Next Article in Journal
Native Pollinators (Hymenoptera: Anthophila) in Cotton Grown in the Gulf South, United States
Previous Article in Journal
Production of Cellulose Nanofibers from Olive Tree Harvest—A Residue with Wide Applications
Open AccessArticle

Genetic Analysis of Leaf Traits in Small-Flower Chrysanthemum (Chrysanthemum × morifolium Ramat.)

by Kang Gao 1,†, Xuebin Song 2,†, Deyuan Kong 1 and Silan Dai 1,*
1
National Engineering Research Center for Floriculture, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, Beijing Laboratory of Urban and Rural Ecological Environment, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
2
College of Landscape Architecture and Forestry, Qingdao Agricultural University, Qingdao 266109, China
*
Author to whom correspondence should be addressed.
These authors contributed equally.
Agronomy 2020, 10(5), 697; https://doi.org/10.3390/agronomy10050697
Received: 21 April 2020 / Revised: 11 May 2020 / Accepted: 11 May 2020 / Published: 13 May 2020
Leaf shape is an important quality trait of agronomic crops, and to control the law of genetic variation of leaf shape is of practical significance for improving the early identification and selection of agronomic crops. Variations in the leaf morphology of chrysanthemum cultivars are abundant, and previous studies have quantitatively defined and classified the leaf morphology of chrysanthemum; however, the genetic architecture of chrysanthemum leaves has not been elucidated to date. In this study, two pairs of F1 hybrid populations were constructed by using small-flower chrysanthemum varieties with differences in leaf traits, and the genetic variation rules of these important quantitative traits were further discussed based on the major gene and polygene mixed inheritance analyses. The results showed that the leaves in blade shape (LBS), leaf length/width is controlled by two pairs of additive-dominant major genes (B-1), the widest part length/leaf length is controlled by two completely dominant genes (B-5); in leaf lobe shape (LLS), the lobe length/vein length is controlled by one pair of additive dominant major genes (A-1); and the lobe length/lobe width is controlled by two pairs of additive dominant major genes (B-2). The heritability of major genes was greater than 30%. For the leaf petiole shape (LPS), the petiole length is controlled by a pair of additive-dominant major genes (A-1). The results showed that the leaf traits were mainly controlled by genetic factors. In addition, based on the high-density genetic map of one F1 hybrid population, it was found that 51 quantitative trait loci (QTL) were used to control the leaf traits, including two QTLs that controlled the LBS. There were 18 QTLs that controlled LLS. Moreover, the primary QTLs that controlled leaf width and lobe length were obtained. The results of this study may establish a theoretical foundation for the in-depth exploration of leaf-shape-related genes in chrysanthemum and may provide a reference for future research investigating leaf-shape genetics in other agronomic crops. View Full-Text
Keywords: small-flower chrysanthemum; leaf traits; mixed inheritance analyses; QTL small-flower chrysanthemum; leaf traits; mixed inheritance analyses; QTL
Show Figures

Figure 1

MDPI and ACS Style

Gao, K.; Song, X.; Kong, D.; Dai, S. Genetic Analysis of Leaf Traits in Small-Flower Chrysanthemum (Chrysanthemum × morifolium Ramat.). Agronomy 2020, 10, 697.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Search more from Scilit
 
Search
Back to TopTop