Physiology, Growth and Yield of Different Cassava Genotypes Planted in Upland with Dry Environment during High Storage Root Accumulation Stage
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Weather and Soil Water Conditions
3.2. Performances of Cassava Genotypes
3.3. Correlation between Pn and Other Physiological Traits for Different Soil Water Status
3.4. Relationship between Biomass and WUE for Dry Condition at 360 DAP
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- El-Sharkawy, M.A. Cassava biology and physiology. Plant Mol. Biol. 2003, 53, 621–641. [Google Scholar] [CrossRef]
- Howeler, R.; Lutaladio, N.; Thomas, G. Save and Grow: Cassava—A Guide to Sustainable Production Intensification; Food and Agriculture Organization: Rome, Italy, 2013. [Google Scholar]
- Sriroth, K.; Piyachomkwan, K.; Wanlapatit, S.; Nivitchanyong, S. The promise of a technology revolution in cassava bioethanol: From Thai practice to the world practice. Fuel 2010, 89, 1333–1338. [Google Scholar] [CrossRef]
- Anyanwu, C.N.; Ibeto, C.N.; Ezeoha, S.L.; Ogbuagu, N.J. Sustainability of cassava (Manihot esculenta Crantz) as industrial feedstock, energy and food crop in Nigeria. Renew. Energ. 2015, 81, 745–752. [Google Scholar] [CrossRef]
- Bhuiyan, M.M.; Iji, P.A. Energy value of cassava products in broiler chicken diets with or without enzyme supplementation. Asian Austral. J. Anim. 2015, 28, 1317–1326. [Google Scholar] [CrossRef] [PubMed]
- Tonukari, N.; Ezedom, T.; Enuma, C.C.; Sakpa, S.O.; Awioroko, O.J.; Eraga, L.; Odiyoma, E. White gold: Cassava as an industrial base. Am. J. Plant Sci. 2015, 6, 972–979. [Google Scholar] [CrossRef] [Green Version]
- FAO. Statistics Databases: Production; FAO: Rome, Italy, 2017; Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 15 January 2019).
- Connor, D.J.; Cock, J.H.; Parra, G.E. Response of cassava to water shortage. I. Growth and yield. Field Crop Res. 1981, 4, 181–200. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A. Physiological characteristics of cassava tolerance to prolonged drought in the tropics: Implications for breeding cultivars adapted to seasonally dry and semiarid environments. Braz. J. Plant Physiol. 2007, 19, 257–286. [Google Scholar] [CrossRef]
- Kawano, K. Harvest index and evoluation of major food crop cultivars in the tropics. Euphytica 1990, 46, 195–202. [Google Scholar] [CrossRef]
- De Tafur, S.M.; El-Sharkawy, M.A.; Calle, F. Photosynthesis and yield performance of cassava in seasonally dry and semiarid environments. Photosynthetica 1997, 33, 249–257. [Google Scholar] [CrossRef]
- Oyetunji, O.J.; Ekanayake, I.J.; Osonubi, O. Chlorophyll fluorescence analysis for assessing water deficit and arbuscular mycorrhizal fungi (AMF) inoculation in cassava (Manihot esculenta Crantz). Adv. Biol. Res. 2007, 1, 108–117. [Google Scholar]
- Vandegeer, R.; Rebecca, E.; Bain, M.; Roslyn, M.; Timothy, R. Drought adversely affects tuber development and nutritional quality of the staple crop cassava (Manihot esculenta Crantz). Funct. Plant Biol. 2013, 40, 195–200. [Google Scholar] [CrossRef] [Green Version]
- Sawatraksa, N.; Banterng, P.; Jogloy, S.; Vorasoot, N.; Hoogenboom, G. Chlorophyll fluorescence and biomass of four cassava genotypes grown under rain-fed upper paddy field conditions in the tropics. J. Agron. Crop Sci. 2018, 204, 554–565. [Google Scholar] [CrossRef]
- Alves, A.A.C. Cassava Botany and Physiology. In Cassava: Biology, Production and Utilization; Hillocks, R.J., Thresh, J.M., Bellotti, A.C., Eds.; CABI Publishing: New York, NY, USA, 2002; pp. 67–89. [Google Scholar]
- Shukla, A.; Panchal, H.; Mishra, M.; Patel, P.R.; Srivastava, H.S.; Patel, P.; Shukla, A.K. Soil moisture estimation using gravimetric technique and FDR probe technique: A comparative analysis. Am. Int. J. Res. Form. Appl. Nat. Sci. 2014, 8, 89–92. [Google Scholar]
- Impa, S.M.; Nadaradjan, S.; Boominathan, P.; Shashidhar, G.; Bindumadhava, H.; Sheshshayee, M.S. Carbon isotope discrimination accurately reflects variability in WUE measured at a whole plant level in rice. Crop Sci. 2005, 45, 2517–2522. [Google Scholar] [CrossRef]
- Murchie, E.H.; Lawson, T. Chlorophyll fluorescence analysis: A guide to good practice and understanding some new applications. J. Exp. Bot. 2013, 64, 3983–3998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vongcharoen, K.; Santanoo, S.; Banterng, P.; Jogloy, S.; Vorasoot, N.; Theerakulpisut, P. Seasonal variation in photosynthesis performance of cassava at two different growth stages under irrigated and rain-fed conditions in a tropical savanna climate. Photosynthetica 2018, 56, 1398–1413. [Google Scholar] [CrossRef]
- Vongcharoen, K.; Santanoo, S.; Banterng, P.; Jogloy, S.; Vorasoot, N.; Theerakulpisut, P. Diurnal and seasonal variations in the photosynthetic performance and chlorophyll fluorescence of cassava ‘Rayong 9’ under irrigated and rainfed conditions. Photosynthetica 2019, 57, 268–285. [Google Scholar] [CrossRef] [Green Version]
- Santanoo, S.; Vongcharoen, K.; Banterng, P.; Vorasoot, N.; Jogloy, S.; Roytrakul, S.; Theerakulpisut, P. Seasonal variation in diurnal photosynthesis and chlorophyll fluorescence of four cultivars of cassava (Manihot esculenta Crantz.) under irrigation conditions in a tropical savanna climate. Agronomy 2019, 9, 206. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, L.; Gonzalez-Vilar, M. Determination of Relative Water Content. In Handbook of Plant Ecophysiology Techniques; Roger, M.J.R., Ed.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001; pp. 207–212. [Google Scholar] [CrossRef]
- Wholey, D.W.; Booth, R.H. A comparison of simple methods for estimating starch content of cassava roots. J. Sci. Food Agric. 1979, 30, 158–164. [Google Scholar] [CrossRef]
- Gomez, K.A.; Gomez, A.A. Statistical Procedures for Agricultural Research; John Wiley and Sons: New York, NY, USA, 1984. [Google Scholar]
- Statistix, version 10; Analytical Software: Tallahassee, FL, USA, 2013.
- Phoncharoen, P.; Banterng, P.; Vorasoot, N.; Jogloy, S.; Theerakulpisut, P.; Hoogenboom, G. Growth rates and yields of cassava at different planting dates in a tropical savanna climate. Sci. Agric. 2019, 76, 376–388. [Google Scholar] [CrossRef] [Green Version]
- Sawatraksa, N.; Banterng, P.; Jogloy, S.; Vorasoot, N.; Hoogenboom, G. Cassava growth analysis of production during the off-season of paddy rice. Crop Sci. 2019, 59, 760–771. [Google Scholar] [CrossRef]
- Cock, J.H.; Franklin, D.; Sandoval, G.; Juri, P. The ideal cassava plant for maximum yield. Crop Sci. 1979, 19, 271–279. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A.; Cadavid, L.F. Response of cassava to prolonged water stress imposed at different stages of growth. Exp. Agric. 2002, 38, 333–350. [Google Scholar] [CrossRef]
- Phosaengsri, W.; Banterng, P.; Vorasoot, N.; Jogloy, S.; Theerakulpisut, P. Leaf performances of cassava genotypes in different seasons and its relationship with biomass. Turk. J. Field Crops 2019, 24, 54–64. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A.; Hernandez, A.D.P.; Hershey, C. Yield stability of cassava during prolonged mid-season water stress. Exp. Agric. 1992, 28, 165–174. [Google Scholar] [CrossRef]
- El-Sharkawy, M.A. Drought-tolerant cassava for Africa, Asia, and Latin America: Breeding projects work to stabilize productivity without increasing pressures on limited natural resources. Bioscience 1993, 43, 441–451. [Google Scholar] [CrossRef]
- Turyagyenda, L.F.; Kizito, E.B.; Ferguson, M.; Baguma, Y.; Agaba, M.; Harvey, J.J.W.; Osiru, D.S.O. Physiological and molecular characterization of drought responses and identification of candidate tolerance genes in cassava. AoB Plants 2013, 5, plt007. [Google Scholar] [CrossRef] [Green Version]
- El-Sharkawy, M.A. Prospects of photosynthetic research for increasing agricultural productivity, with emphasis on the tropical C4 Amaranthus and the cassava C3–C4 crops. Photosynthetica 2016, 54, 161–184. [Google Scholar] [CrossRef]
- De Souza, A.P.; Long, S.P. Toward improving photosynthesis in cassava: Characterizing photosynthetic limitations in four current African cultivars. Food Energy Secur. 2018, 7, e00130. [Google Scholar] [CrossRef]
- Sinclair, T.R.; Muchow, R.C. System analysis of plant traits to increase grain yield on limited water supplies. Agron. J. 2001, 93, 263–270. [Google Scholar] [CrossRef]
- Shan, Z.; Luo, X.; Wei, M.; Huang, T.; Khan, A.; Zhu, Y. Physiological and proteomic analysis on long-term drought resistance of cassava (Manihot esculenta Crantz). Sci. Rep. 2018, 8, 17982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawlor, D.W. Limitation to photosynthesis in water-stressed leaves: Stomata vs. metabolism and the role of ATP. Ann. Bot. 2002, 89, 871–885. [Google Scholar] [CrossRef] [PubMed]
- Lawlor, D.W.; Cornic, G. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 2002, 25, 275–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phoncharoen, P.; Banterng, P.; Vorasoot, N.; Jogloy, S.; Theerakulpisut, P.; Hoogenboom, G. The impact of seasonal environments in a tropical savanna climate on forking, leaf area index, and biomass of cassava genotypes. Agronomy 2019, 9, 19. [Google Scholar] [CrossRef] [Green Version]
2018/2019 | 2019/2020 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Genotype | Total Dry Weight (ton ha−1) | Storage Root Dry Weight (ton ha−1) | Total Dry Weight (ton ha−1) | Storage Root Dry Weight (ton ha−1) | ||||||||
180 DAP | 270 DAP | 360 DAP | 180 DAP | 270 DAP | 360 DAP | 180 DAP | 270 DAP | 360 DAP | 180 DAP | 270 DAP | 360 DAP | |
Rayong 5 | 12.4 bc | 22.9 bcd | 20.3 bc | 6.7 d | 10.5 cd | 12.4 c | 14.9 bc | 22.9 bcd | 24.9 bcd | 9.5 cd | 14.2 de | 18.5 cde |
Rayong 7 | 15.9 ab | 24.3 bcd | 19.0 b | 11.5 ab | 11.8 bcd | 14.3 bc | 16.9 a | 21.2 cde | 25.7 b | 12.6 a | 15.9 c | 19.5 cd |
Rayong 9 | 15.7 ab | 20.9 cd | 22.6 b | 10.6 ab | 10.1 d | 17.0 b | 16.5 a | 21.0 de | 26.0 b | 13.4 a | 14.6 d | 19.8 cd |
Rayong 11 | 10.0 c | 19.3 d | 20.1 b | 5.5 d | 10.0 d | 14.4 bc | 12.6 d | 21.0 de | 22.3 d | 8.5 d | 14.1 de | 16.5 e |
Rayong 90 | 12.4 bc | 19.5 d | 19.2 b | 8.0 c | 10.2 d | 14.2 bc | 14.7 bc | 20.3 e | 23.1 cd | 10.0 c | 13.4 e | 17.8 de |
Kasetsart 50 | 16.4 a | 26.0 abc | 30.2 a | 10.3 b | 12.3 bc | 21.3 a | 15.9 ab | 23.8 b | 30.7 a | 11.3 b | 19 a | 24.3 a |
Huay Bong 80 | 11.1 c | 26.6 ab | 21.8 b | 6.6 d | 12.9 b | 16.8 b | 14.2 c | 23.1 b | 26.3 b | 12.6 a | 17.1 b | 21.1 bc |
CMR38-125-77 | 17.0 a | 29.5 a | 30.9 a | 11.7 a | 15.6 a | 22.2 a | 16.7 a | 27.4 a | 30.4 a | 13.3 a | 18.8 a | 23.3 ab |
F-test | ** | ** | ** | ** | ** | ** | * | ** | ** | ** | ** | ** |
C.V. | 14.75 | 12.76 | 11.43 | 8.17 | 9.48 | 10.94 | 4.65 | 5.20 | 5.79 | 5.01 | 3.66 | 7.70 |
2018/2019 | 2019/2020 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Genotype | Starch Content (%) | Starch Yield (ton ha−1) | Starch Content (%) | Starch Yield (ton ha−1) | ||||||||
180 DAP | 270 DAP | 360 DAP | 180 DAP | 270 DAP | 360 DAP | 180 DAP | 270 DAP | 360 DAP | 180 DAP | 270 DAP | 360 DAP | |
Rayong 5 | 23.4 e | 27.3 c | 23.1 e | 3.4 c | 6.5 d | 6.8 c | 22.6 e | 30 c | 27.5 b | 5.7 d | 11.9 b | 12.6 de |
Rayong 7 | 26.6 bc | 30.5 ab | 29.3 bc | 5.3 a | 8.4 bcd | 9.9 b | 25.4 bcd | 33.4 a | 28.3 b | 8.1 b | 11.4 bc | 13.6 cde |
Rayong 9 | 24.3 de | 30.6 ab | 30.0 ab | 4.4 b | 7.0 cd | 10.4 b | 24.3 cd | 33.5 a | 31.9 a | 8.3 ab | 8.5 e | 14.7 bd |
Rayong 11 | 25.2 cde | 30.9 ab | 28.5 bcd | 2.6 d | 7.0 cd | 8.5 bc | 25.9 abc | 33.1 ab | 31.2 a | 5.7 d | 10.5 d | 12.1 e |
Rayong 90 | 26.6 bc | 29.3 bc | 27.4 cd | 4.6 b | 6.7 cd | 8.4 bc | 25.0 bcd | 33.3 ab | 30.5 a | 6.4 c | 10.7 cd | 12.6 de |
Kasetsart 50 | 25.7 cd | 32.6 a | 26.4 d | 5.4 a | 9.7 ab | 14.2 a | 23.9 de | 32.4 b | 30.3 a | 7.9 b | 13.7 a | 18.3 a |
Huay Bong 80 | 28.3 ab | 32.9 a | 26.4 d | 3.3 c | 9.0 bc | 10.4 b | 27.4 a | 33.6 a | 30.3 a | 8.3 ab | 13.3 a | 15.3 bc |
CMR38-125-77 | 29.3 a | 31.7 ab | 32 a | 5.9 a | 11.6 a | 16.2 a | 26.2 ab | 32.3 b | 30.4 a | 8.9 a | 13.9 a | 16.6 ab |
F-test | ** | * | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
C.V. | 4.65 | 5.64 | 4.91 | 8.0 | 17.53 | 11.58 | 3.66 | 1.7 | 3.58 | 5.56 | 3.87 | 9.74 |
2018/2019 | 2019/2020 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Genotype | LAI | SLA (cm2g−1) | LAI | SLA (cm2g−1) | ||||||||
180 DAP | 270 DAP | 360 DAP | 180 DAP | 270 DAP | 360 DAP | 180 DAP | 270 DAP | 360 DAP | 180 DAP | 270 DAP | 360 DAP | |
Rayong 5 | 2.38 bc | 0.93 c | 0.16 d | 183 | 175 | 84 | 2.9 c | 1.04 c | 0.19 d | 185 abc | 165 cde | 81 ab |
Rayong 7 | 2.53 ab | 0.92 c | 0.17 cd | 187 | 171 | 86 | 2.7 cd | 1.03 c | 0.20 cd | 198 a | 162 de | 84 a |
Rayong 9 | 2.61 ab | 1.02 c | 0.17 cd | 185 | 175 | 87 | 2.3 e | 1.09 c | 0.20 cd | 182 bc | 167 bcd | 83 a |
Rayong 11 | 2.18 cd | 1.15 b | 0.18 bc | 187 | 170 | 89 | 1.9 f | 1.26 b | 0.21 c | 159 d | 161 d | 77 b |
Rayong 90 | 2.02 d | 1.16 b | 0.18 bc | 185 | 174 | 87 | 2.9 c | 1.26 b | 0.20 cd | 193 ab | 163 de | 83 a |
Kasetsart 50 | 2.74 a | 1.20 b | 0.20 ab | 193 | 176 | 90 | 3.8 a | 1.32 b | 0.23 b | 187 abc | 171 bc | 83 a |
Huay Bong 80 | 2.30 bcd | 1.25 b | 0.18 bc | 187 | 174 | 89 | 2.5 de | 1.41 a | 0.20 cd | 176 c | 172 b | 84 a |
CMR38-125-77 | 2.61 ab | 1.39 a | 0.21 a | 191 | 184 | 88 | 3.3 b | 1.48 a | 0.26 a | 186 abc | 180 a | 84 a |
F-test | ** | ** | ** | NS | NS | NS | ** | ** | ** | ** | ** | ** |
C.V. | 7.30 | 5.68 | 6.70 | 2.28 | 4.59 | 4.64 | 7.10 | 3.24 | 5.20 | 4.37 | 2.13 | 2.65 |
2018/2019 | 2019/2020 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Genotype | RWC (%) | Stomatal Conductance (molH2O m−2s−1) | RWC (%) | Stomatal Conductance (molH2O m−2s−1) | ||||||||
180 DAP | 270 DAP | 360 DAP | 180 DAP | 270 DAP | 360 DAP | 180 DAP | 270 DAP | 360 DAP | 180 DAP | 270 DAP | 360 DAP | |
Rayong 5 | 90.1 | 83.9 | 76.9 a | 0.44 d | 0.15 d | 0.13 d | 91.4 | 82.4 b | 77.5 ab | 0.45 | 0.15 e | 0.14 e |
Rayong 7 | 87.1 | 82.9 | 76 ab | 0.45 d | 0.33 a | 0.30 a | 92.6 | 82.1 b | 76.2 bc | 0.42 | 0.33 a | 0.25 b |
Rayong 9 | 86.9 | 86.5 | 71.4 c | 0.64 a | 0.32 a | 0.14 cd | 90.8 | 81.8 b | 73.1 d | 0.50 | 0.35 a | 0.19 d |
Rayong 11 | 89.0 | 81.7 | 73.2 bc | 0.44 d | 0.26 b | 0.17 bc | 93.8 | 84.9 a | 74.6 cd | 0.46 | 0.22 c | 0.14 e |
Rayong 90 | 92.1 | 83.8 | 77.6 a | 0.52 b | 0.26 b | 0.30 a | 90.9 | 81.9 b | 77.5 ab | 0.51 | 0.25 b | 0.21c |
Kasetsart 50 | 91.6 | 84.5 | 77.3 a | 0.55 b | 0.21 c | 0.14 cd | 94.7 | 85.2 a | 77.7 ab | 0.45 | 0.26 b | 0.24 b |
Huay Bong 80 | 91.5 | 84.1 | 73.7 b | 0.47 cd | 0.14 d | 0.18 b | 92.8 | 83.3 ab | 75.2 cd | 0.48 | 0.19 d | 0.17 d |
CMR38-125-77 | 90.1 | 87.2 | 78.9 a | 0.55 b | 0.31 a | 0.28 a | 92.6 | 83.6 ab | 78.8 a | 0.50 | 0.33 a | 0.29 a |
F-test | NS | NS | ** | ** | ** | ** | NS | * | ** | NS | ** | ** |
C.V. | 2.98 | 2.55 | 2.28 | 6.05 | 7.55 | 10.70 | 1.97 | 1.45 | 1.51 | 6.44 | 5.95 | 6.01 |
2018/2019 | 2019/2020 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Genotype | Fv′/Fm′ | Fv/Fm | Fv′/Fm′ | Fv/Fm | ||||||||
180 DAP | 270 DAP | 360 DAP | 180 DAP | 270 DAP | 360 DAP | 180 DAP | 270 DAP | 360 DAP | 180 DAP | 270 DAP | 360 DAP | |
Rayong 5 | 0.59 | 0.41 | 0.36 ab | 0.81 | 0.63 c | 0.58 | 0.50 | 0.46 | 0.33 e | 0.80 | 0.67c | 0.61 |
Rayong 7 | 0.53 | 0.45 | 0.38 ab | 0.85 | 0.71 ab | 0.65 | 0.53 | 0.48 | 0.35 cde | 0.80 | 0.70 ab | 0.63 |
Rayong 9 | 0.58 | 0.47 | 0.41 a | 0.80 | 0.72 a | 0.63 | 0.55 | 0.50 | 0.37 bc | 0.83 | 0.71 a | 0.63 |
Rayong 11 | 0.56 | 0.41 | 0.37 ab | 0.81 | 0.71 ab | 0.63 | 0.52 | 0.50 | 0.34 de | 0.81 | 0.67 c | 0.63 |
Rayong 90 | 0.52 | 0.43 | 0.40 a | 0.85 | 0.69 ab | 0.69 | 0.57 | 0.46 | 0.36 bcd | 0.84 | 0.69 abc | 0.60 |
Kasetsart 50 | 0.59 | 0.40 | 0.34 b | 0.82 | 0.67 abc | 0.63 | 0.56 | 0.44 | 0.38 ab | 0.82 | 0.68 bc | 0.65 |
Huay Bong 80 | 0.56 | 0.42 | 0.33 b | 0.83 | 0.66 bc | 0.63 | 0.57 | 0.48 | 0.35 cde | 0.82 | 0.68 bc | 0.62 |
CMR38-125-77 | 0.61 | 0.47 | 0.41 a | 0.85 | 0.73 a | 0.68 | 0.57 | 0.47 | 0.39 a | 0.82 | 0.72 a | 0.67 |
F-test | NS | NS | ** | NS | * | NS | NS | NS | ** | NS | ** | NS |
C.V. | 7.03 | 8.76 | 7.77 | 7.87 | 4.63 | 6.55 | 5.90 | 9.44 | 3.85 | 3.24 | 2.44 | 3.18 |
2018/2019 | 2019/2020 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Genotype | Pn (μmol CO2 m−2s−1) | WUE (μmolCO2 mm−1H2O) | Pn (μmol CO2 m−2s−1) | WUE (μmolCO2 mm−1H2O) | ||||||||
180 DAP | 270 DAP | 360 DAP | 180 DAP | 270 DAP | 360 DAP | 180 DAP | 270 DAP | 360 DAP | 180 DAP | 270 DAP | 360 DAP | |
Rayong 5 | 27.4 ab | 15.6 cd | 14.9 cd | 5.8 | 5.6 | 5.7 bc | 27.1 | 15.9 e | 15.1 e | 5.4 | 5.7 bc | 6.1 b |
Rayong 7 | 26.3 bcd | 24.0 a | 19.5 a | 5.4 | 5.3 | 5.2 c | 26.5 | 20.0 bc | 18.8 b | 5.3 | 5.5 cd | 6.0 b |
Rayong 9 | 28.4 a | 23.2 a | 14.5 cd | 5.2 | 5.0 | 6.3 ab | 27.2 | 21.0 ab | 17.8 cd | 5.6 | 5.7 bc | 6.0 b |
Rayong 11 | 25.5 cd | 17.5 bcd | 16.3 bc | 5.4 | 5.5 | 6.3 ab | 26.4 | 17.1 de | 17.6 d | 5.7 | 5.9 b | 6.1 b |
Rayong 90 | 25.4 cd | 18.9 bc | 18.8 a | 4.7 | 5.1 | 5.1 c | 27.3 | 18.6 cd | 18.4 bc | 5.3 | 5.3 d | 5.8 c |
Kasetsart 50 | 26.6 bc | 18.4 bcd | 17.8 ab | 5.3 | 5.6 | 6.8 a | 27.0 | 18.7 cd | 18.0 cd | 5.6 | 5.7 bc | 6.5 a |
Huay Bong 80 | 25.0 d | 14.8 d | 13.0 d | 5.4 | 5.6 | 5.8 bc | 27.0 | 17.3 de | 15.1 e | 5.5 | 6.0 b | 5.9 bc |
CMR38-125-77 | 27.7 ab | 21.1 ab | 18.8 a | 5.0 | 6.0 | 6.9 a | 26.1 | 22.4 a | 22.3 a | 5.9 | 6.4 a | 6.6 a |
F-test | ** | ** | ** | NS | NS | ** | NS | ** | ** | NS | ** | ** |
C.V. | 3.03 | 10.73 | 7.17 | 6.40 | 8.21 | 8.06 | 4.70 | 5.16 | 2.07 | 3.98 | 3.37 | 2.25 |
Physiological Trait | Pn | |||||
---|---|---|---|---|---|---|
2018/2019 | 2019/2020 | |||||
180 DAP | 270 DAP | 360 DAP | 180 DAP | 270 DAP | 360 DAP | |
RWC at 180 DAP | −0.32 NS | - | - | −0.28 NS | - | - |
RWC at 270 DAP | - | 0.22 NS | - | - | −0.11 NS | - |
RWC at 360 DAP | - | - | 0.52 ** | - | - | 0.35 NS |
Stomatal conductance at 180 DAP | 0.50 * | - | - | 0.23 NS | - | - |
Stomatal conductance at 270 DAP | - | 0.85 ** | - | - | 0.86 ** | - |
Stomatal conductance at 360 DAP | - | - | 0.73 ** | - | - | 0.81 ** |
Fv/Fm at 180 DAP | −0.24 NS | - | - | 0.17 NS | - | - |
Fv/Fm at 270 DAP | - | 0.74 ** | - | - | 0.75 ** | - |
Fv/Fm at 360 DAP | - | - | 0.47 * | - | - | 0.51 * |
Fv′/Fm′ at 180 DAP | 0.25 NS | - | - | 0.10 NS | - | - |
Fv′/Fm′ at 270 DAP | - | 0.40 NS | - | - | 0.19 NS | - |
Fv′/Fm′ at 360 DAP | - | - | 0.32 NS | - | - | 0.58 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wongnoi, S.; Banterng, P.; Vorasoot, N.; Jogloy, S.; Theerakulpisut, P. Physiology, Growth and Yield of Different Cassava Genotypes Planted in Upland with Dry Environment during High Storage Root Accumulation Stage. Agronomy 2020, 10, 576. https://doi.org/10.3390/agronomy10040576
Wongnoi S, Banterng P, Vorasoot N, Jogloy S, Theerakulpisut P. Physiology, Growth and Yield of Different Cassava Genotypes Planted in Upland with Dry Environment during High Storage Root Accumulation Stage. Agronomy. 2020; 10(4):576. https://doi.org/10.3390/agronomy10040576
Chicago/Turabian StyleWongnoi, Settawoot, Poramate Banterng, Nimitr Vorasoot, Sanun Jogloy, and Piyada Theerakulpisut. 2020. "Physiology, Growth and Yield of Different Cassava Genotypes Planted in Upland with Dry Environment during High Storage Root Accumulation Stage" Agronomy 10, no. 4: 576. https://doi.org/10.3390/agronomy10040576
APA StyleWongnoi, S., Banterng, P., Vorasoot, N., Jogloy, S., & Theerakulpisut, P. (2020). Physiology, Growth and Yield of Different Cassava Genotypes Planted in Upland with Dry Environment during High Storage Root Accumulation Stage. Agronomy, 10(4), 576. https://doi.org/10.3390/agronomy10040576