
- Wang, H.; Ning, T.; Hao, W.; Zheng, M.; Xu, C. Dynamics associated with prolonged ensiling and aerobic deterioration of total mixed ration silage containing whole crop corn. Asian-Australas. J. Anim. Sci. 2015, 29, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Benton, J.R.; Klopfenstein, T.; Erickson, G.E. Effects of Corn Moisture and Length of Ensiling on Dry Matter Digestibility and Rumen Degradable Protein. In Nebraska Beef Cattle Reports; University of Nebraska-Lincoln: Lincoln, NE, USA, 2005; pp. 31–33. [Google Scholar]
- Bueno, J.L.; Bolson, D.C.; Jacovaci, F.A.; Gomes, A.L.M.; Ribeiro, M.G.; Bueno, A.V.I.; Jobim, C.C.; Daniel, J.L.P. Storage length interacts with maturity to affect nutrient availability in unprocessed flint corn silage. Rev. Bras. Zootec. 2020, 49. [Google Scholar] [CrossRef]
- Hao, W.; Wang, H.; Xu, C. Dynamic changes of proteolysis and microorganism composition of total mixed ration silages with different moisture levels. In Advances in Energy Science and Equipment Engineering, Proceedings of the International Conference on Energy Equipment Science and Engineering, Guangzhou, China, 30–31 May 2015; Zhou, S., Patty, A., Chen, S., Eds.; CRC Press: Balkema, Netherlands, 2015; pp. 269–273. [Google Scholar]
- Hao, W.; Wang, H.L.; Ning, T.T.; Yang, F.Y.; Xu, C.C. Aerobic stability and effects of yeasts during deterioration of non-fermented and fermented total mixed ration with different moisture levels. Asian-Australas. J. Anim. Sci. 2015, 28, 816–826. [Google Scholar] [CrossRef] [Green Version]
- Rooke, J.A.; Hatfield, R.D. Biochemistry of Ensiling. In Silage Science and Technology; Buxton, D.R., Muck, R.E., Harrison, J.H., Eds.; American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America: Madison, WI, USA, 2003; pp. 95–139. [Google Scholar]
- Ning, T.; Wang, H.; Zheng, M.; Niu, D.; Zuo, S.; Xu, C. Effects of microbial enzymes on starch and hemicellulose degradation in total mixed ration silages. Asian-Australas. J. Anim. Sci. 2016, 30, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Kondo, M.; Shimizu, K.; Jayanegara, A.; Mishima, T.; Matsui, H.; Karita, S.; Goto, M.; Fujihara, T. Changes in nutrient composition and in vitro ruminal fermentation of total mixed ration silage stored at different temperatures and periods. J. Sci. Food Agric. 2015, 96, 1175–1180. [Google Scholar] [CrossRef] [PubMed]
- Daniel, J.L.P.; Nussio, L.G. Contribution of silage volatile compounds for the animal nutrition. In Proceedings of the II International Symposium on Forage Quality and Conservation, São Pedro, Brazil, 16–19 November 2011; Zopollatto, M., Daniel, J.L.P., Nussio, L.G., Sá Neto, A., Eds.; ESALQ: Piracicaba, Brazil, 2011; pp. 279–306. [Google Scholar]
- Wang, C.; Nishino, N. Effects of storage temperature and ensiling period on fermentation products, aerobic stability and microbial communities of total mixed ration silage. J. Appl. Microbiol. 2013, 114, 1687–1695. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Guo, G.; Yuan, X.; Shimojo, M.; Yu, C.; Shao, T. Effect of Applying Molasses and Propionic Acid on Fermentation Quality and Aerobic Stability of Total Mixed Ration Silage Prepared with Whole-plant Corn in Tibet. Asian-Australas. J. Anim. Sci. 2014, 27, 349–356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Yuan, X.-J.; Li, J.-F.; Wang, S.; Dong, Z.-H.; Shao, T. Effect of lactic acid bacteria and propionic acid on conservation characteristics, aerobic stability and in vitro gas production kinetics and digestibility of whole-crop corn based total mixed ration silage. J. Integr. Agric. 2017, 16, 1592–1600. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Yuan, X.J.; Li, J.F.; Dong, Z.H.; Wang, S.R.; Guo, G.; Shao, T. Effects of applying lactic acid bacteria and propionic acid on fermentation quality, aerobic stability and in vitro gas production of forage-based total mixed ration silage in Tibet. Anim. Prod. Sci. 2019, 59, 376. [Google Scholar] [CrossRef]
- Klosterman, E.W.; Moxon, A.L.; Johnson, R.R.; Scott, H.W.; Van Stavern, J. Feeding value for fattening cattle of corn silages treated to increase their content of organic acids. J. Anim. Sci. 1961, 20, 493–496. [Google Scholar] [CrossRef]
- Byers, J.; Davis, C.; Baylor, C. Feeding Value of limestone-treated corn silage for lactating dairy cows. J. Dairy Sci. 1964, 47, 1062–1064. [Google Scholar] [CrossRef]
- Custódio, L.; Morais, G.; Daniel, J.L.P.; Pauly, T.; Nussio, C.M.B. Effects of chemical and microbial additives on clostridium development in sugarcane Saccharum officinarum L. ensiled with lime. Grassl. Sci. 2016, 62, 135–143. [Google Scholar] [CrossRef]
- Wagner, B.; Wenner, B.; Plank, J.; Poppy, G.; Firkins, J. Investigation of ammonium lactate supplementation on fermentation end products and bacterial assimilation of nitrogen in dual-flow continuous culture. J. Dairy Sci. 2018, 101, 8032–8045. [Google Scholar] [CrossRef]
- Jaakkola, S.; Huhtanen, P. The Effect of lactic acid on the microbial protein synthesis in the rumen of cattle. Asian-Australas. J. Anim. Sci. 1989, 2, 398–399. [Google Scholar] [CrossRef]
- Daniel, J.L.P.; Amaral, R.C.; Goulart, R.S.; Zopollatto, M.; Santos, V.P.; Filho, S.G.T.; Cabezas-Garcia, E.H.; Lima, J.R.; Nussio, C.M.B. Short-term effects of silage volatile compounds on feed intake and digestion in beef cattle1. J. Anim. Sci. 2013, 91, 2321–2331. [Google Scholar] [CrossRef] [PubMed]
- Nkosi, B.; Meeske, R. Effects of ensiling totally mixed potato hash ration with or without a heterofermentative bacterial inoculant on silage fermentation, aerobic stability, growth performance and digestibility in lambs. Anim. Feed. Sci. Technol. 2010, 161, 38–48. [Google Scholar] [CrossRef]
- Wang, F.; Nishino, N. Resistance to aerobic deterioration of total mixed ration silage: Effect of ration formulation, air infiltration and storage period on fermentation characteristics and aerobic stability. J. Sci. Food Agric. 2007, 88, 133–140. [Google Scholar] [CrossRef]
- Nishino, N.; Hattori, H. Resistance to aerobic deterioration of total mixed ration silage inoculated with and without homofermentative or heterofermentative lactic acid bacteria. J. Sci. Food Agric. 2007, 87, 2420–2426. [Google Scholar] [CrossRef]
- Chen, L.; Guo, G.; Yuan, X.; Zhang, J.; Li, J.; Shao, T. Effects of applying molasses, lactic acid bacteria and propionic acid on fermentation quality, aerobic stability and in vitro gas production of total mixed ration silage prepared with oat-common vetch intercrop on the Tibetan Plateau. J. Sci. Food Agric. 2015, 96, 1678–1685. [Google Scholar] [CrossRef]
- Restelatto, R.; O Novinski, C.; Pereira, L.M.; A Silva, E.P.; Volpi, D.; Zopollatto, M.; Schmidt, P.; Faciola, A.P. Chemical composition, fermentative losses, and microbial counts of total mixed ration silages inoculated with different Lactobacillus species. J. Anim. Sci. 2019, 97, 1634–1644. [Google Scholar] [CrossRef] [Green Version]
- Der Bedrosian, M.; Nestor, K.; Kung, L. The effects of hybrid, maturity, and length of storage on the composition and nutritive value of corn silage. J. Dairy Sci. 2012, 95, 5115–5126. [Google Scholar] [CrossRef] [Green Version]
- Ferraretto, L.; Shaver, R.; Massie, S.; Singo, R.; Taysom, D.; Brouillette, J. Effect of ensiling time and hybrid type on fermentation profile, nitrogen fractions, and ruminal in vitro starch and neutral detergent fiber digestibility in whole-plant corn silage. Prof. Anim. Sci. 2015, 31, 146–152. [Google Scholar] [CrossRef]
- Miyaji, M.; Matsuyama, H.; Nonaka, K. Effect of ensiling process of total mixed ration on fermentation profile, nutrient loss andin situruminal degradation characteristics of diet. Anim. Sci. J. 2016, 88, 134–139. [Google Scholar] [CrossRef]
- Hoffman, P.; Esser, N.; Shaver, R.; Coblentz, W.; Scott, M.; Bodnar, A.; Schmidt, R.; Charley, R. Influence of ensiling time and inoculation on alteration of the starch-protein matrix in high-moisture corn. J. Dairy Sci. 2011, 94, 2465–2474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junges, D.; Morais, G.; Spoto, M.H.F.; Santos, P.; Adesogan, A.; Nussio, C.M.B.; Daniel, J.L.P. Short communication: Influence of various proteolytic sources during fermentation of reconstituted corn grain silages. J. Dairy Sci. 2017, 100, 9048–9051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daniel, J.L.P.; Junges, D.; Nussio, L.G. A meta-analysis of the effects of length of storage on starch digestibility and aerobic stability of corn silages. In Proceedings of the 17th International Silage Conference, Piracicaba, Brazil, 1–3 July 2015; Daniel, J.L.P., Morais, G., Junges, D., Nussio, L.G., Eds.; ESALQ: Piracicaba, Brazil, 2015; pp. 306–307. [Google Scholar]
- Da Silva, N.C.; Nascimento, C.F.; Campos, V.M.; Alves, M.A.; Resende, F.D.; Daniel, J.L.P.; Siqueira, G.R. Influence of storage length and inoculation with Lactobacillus buchneri on the fermentation, aerobic stability, and ruminal degradability of high-moisture corn and rehydrated corn grain silage. Anim. Feed. Sci. Technol. 2019, 251, 124–133. [Google Scholar] [CrossRef]
- Hibbs, J.W.; Conrad, H.R. Complete Ensiled Corn Rations for Lactating Dairy Cows; Ohio Agricultural Research and Development Center: Wooster, OH, USA, 1976; pp. 3–18. [Google Scholar]
- Lazzari, G. Effects of Protein Source and Lipid Supplementation on the Performance of Finishing Beef Cattle Fed Total Mixed Ration Silages. Master’s Thesis, State University of Maringá, Maringá, Brazil, 2020. [Google Scholar]
- Jones, B.A.; Hatfield, R.D.; Muck, R.E. Effect of fermentation and bacterial inoculation on lucerne cell walls. J. Sci. Food Agric. 1992, 60, 147–153. [Google Scholar] [CrossRef]
- Yahaya, M.S.; Kimura, A.; Harai, J.; Nguyen, H.V.; Kawai, M.; Takahashi, J.; Matsuoka, S. Evaluation of structural carbohydrates losses and digestibility in alfalfa and orchardgrass during ensiling. Asian-Australas. J. Anim. Sci. 2001, 14, 1701–1704. [Google Scholar] [CrossRef]
- Desta, S.T.; Yuan, X.; Li, J.; Shao, T. Ensiling characteristics, structural and nonstructural carbohydrate composition and enzymatic digestibility of Napier grass ensiled with additives. Bioresour. Technol. 2016, 221, 447–454. [Google Scholar] [CrossRef] [Green Version]
- Machado, E. Use of Exogenous Lignocellulolytic Enzymes in Ruminant Nutrition. Ph.D. Dissertation, State University of Maringá, Maringá, Brazil, 2017. [Google Scholar]
- McDonald, P.; Henderson, N.; Heron, S. The Biochemistry of Silage, 2nd ed.; Chalcombe Publicaitions: Marlow, UK, 1991; pp. 1–340. [Google Scholar]
- Huhtanen, P.; Rinne, M.; Nousiainen, J. Effects of silage soluble nitrogen components on metabolizable protein concentration: A meta-analysis of dairy cow production experiments. J. Dairy Sci. 2008, 91, 1150–1158. [Google Scholar] [CrossRef] [Green Version]
- Hymes-Fecht, U.; Broderick, G.; Muck, R.; Grabber, J. Replacing alfalfa or red clover silage with birdsfoot trefoil silage in total mixed rations increases production of lactating dairy cows. J. Dairy Sci. 2013, 96, 460–469. [Google Scholar] [CrossRef] [Green Version]
- Wilkerson, V.; Glenn, B.; McLeod, K. Energy and nitrogen balance in lactating cows fed diets containing dry or high moisture corn in either rolled or ground form. J. Dairy Sci. 1997, 80, 2487–2496. [Google Scholar] [CrossRef]
- Valadares, R.; Broderick, G.; Filho, S.D.C.V.; Clayton, M. Effect of replacing alfalfa silage with high moisture corn on ruminal protein synthesis estimated from excretion of total purine derivatives. J. Dairy Sci. 1999, 82, 2686–2696. [Google Scholar] [CrossRef]
- Emeterio, F.S.; Reis, R.; Campos, W.; Satter, L.D. Effect of coarse or fine grinding on utilization of dry or ensiled corn by lactating dairy cows. J. Dairy Sci. 2000, 83, 2839–2848. [Google Scholar] [CrossRef] [Green Version]
- Kemble, A.R. Studies on the nitrogen metabolism of the ensilage process. J. Sci. Food Agric. 1956, 7, 125–130. [Google Scholar] [CrossRef]
- Heron, S.J.E.; Edwards, R.A.; McDonald, P. Changes in the nitrogenous components of gamma-irradiated and inoculated ensiled ryegrass. J. Sci. Food Agric. 1986, 37, 979–985. [Google Scholar] [CrossRef]
- Ohshima, M.; McDonald, P. A review of the changes in nitrogenous compounds of herbage during ensilage. J. Sci. Food Agric. 1978, 29, 497–505. [Google Scholar] [CrossRef]
- Scherer, R.; Gerlach, K.; Südekum, K.-H. Biogenic amines and gamma-amino butyric acid in silages: Formation, occurrence and influence on dry matter intake and ruminant production. Anim. Feed. Sci. Technol. 2015, 210, 1–16. [Google Scholar] [CrossRef]
- Ding, W.; Long, R.; Guo, X. Effects of plant enzyme inactivation or sterilization on lipolysis and proteolysis in alfalfa silage. J. Dairy Sci. 2013, 96, 2536–2543. [Google Scholar] [CrossRef] [Green Version]
- Broderick, G.A.; Muck, R.E.; Pauly, T. Relationship between proteolysis in the silo and efficiency of utilization of dietary protein by lactating dairy cows. In Proceedings of the 3rd International Symposium on Forage Quality and Consservation, Campinas, Brazil, 22–23 July 2013; Daniel, J.L.P., Santos, M.C., Nussio, L.G., Eds.; FEALQ: Piracicaba, Brazil, 2013; pp. 219–240. [Google Scholar]
- Virtanen, A.I. The AIV method of preserving fresh fodder. Emp. J. Exp. Agric. 1933, 1, 143–155. [Google Scholar]
- McKersie, B.D. Effect of pH on proteolysis in ensiled legume Forage. Agron. J. 1907, 77, 81–86. [Google Scholar] [CrossRef]
- E Heron, S.J.; Edwards, R.A.; Phillips, P. Effect of pH on the activity of ryegrass Lolium multiflorum proteases. J. Sci. Food Agric. 1989, 46, 267–277. [Google Scholar] [CrossRef]
- Nishino, N.; Hattori, H.; Wada, H.; Touno, E. Biogenic amine production in grass, maize and total mixed ration silages inoculated with Lactobacillus casei or Lactobacillus buchneri. J. Appl. Microbiol. 2007, 103, 325–332. [Google Scholar] [CrossRef]
- Alves, S.P.; Cabrita, A.R.J.; Jerónimo, E.; Bessa, R.J.; Fonseca, A.J.M. Effect of ensiling and silage additives on fatty acid composition of ryegrass and corn experimental silages. J. Anim. Sci. 2011, 89, 2537–2545. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Dong, Z.; Shao, T. Dynamics of change in fermentation and fatty acid profiles in high moisture alfalfa silage during ensiling at different temperatures. Ciênc. Rural 2018, 48, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Wu, J.; Shao, T. Roles of microbes and lipolytic enzymes in changing the fatty acid profile, α-tocopherol and β-carotene of whole-crop oat silages during ensiling and after exposure to air. Anim. Feed. Sci. Technol. 2019, 253, 81–92. [Google Scholar] [CrossRef]
- Nelson, D.L.; Cox, M.M. Lehninger Principles of Biochemistry, 5th ed.; W. H. Freeman & Co.: New York, NY, USA, 2008; pp. 485–901. [Google Scholar]
- Mackie, R.I.; White, B.A.; Bryant, M.P. Lipid metabolism in anaerobic ecosystems. Crit. Rev. Microbiol. 1991, 17, 449–479. [Google Scholar] [CrossRef]
- Elgersma, A.; Ellen, G.; Van Der Horst, H.; Muuse, B.; Boer, H.; Tamminga, S. Comparison of the fatty acid composition of fresh and ensiled perennial ryegrass (Lolium perenne L.), affected by cultivar and regrowth interval. Anim. Feed. Sci. Technol. 2003, 108, 191–205. [Google Scholar] [CrossRef]
- De Barros, M.; Fleuri, L.F.; Macedo, G.A. Seed lipases: Sources, applications and properties—A review. Braz. J. Chem. Eng. 2010, 27, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Gadge, P.P.; Madhikar, S.D.; Yewle, J.N.; Jadhav, U.U.; Chougale, A.D.; Zambare, V.P.; Padul, M.V. Biochemical studies of lipase from germinating oil seeds (Glycine max). Am. J. Biochem. Biotechnol. 2011, 7, 141–145. [Google Scholar] [CrossRef]
- Feussner, I.; Wasternack, C. The lipoxygenase pathway. Ann. Rev. Plant Boil. 2002, 53, 275–297. [Google Scholar] [CrossRef]
- Senger, T.; Wichard, T.; Kunze, S.; Göbel, C.; Lerchl, J.; Pohnert, G.; Feussner, I. A Multifunctional lipoxygenase with fatty acid hydroperoxide cleaving activity from the moss Physcomitrella patens. J. Boil. Chem. 2004, 280, 7588–7596. [Google Scholar] [CrossRef] [Green Version]
- Malekian, F.; Rao, R.M.; Prinyawiwatkul, W.; Marshall, W.E.; Windhauser, M.; Ahmedna, M. Lipase and Lipoxygenase Activity, Functionality, and Nutrient Losses in Rice Bran during Storage; LSU Agricultural Experiment Station Reports; Louisiana State University: Baton Rouge, LA, USA, 2000; pp. 3–56. [Google Scholar]
- Han, L.; Zhou, H. Effects of ensiling processes and antioxidants on fatty acid concentrations and compositions in corn silages. J. Anim. Sci. Biotechnol. 2013, 4, 48. [Google Scholar] [CrossRef] [Green Version]
- Meschy, F.; Baumont, R.; Dulphy, J.P.; Nozieres, M.O. Effet du mode de conservation sur la composition en éléments minéraux majeurs des fourrages (Effect of conservation on the major mineral concentration of forages). Rencontres Rech. Rumin. 2005, 12, 116. [Google Scholar]
- Baumont, R.; Arrigo, Y.; Niderkorn, V. Transformation des plantes au cours de leur conservation et conséquences sur leur valeur pour les ruminants. Fourrages 2011, 205, 35–46. [Google Scholar]
- Schlegel, P.; Wyss, U.; Arrigo, Y.; Hess, H.D. Changes in macro- and micromineral concentrations in herbage during the harvesting and conservation processes. Grass Forage Sci. 2018, 73, 918–925. [Google Scholar] [CrossRef]
- Lee, M.R.F.; Fleming, H.R.; Cogan, T.; Hodgson, C.; Davies, D.R. Assessing the ability of silage lactic acid bacteria to incorporate and transform inorganic selenium within laboratory scale silos. Anim. Feed. Sci. Technol. 2019, 253, 125–134. [Google Scholar] [CrossRef]
- Hansen, S.; Spears, J.W. Bioaccessibility of iron from soil is increased by silage fermentation. J. Dairy Sci. 2009, 92, 2896–2905. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, M.N.M.; Van Der Kamp, A.; Zemmelink, G.; Tamminga, S. Solubility of mineral elements present in ruminant feeds. J. Agric. Sci. 1990, 114, 265–274. [Google Scholar] [CrossRef]
- Rooke, J.A.; Akinsoyinu, A.O.; Armstrong, D.G. The release of mineral elements from grass silages incubated in sacco in the rumens of Jersey cattle. Grass Forage Sci. 1983, 38, 311–316. [Google Scholar] [CrossRef]
- Fairweather-Tait, S.J. Bioavailability of dietary minerals. Biochem. Soc. Trans. 1996, 24, 775–780. [Google Scholar] [CrossRef] [Green Version]
- Humer, E.; Wetscherek, W.; Schwarz, C.; Schedle, K. Effects of maize conservation techniques on the apparent total tract nutrient and mineral digestibility and microbial metabolites in the faeces of growing pigs. Anim. Feed. Sci. Technol. 2014, 197, 176–184. [Google Scholar] [CrossRef]
- Giang, N.T. Effect of Taro (Colocasia esculenta) Foliage on the Performance of Growing Common Ducks. Master’s Thesis, Swedish University of Agricultural Sciences, Sweden, 2010. [Google Scholar]
- National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; The National Academies Press: Washington, DC, USA, 2001; pp. 1–381. [Google Scholar]
- McDowell, L.R. Vitamins in Animal and Human Nutrition, 2nd ed.; Iowa State University Press: Ames, IA, USA, 2000; pp. 1–793. [Google Scholar]
- Kalač, P. Carotenoids, ergosterol and tocopherols in fresh and preserved herbage and their transfer to bovine milk fat and adipose tissues: A review. J. Agrobiol. 2012, 29, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Nozière, P.; Graulet, B.; Lucas, A.; Martin, B.; Grolier, P.; Doreau, M. Carotenoids for ruminants: From forages to dairy products. Anim. Feed. Sci. Technol. 2006, 131, 418–450. [Google Scholar] [CrossRef]
- Lindqvist, H.; Nadeau, E.; Marker, S. Alpha-tocopherol and carotene in legume-grass mixtures as influenced by wilting, ensiling and type of silage additive. Grass Forage Sci. 2011, 67, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Shao, T.; Bai, Y. The effect of fibrolytic enzyme, Lactobacillus plantarum and two food antioxidants on the fermentation quality, alpha-tocopherol and beta-carotene of high moisture napier grass silage ensiled at different temperatures. Anim. Feed. Sci. Technol. 2016, 221, 1–11. [Google Scholar] [CrossRef]
- Carter, W.R.B. A review of nutrient losses and efficiency of conserving herbage as silage, barn-dried hay and field-cured hay. Grass Forage Sci. 1960, 15, 220–230. [Google Scholar] [CrossRef]
- Kalač, P.; McDonald, P. A review of the changes in carotenes during ensiling of forages. J. Sci. Food Agric. 1981, 32, 767–772. [Google Scholar] [CrossRef]
- Cardinault, N.; Doreau, M.; Nozière, P. Fate of carotenoids in the rumen. Rencontres Rech. Rumin. 2004, 11, 82. [Google Scholar]
- Kalač, P.; Kyzlink, V. Losses of beta-carotene in red clover in an acid medium during ensiling. Anim. Feed. Sci. Technol. 1979, 4, 81–89. [Google Scholar] [CrossRef]
- Müller, C.E.; Moller, J.; Jensen, S.K.; Udén, P. Tocopherol and carotenoid levels in baled silage and haylage in relation to horse requirements. Anim. Feed. Sci. Technol. 2007, 137, 182–197. [Google Scholar] [CrossRef]
- Tani, Y.; Tsumura, H. Screening for tocopherol-producing microorganisms and alpha-tocopherol production by Euglena gracilis Z. Agric. Boil. Chem. 1989, 53, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Nadeau, E.; Johansson, B.; Jensen, S.K.; Olsson, G. Vitamin content of forages as influenced by harvest and ensiling techniques. In Proceedings of the 20th General Meeting of the European Grassland Federation, Luzern, Switzerland, 21–14 June 2004; Lüscher, A., Jeangros, B., Kessler, W., Huguenin, O., Lobsiger, M., Millar, N., Suter, D., Eds.; AGFF: Zurich, Switzerland, 2004; pp. 891–893. [Google Scholar]
- Jareš, M. Changes in Content of Tocols during Storage of Ensiled Rehydrated Maize Grain. Master’s Thesis, University of Zagreb, Faculty of Agriculture, Zagreb, Croatia, 2018. [Google Scholar]
- Hoon, J.H.; Meeske, R. The effect of the inclusion of an ionophore as a silage additive on maize silage characteristics. Grootfontein Agric. 2011, 11, 75. [Google Scholar]
- Kung, L.; Williams, P.; Schmidt, R.; Hu, W. A blend of essential plant oils used as an additive to alter silage fermentation or used as a feed additive for lactating dairy cows. J. Dairy Sci. 2008, 91, 4793–4800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foskolos, A.; Cavini, S.; Ferret, A.; Calsamiglia, S. Effects of essential oil compounds addition on ryegrass silage protein degradation. Can. J. Anim. Sci. 2016, 96, 100–103. [Google Scholar] [CrossRef]
- Pereira, L.M. Use of Essential Oils as Additives for Corn and Sugarcane Silages. Master’s Thesis, Federal University of Paraná, Curitiba, Brazil, 2018. [Google Scholar]
- McCoy, G.; Thurmon, H.; Olson, H.; Reed, A. Complete feed rations for lactating dairy cows. J. Dairy Sci. 1966, 49, 1058–1063. [Google Scholar] [CrossRef]
- Marshall, S.; Voigt, A.R. Complete rations for dairy cattle. I. Methods of preparation and roughage-to-concentrate ratios of blended rations with corn silage. J. Dairy Sci. 1975, 58, 891–895. [Google Scholar] [CrossRef]
- Pardue, F.; Fosgate, O.; O’Dell, G.; Brannon, C. Effects of complete ensiled ration on milk production, milk composition, and rumen environment of dairy cattle. J. Dairy Sci. 1975, 58, 901–906. [Google Scholar] [CrossRef]
- Wongnen, C.; Wachirapakorn, C.; Patipan, C.; Panpong, D.; Kongweha, K.; Namsaen, N.; Gunun, P.; Yuangklang, C. Effects of fermented total mixed ration and cracked cottonseed on milk yield and milk composition in dairy cows. Asian-Australas. J. Anim. Sci. 2009, 22, 1625–1632. [Google Scholar] [CrossRef]
- Miyaji, M.; Nonaka, K. Effects of altering total mixed ration conservation method when feeding dry-rolled versus steam-flaked hulled rice on lactation and digestion in dairy cows. J. Dairy Sci. 2018, 101, 5092–5101. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Takahashi, T.; Horiguchi, K.-I.; Yoshida, N.; Cai, Y. Methane emissions from sheep fed fermented or non-fermented total mixed ration containing whole-crop rice and rice bran. Anim. Feed. Sci. Technol. 2010, 157, 72–78. [Google Scholar] [CrossRef]
- Meenongyai, W.; Pattarajinda, V.; Stelzleni, A.M.; Sethakul, J.; Duangjinda, M. Effects of forage ensiling and ration fermentation on total mixed ration pH, ruminal fermentation and performance of growing Holstein-Zebu cross steers. Anim. Sci. J. 2017, 88, 1372–1379. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bueno, A.V.I.; Lazzari, G.; Jobim, C.C.; Daniel, J.L.P. Ensiling Total Mixed Ration for Ruminants: A Review. Agronomy 2020, 10, 879. https://doi.org/10.3390/agronomy10060879
Bueno AVI, Lazzari G, Jobim CC, Daniel JLP. Ensiling Total Mixed Ration for Ruminants: A Review. Agronomy. 2020; 10(6):879. https://doi.org/10.3390/agronomy10060879
Chicago/Turabian StyleBueno, Antonio Vinicius Iank, Gustavo Lazzari, Clóves Cabreira Jobim, and João Luiz Pratti Daniel. 2020. "Ensiling Total Mixed Ration for Ruminants: A Review" Agronomy 10, no. 6: 879. https://doi.org/10.3390/agronomy10060879