Arbuscular Mycorrhizal Fungi Associated with Rice (Oryza sativa L.) in Ghana: Effect of Regional Locations and Soil Factors on Diversity and Community Assembly
Abstract
:1. Introduction
2. Results
2.1. Soil Chemical Properties of Rice Fields Varied among Agroecological Zones in Ghana
2.2. AMF Colonization Rates in Rice Roots Varied Across Six Regions in Ghana
2.3. Farming Management Practices and Agroecological Zones Influenced Community Structure of AMF in Rice Roots
2.4. Phylogenetic Analysis of the Excised DGGE Bands
2.5. AMF Community Structure Analysis by Illumina MiSeq Sequencing
3. Discussion
4. Materials and Methods
4.1. Site Description and Sampling Materials
4.2. Soil Analysis
4.3. Assessment of AMF Colonization in Roots
4.4. DNA Extraction and Nested PCR
4.5. DGGE Analysis
4.6. DGGE Band Sequencing
4.7. Next-Generation Sequencing
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Muthayya, S.; Sugimoto, J.D.; Montgomery, S.; Maberly, G.F. An overview of global rice production, supply, trade, and consumption. Ann. N. Y. Acad. Sci. 2014, 1324, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Archibald, D.; Taylor, J. Grain and Feed Annual; USDA Foreign Agricultural Service: Washington, DC, USA, 2018; p. 7. [Google Scholar]
- Ministry of Food and Agriculture (MoFA). Agriculture in Ghana: Facts and Figures, 2015; Annual Report by the Statistics, Research and Information Directorate (SRID), MoFA, as Part of MoFA’s Policy Planning, Monitoring and Evaluation Activities; Ministry of Food and Agriculture: Accra, Ghana, 2016. [Google Scholar]
- Ministry of Food and Agriculture (MoFA). Agricultural Progress Report_Final, 2017. Available online: http://www.PPMED.MoFA.pdf (accessed on 5 July 2017).
- Ghana Statistical Service (GSS). Rebased 2013–2018 Annual Gross Domestic Product; Ghana Statistical Service: Accra, Ghana, 2019; Volume 11. [Google Scholar]
- Ministry of Food and Agriculture (MoFA). 2013 Agric Sector Annual Progress Report; Ministry of Food and Agriculture (MoFA): Accra, Ghana, 2013; Volume 96. [Google Scholar]
- Food and Agricultural Organization (FAO). Country Fact Sheet on Food and Agriculture Policy Trends-Ghana; Food and Agricultural Organization (FAO): Rome, Italy, 2015; Available online: http://www.fao.org/ag/agp/agpc/doc/counprof/PDF%20files/Ghana-English.pdf (accessed on 6 May 2019).
- Ministry of Food and Agriculture (MoFA). National Rice Development Strategy-Draft: A Draft Report of the Ministry of Food and Agriculture; Ministry of Food and Agriculture: Accra, Ghana, 2009. [Google Scholar]
- Kajisa, K. On the Determinants of Low Productivity of Rice Farming in Mozambique: Pathways to Intensification. In Pursuit of an African Green Revolution: Views from Rice and Maize Farmers’ Fields; Natural Resource Management and Policy; Springer: Tokyo, Janpan, 2016; pp. 13–38. ISBN 978-4-431-55693-0. [Google Scholar]
- Saito, K.; Nelson, A.D.; Zwart, S.J.; Niang, A.; Sow, A.; Yoshida, H.; Wopereis, M.C.S. Towards a better understanding of biophysical determinants of yield gaps and the potential for expansion of the rice area in Africa. Realiz. Afr. Rice Promise 2013, 188–203. [Google Scholar] [CrossRef] [Green Version]
- Diagne, A.; Amovin-Assagba, E.; Futakuchi, K.; Wopereis, M.C.S. Estimation of cultivated area, number of farming households and yield for major rice-growing environments in Africa. In Realizing Africa’s Rice Promise; Wopereis, M.C.S., Johnson, D.E., Ahmadi, N., Tollens, E., Jalloh, A., Eds.; CABI: Wallingford, UK, 2013; pp. 35–45. ISBN 978-1-84593-812-3. [Google Scholar]
- Bado, V.B.; Djaman, K.; Valère, M.C. Managing Fertilizer Recommendations in Rice-Based Cropping Systems Challenges and Strategic Approaches; Springer International Publishing: Basel, Switzerland, 2018; Volume 1, pp. 25–50. ISBN 978-3-319-58789-9. [Google Scholar]
- Tanaka, A.; Johnson, J.-M.; Senthilkumar, K.; Akakpo, C.; Segda, Z.; Yameogo, L.P.; Bassoro, I.; Lamare, D.M.; Allarangaye, M.D.; Gbakatchetche, H.; et al. On-farm rice yield and its association with biophysical factors in sub-Saharan Africa. Eur. J. Agron. 2017, 85, 1–11. [Google Scholar] [CrossRef]
- Haefele, S.M.; Saito, K.; N’Diaye, K.M.; Mussgnug, F.; Nelson, A.; Wopereis, M.C.S. Increasing rice productivity through improved nutrient use in Africa. In Realizing Africa’s Rice Promise; Wopereis, M.C.S., Johnson, D.E., Ahmadi, N., Tollens, E., Jalloh, A., Eds.; CABI: Wallingford, UK, 2013; pp. 250–264. ISBN 978-1-84593-812-3. [Google Scholar]
- Balasubramanian, V.; Sie, M.; Hijmans, R.J.; Otsuka, K. Increasing Rice Production in Sub-Saharan Africa: Challenges and Opportunities. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Cambridge, MA, USA, 2007; Volume 94, pp. 55–133. [Google Scholar]
- Becker, M.; Johnson, D.E. Improved water control and crop management effects on lowland rice productivity in West Africa. Nutr. Cycl. Agroecosyst. 2001, 59, 119–127. [Google Scholar] [CrossRef]
- Öpik, M.; Moora, M.; Liira, J.; Zobel, M. Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J. Ecol. 2006, 94, 778–790. [Google Scholar] [CrossRef]
- Jacoby, R.; Peukert, M.; Succurro, A.; Koprivova, A.; Kopriva, S. The Role of Soil Microorganisms in Plant Mineral Nutrition—Current Knowledge and Future Directions. Front. Plant Sci. 2017, 8, 1617. [Google Scholar] [CrossRef] [Green Version]
- Schnitzer, S.A.; Klironomos, J.; HilleRisLambers, J.; Kinkel, L.L.; Reich, P.B.; Xiao, K.; Rillig, M.C.; Sikes, B.A.; Callaway, R.M.; Mangan, S.A.; et al. Soil microbes drive the classic plant diversity-productivity pattern. Ecology 2011, 92, 296–303. [Google Scholar] [CrossRef]
- Aislabie, J.; Deslippe, J.R. Soil microbes and their contribution to soil services. In Ecosystem Services in New Zealand-Conditions and Trends; Dymond, J.R., Ed.; Manaaki Whenua Press: Lincoln, New Zealand, 2013; pp. 143–161. [Google Scholar]
- Harman, G.E.; Uphoff, N. Symbiotic Root-Endophytic Soil Microbes Improve Crop Productivity and Provide Environmental Benefits. Scientifica 2019, 2019, 9106395. [Google Scholar] [CrossRef] [Green Version]
- De Beenhouwer, M.; Van Geel, M.; Ceulemans, T.; Muleta, D.; Lievens, B.; Honnay, O. Changing soil characteristics alter the arbuscular mycorrhizal fungi communities of Arabica coffee (Coffea arabica) in Ethiopia across a management intensity gradient. Soil Biol. Biochem. 2015, 91, 133–139. [Google Scholar] [CrossRef]
- Urcoviche, R.C.; Castelli, M.; Gimenes, R.M.T.; Alberton, O. Spore density and diversity of arbuscular mycorrhizal fungi in medicinal and seasoning plants. Afr. J. Agric. Res. 2014, 9, 1244–1251. [Google Scholar]
- Balestrini, R.; Lumini, E. Focus on mycorrhizal symbioses. Appl. Soil Ecol. 2018, 123, 299–304. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2008; ISBN 978-0-12-370526-6. [Google Scholar]
- Choi, J.; Summers, W.; Paszkowski, U. Mechanisms Underlying Establishment of Arbuscular Mycorrhizal Symbioses. Annu. Rev. Phytopathol. 2018, 56, 135–160. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.E.; Facelli, E.; Pope, S.; Andrew Smith, F. Plant performance in stressful environments: Interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 2010, 326, 3–20. [Google Scholar] [CrossRef]
- Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems; Gianiazzi, S.; Schüepp, H. (Eds.) Advances in Life Sciences: Birkhäuser Basel, Switzerland, 1994; ISBN 978-3-0348-9654-2. [Google Scholar]
- Wilson, G.W.T.; Rice, C.W.; Rillig, M.C.; Springer, A.; Hartnett, D.C. Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: Results from long-term field experiments. Ecol. Lett. 2009, 12, 452–461. [Google Scholar] [CrossRef]
- Camenzind, T.; Hammer, E.C.; Lehmann, J.; Solomon, D.; Horn, S.; Rillig, M.C.; Hempel, S. Arbuscular mycorrhizal fungal and soil microbial communities in African Dark Earths. FEMS Microbiol. Ecol. 2018, 94, fiy033. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Qiu, Y.-L. Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 2006, 16, 299–363. [Google Scholar] [CrossRef]
- Blanke, V.; Renker, C.; Wagner, M.; Füllner, K.; Held, M.; Kuhn, A.J.; Buscot, F. Nitrogen supply affects arbuscular mycorrhizal colonization of Artemisia vulgaris in a phosphate-polluted field site. New Phytol. 2005, 166, 981–992. [Google Scholar] [CrossRef]
- Säle, V.; Aguilera, P.; Laczko, E.; Mäder, P.; Berner, A.; Zihlmann, U.; van der Heijden, M.G.A.; Oehl, F. Impact of conservation tillage and organic farming on the diversity of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 2015, 84, 38–52. [Google Scholar] [CrossRef]
- Smith, S.E.; Smith, F.A.; Jakobsen, I. Functional diversity in arbuscular mycorrhizal (AM) symbioses: The contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol. 2004, 162, 511–524. [Google Scholar] [CrossRef]
- Torrecillas, E.; Alguacil, M.M.; Roldán, A. Host Preferences of Arbuscular Mycorrhizal Fungi Colonizing Annual Herbaceous Plant Species in Semiarid Mediterranean Prairies. Appl. Environ. Microbiol. 2012, 78, 6180–6186. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Chen, C.; Zhang, Z.; Sun, Z.; Chen, Y.; Jiang, J.; Shen, Z. The influence of environmental factors on communities of arbuscular mycorrhizal fungi associated with Chenopodium ambrosioides revealed by MiSeq sequencing investigation. Sci. Rep. 2017, 7, 45134. [Google Scholar] [CrossRef] [PubMed]
- Davison, J.; Öpik, M.; Zobel, M.; Vasar, M.; Metsis, M.; Moora, M. Communities of Arbuscular Mycorrhizal Fungi Detected in Forest Soil Are Spatially Heterogeneous but Do Not Vary throughout the Growing Season. PLoS ONE 2012, 7, e41938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Wang, Y. Community Analysis of Arbuscular Mycorrhizal Fungi in Roots of Poncirus trifoliata and Citrus reticulata Based on SSU rDNA. Sci. World J. 2014, 2014, 1–8. [Google Scholar]
- Lee, E.-H.; Eo, J.-K.; Ka, K.-H.; Eom, A.-H. Diversity of Arbuscular Mycorrhizal Fungi and Their Roles in Ecosystems. Mycobiology 2013, 41, 121–125. [Google Scholar] [CrossRef] [Green Version]
- Öpik, M.; Vanatoa, A.; Vanatoa, E.; Moora, M.; Davison, J.; Kalwij, J.M.; Reier, Ü.; Zobel, M. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol. 2010, 188, 223–241. [Google Scholar] [CrossRef]
- Buri, M.M.; Iassaka, R.N.; Fujii, H.; Wakatsuki, T. Comparison of soil nutrient status of some rice growing environments in the major agro-ecological zones of Ghana. J. Food Agric. Environ. 2010, 5, 384–388. [Google Scholar]
- del Mar Alguacil, M.; Torres, M.P.; Montesinos-Navarro, A.; Roldán, A. Soil Characteristics Driving Arbuscular Mycorrhizal Fungal Communities in Semiarid Mediterranean Soils. Appl. Environ. Microbiol. 2016, 82, 3348–3356. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.-W.; Wu, F.-Y.; Li, H.; Chan, W.-F.; Wu, S.-C.; Wong, M.-H. Mycorrhizal colonization status of lowland rice (Oryza sativa L.) in the southeastern region of China. Environ. Sci. Pollut. Res. 2017, 24, 5268–5276. [Google Scholar] [CrossRef]
- Lumini, E.; Vallino, M.; Alguacil, M.M.; Romani, M.; Bianciotto, V. Different farming and water regimes in Italian rice fields affect arbuscular mycorrhizal fungal soil communities. Ecol. Appl. 2011, 21, 1696–1707. [Google Scholar] [CrossRef]
- Barber, N.A.; Kiers, E.T.; Theis, N.; Hazzard, R.V.; Adler, L.S. Linking agricultural practices, mycorrhizal fungi, and traits mediating plant–insect interactions. Ecol. Appl. 2013, 23, 1519–1530. [Google Scholar] [CrossRef] [Green Version]
- Fromin, N.; Hamelin, J.; Tarnawski, S.; Roesti, D.; Jourdain-Miserez, K.; Forestier, N.; Teyssier-Cuvelle, S.; Gillet, F.; Aragno, M.; Rossi, P. Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environ. Microbiol. 2002, 4, 634–643. [Google Scholar] [CrossRef] [PubMed]
- Vallino, M.; Fiorilli, V.; Bonfante, P. Rice flooding negatively impacts root branching and arbuscular mycorrhizal colonization, but not fungal viability. Plant Cell Environ. 2014, 37, 557–572. [Google Scholar] [CrossRef] [PubMed]
- Lumini, E.; Orgiazzi, A.; Borriello, R.; Bonfante, P.; Bianciotto, V. Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ. Microbiol. 2010, 12, 2165–2179. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, T.; Li, Y.; Björn, L.O.; Rosendahl, S.; Olsson, P.A.; Li, S.; Fu, X. Community Dynamics of Arbuscular Mycorrhizal Fungi in High-Input and Intensively Irrigated Rice Cultivation Systems. Appl. Environ. Microbiol. 2015, 81, 2958–2965. [Google Scholar] [CrossRef] [Green Version]
- Watanarojanaporn, N.; Boonkerd, N.; Tittabutr, P.; Longtonglang, A.; Young, J.P.W.; Teaumroong, N. Effect of Rice Cultivation Systems on Indigenous Arbuscular Mycorrhizal Fungal Community Structure. Microb. Environ. 2013, 28, 316–324. [Google Scholar] [CrossRef] [Green Version]
- Dipankar, M.; Mukund, V.; Jayanta, S. Colonization of upland rice by native VAM under rainfed mono-cropped ecosystem. In Recent Advances in Phytopath; M D Publ. Ltd.: New Delhi, India, 1995. [Google Scholar]
- Bernaola, L.; Cange, G.; Way, M.O.; Gore, J.; Hardke, J.; Stout, M. Natural Colonization of Rice by Arbuscular Mycorrhizal Fungi in Different Production Areas. Rice Sci. 2018, 25, 169–174. [Google Scholar] [CrossRef]
- Van Geel, M.; Verbruggen, E.; De Beenhouwer, M.; van Rennes, G.; Lievens, B.; Honnay, O. High soil phosphorus levels overrule the potential benefits of organic farming on arbuscular mycorrhizal diversity in northern vineyards. Agric. Ecosyst. Environ. 2017, 248, 144–152. [Google Scholar] [CrossRef] [Green Version]
- Vályi, K.; Rillig, M.C.; Hempel, S. Land-use intensity and host plant identity interactively shape communities of arbuscular mycorrhizal fungi in roots of grassland plants. New Phytol. 2015, 205, 1577–1586. [Google Scholar] [CrossRef]
- Tchabi, A.; Coyne, D.; Hountondji, F.; Lawouin, L.; Wiemken, A.; Oehl, F. Arbuscular mycorrhizal fungal communities in Sub-Saharan Savannas of Benin, West Africa, as affected by agricultural land use intensity and ecological zone. Mycorrhiza 2008, 18, 181–195. [Google Scholar] [CrossRef] [Green Version]
- Santos, J.C.; Finlay, R.D.; Tehler, A. Molecular analysis of arbuscular mycorrhizal fungi colonising a semi-natural grassland along a fertilisation gradient. New Phytol. 2006, 172, 159–168. [Google Scholar] [CrossRef]
- Casazza, G.; Lumini, E.; Ercole, E.; Dovana, F.; Guerrina, M.; Arnulfo, A.; Minuto, L.; Fusconi, A.; Mucciarelli, M. The abundance and diversity of arbuscular mycorrhizal fungi are linked to the soil chemistry of screes and to slope in the Alpic paleo-endemic Berardia subacaulis. PLoS ONE 2017, 12, e0171866. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, L.; Rosenstock, N.P.; Williams, A.; Hedlund, K. Agricultural management practices influence AMF diversity and community composition with cascading effects on plant productivity. Appl. Soil Ecol. 2017, 115, 53–59. [Google Scholar] [CrossRef]
- Hazard, C.; Gosling, P.; Van Der Gast, C.J.; Mitchell, D.T.; Doohan, F.M.; Bending, G.D. The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale. ISME J. 2013, 7, 498–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansa, J.; Erb, A.; Oberholzer, H.-R.; Šmilauer, P.; Egli, S. Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Mol. Ecol. 2014, 23, 2118–2135. [Google Scholar] [CrossRef] [PubMed]
- Redecker, D.; Schüßler, A.; Stockinger, H.; Stürmer, S.L.; Morton, J.B.; Walker, C. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 2013, 23, 515–531. [Google Scholar] [CrossRef]
- Nakagawa, T.; Imaizumi-Anraku, H. Rice arbuscular mycorrhiza as a tool to study the molecular mechanisms of fungal symbiosis and a potential target to increase productivity. Rice 2015, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.P. Evaluation and Analysis of Bacterial Communities from Different Waste Water Treatment Plants by Denaturing Gradient Gel Electrophoresis with Group Specific 16s rRNA. Int. J. Environ. Bioremed. Biodegrad. 2014, 2, 100–111. [Google Scholar]
- Schüßler, A.; Walker, C. The Glomermycota: A Species List with New Families and New Genera. Available online: http://www.amf-phylogeny.com/species_infos/higher_taxa/funneliformis_claroideoglomus_rhizophagus_redeckera.pdf (accessed on 12 September 2019).
- Hijri, I.; Sýkorová, Z.; Oehl, F.; Ineichen, K.; Mäder, P.; Wiemken, A.; Redecker, D. Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol. Ecol. 2006, 15, 2277–2289. [Google Scholar] [CrossRef]
- Daniell, T.J.; Husband, R.; Fitter, A.H.; Young, J.P.W. Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops. FEMS Microbiol. Ecol. 2001, 36, 203–209. [Google Scholar] [CrossRef]
- Wang, C.; Gu, Z.; Cui, H.; Zhu, H.; Fu, S.; Yao, Q. Differences in Arbuscular Mycorrhizal Fungal Community Composition in Soils of Three Land Use Types in Subtropical Hilly Area of Southern China. PLoS ONE 2015, 10, e0130983. [Google Scholar] [CrossRef] [Green Version]
- Hempel, S.; Renker, C.; Buscot, F. Differences in the species composition of arbuscular mycorrhizal fungi in spore, root and soil communities in a grassland ecosystem. Environ. Microbiol. 2007, 9, 1930–1938. [Google Scholar] [CrossRef] [PubMed]
- Varela-Cervero, S.; Vasar, M.; Davison, J.; Barea, J.M.; Öpik, M.; Azcón-Aguilar, C. The composition of arbuscular mycorrhizal fungal communities differs among the roots, spores and extraradical mycelia associated with five Mediterranean plant species. Environ. Microbiol. 2015, 17, 2882–2895. [Google Scholar] [CrossRef] [PubMed]
- Finlay, R.D. Ecological aspects of mycorrhizal symbiosis: With special emphasis on the functional diversity of interactions involving the extraradical mycelium. J. Exp. Bot. 2008, 59, 1115–1126. [Google Scholar] [CrossRef]
- Hu, Y.; Rillig, M.C.; Xiang, D.; Hao, Z.; Chen, B. Changes of AM Fungal Abundance along Environmental Gradients in the Arid and Semi-Arid Grasslands of Northern China. PLoS ONE 2013, 8, e57593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Echeverría, S.; Teixeira, H.; Correia, M.; Timóteo, S.; Heleno, R.; Öpik, M.; Moora, M. Arbuscular mycorrhizal fungi communities from tropical Africa reveal strong ecological structure. New Phytol. 2017, 213, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Alguacil, M.M.; Torres, M.P.; Torrecillas, E.; Díaz, G.; Roldán, A. Plant type differently promote the arbuscular mycorrhizal fungi biodiversity in the rhizosphere after revegetation of a degraded, semiarid land. Soil Biol. Biochem. 2011, 43, 167–173. [Google Scholar] [CrossRef]
- Li, L.-F.; Li, T.; Zhang, Y.; Zhao, Z.-W. Molecular diversity of arbuscular mycorrhizal fungi and their distribution patterns related to host-plants and habitats in a hot and arid ecosystem, southwest China. FEMS Microbiol. Ecol. 2010, 71, 418–427. [Google Scholar] [CrossRef]
- Schüßler, A.; Krüger, M.; Walker, C. Revealing Natural Relationships among Arbuscular Mycorrhizal Fungi: Culture Line BEG47 Represents Diversispora epigaea, Not Glomus versiforme. PLoS ONE 2011, 6, e23333. [Google Scholar] [CrossRef] [Green Version]
- Rousk, J.; Bååth, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef]
- van der Heijden, M.G.A.; Wagg, C. Soil microbial diversity and agro-ecosystem functioning. Plant Soil 2013, 363, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Deepika, S.; Kothamasi, D. Soil moisture—A regulator of arbuscular mycorrhizal fungal community assembly and symbiotic phosphorus uptake. Mycorrhiza 2015, 25, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Bever, J.D.; Schultz, P.A.; Pringle, A.; Morton, J.B. Arbuscular Mycorrhizal Fungi: More Diverse than Meets the Eye, and the Ecological Tale of Why. BioScience 2001, 51, 923. [Google Scholar] [CrossRef] [Green Version]
- Xiang, D.; Verbruggen, E.; Hu, Y.; Veresoglou, S.D.; Rillig, M.C.; Zhou, W.; Xu, T.; Li, H.; Hao, Z.; Chen, Y.; et al. Land use influences arbuscular mycorrhizal fungal communities in the farming–pastoral ecotone of northern China. New Phytol. 2014, 204, 968–978. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, Y.; Ido, A.; Iwase, K.; Matsumoto, T.; Yamato, M. Communities of Arbuscular Mycorrhizal Fungi in the Roots of Pyrus pyrifolia var. culta (Japanese Pear) in Orchards with Variable Amounts of Soil-Available Phosphorus. Microbes Environ. 2013, 28, 105–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Codjoe, S.N.A.; Bilsborrow, R.E. Population and agriculture in the dry and derived savannah zones of Ghana. Popul. Environ. 2011, 33, 80–107. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). World Reference base for Soil Resources 2014, International Soil classification System for Naming Soils and Creating Legends for Soil Maps. Available online: http://www.fao.org/soils-portal/soil-survey/soil-classification/world-reference-base/en/pdf (accessed on 15 July 2018).
- Tropical Soil Biology and Fertility: A Handbook of Methods, 2nd ed.; Anderson, J.M.; Ingram, J.S.I. (Eds.) International Union of Biological Sciences: Paris, France; International Society of Soil Science: Vienna, Austria; CAB International: Wallingford, UK, 1993; ISBN 978-0-85198-821-4. [Google Scholar]
- Truog, E. The Determination of the Readily Available Phosphorus of Soils 1. Agron. J. 1930, 22, 874–882. [Google Scholar] [CrossRef] [Green Version]
- Parsons, T.R.; Maita, Y.; Lalli, C.M. Manual of Chemical and Biological Methods for Seawater Analysis; Pergamon Press: Oxford, UK, 1984; ISBN 978-0-08-030287-4. [Google Scholar]
- Schollenberger, C.J.; Simon, R.H. Determination of Exchange Capacity and Exchangeable bases in soil-Ammonium acetate method. Soil Sci. 1945, 59, 13–24. [Google Scholar] [CrossRef]
- Phillips, J.M.; Hayman, D.S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 1970, 55, 158–160. [Google Scholar] [CrossRef]
- Kouichi, S.; Yoshihisa, S.; Masanori, S.; Kazuo, S. A new primer for discrimination of arbuscular mycorrhizal fungi with polymerase chain reaction-denature gradient gel electrophoresis. Grassl. Sci. 2005, 51, 179–181. [Google Scholar]
- Muyzer, G.; de Waal, E.C.; Uitterlinden, A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993, 59, 695–700. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I.; et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.G.; Iida, T.; Uwagaki, Y.; Otani, Y.; Nakaho, K.; Ohkuma, M. Comparison of Prokaryotic and Eukaryotic Communities in Soil Samples with and without Tomato Bacterial Wilt Collected from Different Fields. Microbes Environ. 2017, 32, 376–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, E.A.; Oliveira, C.A.; Lana, U.G.P.; Noda, R.W.; Marriel, I.E.; Souza, F.A. de Arbuscular Mycorrhizal Fungal Communities in the Roots of Maize Lines Contrasting for Al Tolerance Grown in Limed and Non-Limed Brazilian Oxisoil. J. Microbiol. Biotechnol. 2015, 25, 978–987. [Google Scholar] [CrossRef]
Agroecological Zone | Region | Soil pH (water) | Soil Moisture Content (%) | Total Carbon (g/kg) | Total Nitrogen (g/kg) | C/N | NH4+ (mg/kg) | NO3− (mg/kg) | AP (mg/kg) | CEC (cmolc/kg) |
---|---|---|---|---|---|---|---|---|---|---|
Guinea Savannah | Upper West | 4.9 ± 0.3 a | 10.1 ± 4.3 a | 5.6 ± 0.6 c | 0.5 ± 0.3 a | 11.1 ± 0.9 ab | 3.5 ± 0.9 b | 35.0 ± 13.0 c | 8.0 ± 0.4 e | 4.1 ± 2.1 c |
Upper East | 5.4 ± 0.3 a | 12.5 ± 2.8 a | 12.3 ± 2.4 c | 1.43 ± 0.2 a | 8.9 ± 3.7 b | 9.1 ± 5.3 b | 45.7 ± 25.7 c | 6.6 ± 0.6 e | 10.6 ± 4.0 b | |
Northern | 5.2 ± 0.5 a | 15.1 ± 3.6 a | 10.0 ± 2.6 c | 3.53 ± 3.1 a | 9.6 ± 0.7 ab | 47.0 ± 24.6 ab | 23.1 ± 2.54 c | 11.9 ± 0.8 d | 11.5 ± 0.9 b | |
Forest-Savannah Transitional Zone | Brong-Ahafo | 5.4 ± 0.3 a | 12.0 ± 5.2 a | 21.3 ± 4.2 b | 2.93 ± 0.9 a | 12.6 ± 0.4 ab | 70.1 ± 16.9 ab | 134.3 ± 10.9 ab | 20.6 ± 1.4 c | 15.6 ± 1.3 b |
Deciduous Forest | Ashanti | 5.2 ± 0.5 a | 18.3 ± 4.2 a | 28.0 ± 1.9 b | 2.17 ± 0.7 a | 11.8 ± 1.0 ab | 88.7 ± 10.4 a | 107.4 ± 18.9 b | 31.3 ± 0.7 b | 22.5 ± 1.8 a |
Volta | 5.2 ± 0.3 a | 16.8 ± 3.8 a | 35.9 ± 3.7 a | 3.97 ± 1.3 a | 13.8 ± 1.6 a | 94.4 ± 4.3 a | 148.3 ± 20.7 a | 47.9 ± 0.3 a | 27.4 ± 2.3 a |
Region | Observed OTU | Shannon | Simpson | Chao1 |
---|---|---|---|---|
Upper West | 222.50 ± 84.15 a | 0.68 ± 0.09 a | 1.93 ± 0.16 a | 293.62 ± 136.49 ab |
Upper East | 138.33 ± 119.26 a | 0.57 ± 0.50 a | 1.83 ± 1.59 a | 158.1 ± 132.7 b |
Northern | 242.33 ± 99.50 a | 0.74 ± 0.17 a | 2.29 ± 0.67 a | 472.32 ± 186.56 ab |
Brong-Ahafo | 461.00 ± 173.52 a | 0.89 ± 0.06 a | 3.24 ± 0.72 a | 308.97 ± 45.84 ab |
Ashanti | 227.67 ± 44.11 a | 0.80 ± 0.10 a | 2.54 ± 0.32 a | 340.31 ± 94.77 ab |
Volta | 278.33 ± 76.77 a | 0.79 ± 0.09 a | 2.40 ± 0.40 a | 252.03 ± 59.67 a |
Soil Chemical Properties | Df | Sum of Squares | Mean Squares | F. Model | R2 | Pr(>F) |
---|---|---|---|---|---|---|
Available P | 1 | 0.519 | 0.519 | 1.591 | 0.071 | 0.041 * |
C/N | 1 | 0.432 | 0.432 | 1.326 | 0.059 | 0.137 |
NO3− | 1 | 0.327 | 0.327 | 1.002 | 0.045 | 0.443 |
AP × C/N | 1 | 0.557 | 0.558 | 1.710 | 0.077 | 0.021 * |
AP × NO3− | 1 | 0.584 | 0.584 | 1.793 | 0.080 | 0.015 * |
C/N × NO3− | 1 | 0.509 | 0.509 | 1.561 | 0.070 | 0.049 * |
AP × C/N × NO3− | 1 | 0.428 | 0.428 | 1.313 | 0.059 | 0.145 |
Residual | 12 | 3.911 | 0.326 | |||
Total | 19 | 7.266 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarkodee-Addo, E.; Yasuda, M.; Gyu Lee, C.; Kanasugi, M.; Fujii, Y.; Ansong Omari, R.; Oppong Abebrese, S.; Bam, R.; Asuming-Brempong, S.; Mohammad Golam Dastogeer, K.; et al. Arbuscular Mycorrhizal Fungi Associated with Rice (Oryza sativa L.) in Ghana: Effect of Regional Locations and Soil Factors on Diversity and Community Assembly. Agronomy 2020, 10, 559. https://doi.org/10.3390/agronomy10040559
Sarkodee-Addo E, Yasuda M, Gyu Lee C, Kanasugi M, Fujii Y, Ansong Omari R, Oppong Abebrese S, Bam R, Asuming-Brempong S, Mohammad Golam Dastogeer K, et al. Arbuscular Mycorrhizal Fungi Associated with Rice (Oryza sativa L.) in Ghana: Effect of Regional Locations and Soil Factors on Diversity and Community Assembly. Agronomy. 2020; 10(4):559. https://doi.org/10.3390/agronomy10040559
Chicago/Turabian StyleSarkodee-Addo, Elsie, Michiko Yasuda, Chol Gyu Lee, Makoto Kanasugi, Yoshiharu Fujii, Richard Ansong Omari, Samuel Oppong Abebrese, Ralph Bam, Stella Asuming-Brempong, Khondoker Mohammad Golam Dastogeer, and et al. 2020. "Arbuscular Mycorrhizal Fungi Associated with Rice (Oryza sativa L.) in Ghana: Effect of Regional Locations and Soil Factors on Diversity and Community Assembly" Agronomy 10, no. 4: 559. https://doi.org/10.3390/agronomy10040559