Environmental Application of Ash from Incinerated Biomass
Abstract
:1. Introduction
2. Materials and Methods
2.1. A Plant Growing Experiment
2.2. Laboratory Experiment
2.3. Methods of Chemical Analyses of Soils and Plants
2.4. Statistical Calculations
3. Results, Research and Discussion
4. Conclusion
Author Contributions
Funding
Conflicts of Interest
References
- GUS. Energy from Renewable Resources in 2017; Polish Main Statistical Office (GUS) Report of 2018; GUS: Warsaw, Poland, 2018. Available online: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/energia/energia-ze-zrodel-odnawialnych-w-2017-roku,10,1.html# (accessed on 10 November 2019).
- Baum, R.K.; Pepliński, B.; Wawrzynowicz, J. Potential for Agricultural Biomass Production for Energy Purposes in Poland: A Review. Contemp. Econ. 2013, 7, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Stolarski, M.J.; Niksa, D.; Krzyżaniak, M.; Tworkowski, J.; Szczukowski, S. Willow productivity from small- and large-scale experimental plantations in Poland from 2000 to 2017. Renew. Sustain. Energy Rev. 2019, 101, 461–475. [Google Scholar] [CrossRef]
- Rajamma, R.; Ball, R.; Tarelho, L.; Allen, G.; Labrincha, J.; Ferreira, V. Characterisation and use of biomass fly ash in cement-based materials. J. Hazard. Mater. 2009, 172, 1049–1060. [Google Scholar] [CrossRef] [PubMed]
- Schiemenz, K.; Kern, J.; Paulsen, H.-M.; Bachmann, S.; Eichler-Löbermann, B. Phosphorus fertilizing effects of biomass ashes. In Recycling of Biomass Ashes; Insam, H., Knapp, B.A., Eds.; Springer: Berlin, Germany, 2011; pp. 17–31. [Google Scholar]
- Uliasz-Bocheńczyk, A.; Mokrzycki, E. The elemental composition of biomass ashes as a preliminary assessment of the recovery potential. Miner. Resour. Manag. 2018, 34, 115–132. [Google Scholar] [CrossRef]
- Uliasz-Bocheńczyk, A.; Pawluk, A.; Sierka, J. Leaching of pollutants from fly ash from the combustion of biomass. Gospodarka Surowcami Mineralnymi Miner. Resour. Manag. 2015, 31, 145–156. (In Polish) [Google Scholar] [CrossRef] [Green Version]
- Pesonen, J.; Kuokkanen, T.; Rautio, P.; Lassi, U. Bioavailability of nutrients and harmful elements in ash fertilizers: Effect of granulation. Biomass Bioenergy 2017, 100, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Wacławowicz, R.; Pelczar, G.; Polak, J. Methods for testing ashes from biomass combustion in the aspect of their agricultural use. Przemysł Chemiczny 2017, 96, 2501–2504. (In Polish) [Google Scholar] [CrossRef]
- Bonanno, G.; Cirelli, G.L.; Toscano, A.; Lo Giudice, R.; Pavone, P. Heavy metal content in ash of energy crops growing in sewage-contaminated natural wetlands: Potential applications in agriculture and forestry? Sci. Total Environ. 2013, 452–453, 349–354. [Google Scholar] [CrossRef]
- Gómez-Rey, M.; Coutinho, M.; Coutinho, J. Wood ash effects on nutrient dynamics and soil properties under Mediterranean climate. Ann. For. Sci. 2012, 69, 569–579. [Google Scholar] [CrossRef]
- Füzesi, I.; Heil, B.; Kovács, G. Effects of Wood Ash on the Chemical Properties of Soil and Crop Vitality in Small Plot Experiments. Acta Silv. Lign. Hung. 2015, 11, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Saletnik, B.; Zaguła, G.; Bajcar, M.; Czernicka, M.; Puchalski, C. Biochar and Biomass Ash as a Soil Ameliorant: The Effect on Selected Soil Properties and Yield of Giant Miscanthus (Miscanthus x giganteus). Energies 2018, 11, 2535. [Google Scholar] [CrossRef] [Green Version]
- Wójcik, M.; Stachowicz, F.; Masłoń, A. The Use of Wood Biomass Ash in Sewage Sludge Treatment in Terms of Its Agricultural Utilization. Waste Biomass Valori. 2018. [Google Scholar] [CrossRef] [Green Version]
- Lanzerstorfer, C. Combustion of Miscanthus: Composition of the Ash by Particle Size. Energies 2019, 12, 178. [Google Scholar] [CrossRef] [Green Version]
- Zając, G.; Szyszlak-Bargłowicz, J.; Gołębiowski, W.; Szczepanik, M. Chemical Characteristics of Biomass Ashes. Energies 2018, 11, 2885. [Google Scholar] [CrossRef] [Green Version]
- Sumara, A.; Stankowski, S.; Gibczyńska, M.; Jurgiel-Małecka, G. Assessment of the use for fertilisation purposes incineration ash pellets using gasification burner Lester. Ecol. Eng. 2016, 50, 139–144. (In Polish) [Google Scholar] [CrossRef] [Green Version]
- Maresca, A.; Astrup, T. Leaching from biomass combustion ash. In Proceedings of the Venice 2014, Fifth International Symposium on Energy from Biomass and Waste, San Servolo, Venice, Italy, 17–20 November 2014; CISA Publisher: Padova, Italy, 2014. [Google Scholar]
- Pitman, R.M. Wood ash use in forestry–a review of the environmental impacts. Forestry 2006, 79, 563–588. [Google Scholar] [CrossRef] [Green Version]
- Introduction of Fertilizers on the Commercial Market. Available online: http://www.iung.pulawy.pl/index.php?option=com_content&view=article&id=99&Itemid=61 (accessed on 10 November 2019). (In Polish).
- Polskie Towarzystwo Gleboznawcze. Particle size distribution and textural classes of soils and mineral materials-classification of Polish Society of Soil Science 2008. Rocz. Glebozn. 2009, 60, 5–16. Available online: http://ssa.ptg.sggw.pl/files/artykuly/2009_60/2009_tom_60_2/tom_60_2_005-016.pdf (accessed on 10 November 2019). (In Polish).
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Methods of Analysis and Assessment of Soil and Plant Properties; Institute of Environmental Protection: Warsaw, Poland, 1991; 334p. (In Polish) [Google Scholar]
- Lindvall, E.; Gustavsson, A.-M.; Samuelsson, R.; Magnusson, T.; Palmborg, C. Ash as a phosphorus fertilizer to reed canary grass: Effects of nutrient and heavy metal composition on plant and soil. Glob. Chang. Biol. Bioenergy 2015, 7, 553–564. [Google Scholar] [CrossRef]
- Li, X.; Rubæk, G.H.; Sørensen, P. High plant availability of phosphorus and low availability of cadmium in four biomass combustion ashes. Sci. Total Environ. 2016, 557–558, 851–860. [Google Scholar] [CrossRef]
- Wierzbowska, J.; Sienkiewicz, S.; Sternik, P.; Busse, M.K. Using Ash from Incineration of Municipal Sewage Sludge to Fertilize Virginia Fanpetals. Ecol. Chem. Eng. A 2015, 22, 497–507. [Google Scholar] [CrossRef]
- Saletnik, B.; Bajcar, M.; Zaguła, G.; Czernicka, M.; Puchalski, C. Influence of biochar and biomass ash applied as soil amendment on germination rate of Virginia mallow seeds (Sida hermaphrodita R.). Econtechmod Int. Q. J. 2016, 5, 71–76. [Google Scholar]
- Fertilisation Recommendations. Threshold Amounts for Assessment of Soil Content of Macro- and Micronutrients; Series P44; Publishing House IUNG: Pulawy, Poland, 1990; 26p. (In Polish) [Google Scholar]
- Saletnik, B.; Puchalsk, C. Suitability of Biochar and Biomass Ash in Basket Willow (Salix Viminalis L.) Cultivation. Agronomy 2019, 9, 577. [Google Scholar] [CrossRef] [Green Version]
- Piekarczyk, M.; Kotwica, K.; Jaskulski, D. The elemental composition of ash from straw and hay in the context of their agricultural utilization. Acta Sci. Pol. Agric. 2011, 10, 97–104. [Google Scholar]
- Wacławowicz, R. The effect of ashes from biomass combustion on infection of spring wheat by Gaeumannomyces graminis. Prog. Plant Prot. 2012, 52, 397–400. [Google Scholar]
- Cruz-Paredes, C.; López-García, Á.; Rubæk, G.H.; Hovmand, M.F.; Sørensen, P.; Kjøller, R. Risk assessment of replacing conventional P fertilizers with biomass ash: Residual effects on plant yield, nutrition, cadmium accumulation and mycorrhizal status. Sci. Total Environ. 2017, 575, 1168–1176. [Google Scholar] [CrossRef]
- Quirantes, M.; Calvo, F.; Romero, E.; Nogales, R. Soil-nutrient availability affected by different biomass-ash applications. J. Soil Sci. Plant Nutr. 2016, 16, 159–163. [Google Scholar] [CrossRef] [Green Version]
- Schiemenz, K.; Eichler-Löbermann, B. Biomass ashes and their phosphorus fertilizing effect on different crops. Nutr. Cycl. Agroecosyst. 2010, 87, 471–482. [Google Scholar] [CrossRef] [Green Version]
- Piekarczyk, M. Effect of winter wheat straw ash on the some macro- and microelements available forms content in light soil. Fragm. Agron. 2013, 30, 92–98. (In Polish) [Google Scholar]
- Karps, O.; Aboltins, A.; Palabinskis, J. Biomass ash utilization opportunities in agriculture. In Proceedings of the 8 th International Scientific Conference Rural Development, Kaunas, Lithuania, 23–25 November 2017; Raupelienė, A., Ed.; Aleksandras Stulginskis University: Kaunas, Lithuania, 2017; pp. 193–198. [Google Scholar] [CrossRef] [Green Version]
- Ochecova, P.; Tlustos, P.; Szakova, J. Wheat and Soil Response to Wood Fly Ash Application in Contaminated Soils. Agron. J. 2014, 106, 995–1002. [Google Scholar] [CrossRef] [Green Version]
- Łapiński, D.; Wiater, J.; Szatyłowicz, E. The Content of Heavy Metals in Waste as an Indicator Determining the Possibilities of Their Agricultural Use. J. Ecol. Eng. 2019, 20, 225–230. [Google Scholar] [CrossRef]
Alkalinity % CaO | P | K | Mg | Ca | Cu | Zn | Mn | Fe | Ni | Cd * | Pb * | Cr |
---|---|---|---|---|---|---|---|---|---|---|---|---|
[g kg−1] | [mg kg−1] | |||||||||||
Ash from energy willow | ||||||||||||
21.40 ± 0.81 | 33.06 ± 1.82 | 65.97 ± 2.85 | 12.43 ± 0.60 | 226.56 ± 12.91 | 0.73 ± 0.02 | 1.65 ± 0.03 | 1.67 ± 0.05 | 7.70 ± 0.50 | 0.21 ± 0.02 | 0.05 ± 0.01 | 2.84 ± 0.05 | 0.60 ± 0.03 |
Ash from Pennsylvania fanpetals | ||||||||||||
37.80 ± 1.55 | 16.67 ± 1.02 | 43.37 ± 1.39 | 10.68 ± 0.66 | 305.76 ± 17.58 | 0.67 ± 0.02 | 2.42 ± 0.04 | 1.33 ± 0.02 | 1.51 ± 0.02 | 0.21 ± 0.01 | 0.07 ± 0.02 | 3.06 ± 0.08 | 0.51 ± 0.04 |
Specification | K | P | Mg | Ca | ||
---|---|---|---|---|---|---|
[g Per Pot] | ||||||
Control (without fertilisation) | − | − | − | − | ||
Only N | − | − | − | − | ||
Ash from energy willow (AEW) | D I | ash + N | 0.30 | 0.16 | 0.06 | 1.15 |
NPKMgCa | 0.30 | 0.16 | 0.06 | 1.15 | ||
D II | ash + N | 0.60 | 0.33 | 0.11 | 2.31 | |
NPKMgCa | 0.60 | 0.33 | 0.11 | 2.31 | ||
D III | ash + N | 0.90 | 0.50 | 0.17 | 3.46 | |
NPKMgCa | 0.90 | 0.50 | 0.17 | 3.46 | ||
Ash from Pennsylvania fanpetals (APF) | D I | ash + N | 0.30 | 0.14 | 0.07 | 2.60 |
NPKMgCa | 0.30 | 0.14 | 0.07 | 2.60 | ||
D II | ash + N | 0.60 | 0.28 | 0.15 | 5.20 | |
NPKMgCa | 0.60 | 0.28 | 0.15 | 5.20 | ||
D III | ash + N | 0.90 | 0.42 | 0.22 | 7.79 | |
NPKMgCa | 0.90 | 0.42 | 0.22 | 7.79 |
Agronomic Category of Soil * | Textural Classes * | pH | Hh [mmol(+) kg−1] | |
---|---|---|---|---|
H2O | 1 mol dm3 KCl | |||
Very light | sand clay fraction (<0.002 mm)–0.4% silt fraction (0.002–0.05 mm)–10.6% sand fraction (0.05–2.0 mm)–89.0% | 5.90 | 5.58 | 22.5 |
Light | loamy sand clay fraction (<0.002 mm)–1.6% silt fraction (0.002–0.05 mm)–19.5% sand fraction (0.05–2.0 mm)–78.9% | 6.12 | 5.86 | 22.8 |
Medium | sandy loam clay fraction (<0.002 mm)–3.9% silt fraction (0.002–0.05 mm)–36.8% sand fraction (0.05–2.0 mm)–59.3% | 5.85 | 5.14 | 28.1 |
Value of Determination | The Content of Heavy Metals in Sewage Sludge 4 | ||||||
---|---|---|---|---|---|---|---|
Cu | Pb | Ni | Cr | Zn | Mn | Fe | |
Certified value [mg kg−1 d.m.] | 482 ± 50.4 | 154 ± 12.4 | 163 ± 13.5 | 289 ± 30.4 | 1240 ± 181 | 693 ± 108 | 20,100 ± 4390 |
Determination value [mg kg−1 d.m.] | 455.5 | 153.2 | 160.8 | 280.9 | 1075.6 | 615.2 | 22,398 |
Precision of determination [%] | 94.5 | 99.5 | 98.7 | 97.2 | 86.7 | 88.8 | 111.4 |
Specification | Fresh Matter | Dry Matter | Content of Dry Matter | ||||
---|---|---|---|---|---|---|---|
AEW | AFP | AEW | AFP | AEW | AFP | ||
g per pot | % | ||||||
Control | 43.6 a * | 20.0 a | 47.9 a | ||||
Only N | 121.7 b | 62.4 b | 51.4 c | ||||
D I | ash + N | 132.0 b | 128.3 b | 64.2 b | 64.5 b | 49.1 ab | 50.4 bc |
NPKMgCa | 138.0 b | 130.0 b | 68.4 b | 67.1 b | 50.1 bc | 51.4 c | |
D II | ash + N | 139.8 b | 132.2 b | 71.0 b | 64.5 b | 50.7 bc | 49.3 a–c |
NPKMgCa | 137.9 b | 137.7 b | 68.2 b | 71.0 b | 49.5 a–c | 51.4 c | |
D III | ash + N | 138.8 b | 138.5 b | 69.9 b | 67.5 b | 50.5 bc | 49.0 ab |
NPKMgCa | 142.6 b | 136.1 b | 72.4 b | 68.7 b | 50.6 bc | 50.8 bc | |
Average for ash type | 136.9 A | 133.0 A | 68.4 A | 65.5 A | 50.1 A | 49.6 A |
Specification | N | P | K | Ca | Mg | Na | |
---|---|---|---|---|---|---|---|
g kg−1 d.m. | |||||||
Control | 4.79 a * | 1.92 a | 5.34 a | 4.16 a | 0.59 a | 0.92 d | |
Only N | 6.33 b | 1.94 a | 5.83 a | 4.68 b | 0.59 a | 0.85 b–d | |
Ash from energy willow (AEW) | |||||||
D I | ash + N | 6.46 b | 2.08 a | 6.52 ab | 4.66 b | 0.56 a | 0.58 a |
NPKMgCa | 6.42 b | 2.08 a | 6.34 ab | 4.36 ab | 0.54 a | 0.63 a | |
D II | ash + N | 6.31 b | 2.27 b | 6.73 ab | 3.98 a | 0.55 a | 0.70 ab |
NPKMgCa | 6.17 b | 2.20 ab | 6.80 ab | 4.06 a | 0.55 a | 0.72 a–c | |
D III | ash + N | 6.28 b | 2.38 b | 7.07 b | 4.56 b | 0.58 a | 0.84 b–d |
NPKMgCa | 6.52 b | 2.27 b | 7.25 b | 4.47 ab | 0.62 a | 0.97 d | |
Ash from Pennsylvania fanpetals (APF) | |||||||
D I | ash + N | 6.50 b | 2.06 a | 6.09 ab | 4.07 a | 0.56 a | 0.86 b–d |
NPKMgCa | 6.67 b | 2.08 a | 6.07 ab | 4.02 a | 0.56 a | 0.88 cd | |
D II | ash + N | 6.63 b | 2.15 ab | 6.46 ab | 4.35 ab | 0.59 a | 0.92 d |
NPKMgCa | 6.63 b | 2.16 ab | 6.45 ab | 4.49 ab | 0.60 a | 0.92 d | |
D III | Ash + N | 6.70 b | 2.26 b | 7.03 b | 4.61 b | 0.61 a | 0.95 d |
NPKMgCa | 6.82 b | 2.26 b | 7.17 b | 4.89 b | 0.62 a | 1.12 e | |
Average for ash type | |||||||
AEW | 6.35 A | 2.27 A | 7.03 A | 4.49 A | 0.56 A | 0.71 A | |
AFP | 6.64 A | 2.43 A | 6.97 A | 4.36 A | 0.59 A | 0.91 B |
Specification | Dose | Hh [mmol(+)∙kg−1] | Available Macronutrients [mg kg−1] | ||
---|---|---|---|---|---|
P | K | Mg | |||
Very light soil | |||||
Control | 0 | 22.5 f * | 52.2 b | 70.8 d | 43.6 a |
Ash from energy willow (AEW) | 0.25 Hh | 17.2 c | 79.4 a | 91.0 ab | 59.2 a |
0.50 Hh | 16.5 ab | 107.8 e | 100.0 c | 63.0 a | |
1.00 Hh | 11.2 d | 154.6 f | 191.3 f | 66.1 a | |
Ash from Pennsylvania fanpetals (APF) | 0.25 Hh | 19.5 e | 62.3 c | 78.1 e | 48.8 a |
0.50 Hh | 15.0 ab | 77.1 a | 87.9 a | 49.0 a | |
1.00 Hh | 14.2 a | 101.9 d | 96.3 bc | 48.4 a | |
Light soil | |||||
Control | 0 | 30.7 d | 11.7 a | 65.4 b | 58.7 c |
Ash from energy willow (AEW) | 0.25 Hh | 23.2 a | 32.8 c | 91.5 b | 63.2 a |
0.50 Hh | 24.0 a | 51.2 e | 166.7 f | 68.9 d | |
1.00 Hh | 14.2 b | 83.3 f | 197.4 e | 78.5 f | |
Ash from Pennsylvania fanpetals (APF) | 0.25 Hh | 24.7 a | 15.4 a | 72.5 c | 63.9 ab |
0.50 Hh | 27.0 c | 24.9 b | 82.3 d | 74.1 e | |
1.00 Hh | 15.0 b | 41.4 d | 94.1 b | 66.3 b | |
Medium soil | |||||
Control | 0 | 33.7 f | 24.6 a | 137.7 a | 105.1 c |
Ash from energy willow (AEW) | 0.25 Hh | 26.2 a | 51.9 d | 126.1 a | 111.4 a |
0.50 Hh | 19.5 d | 76.3 f | 206.5 b | 118.6 d | |
1.00 Hh | 12.0 b | 130.9 h | 208.4 b | 127.6 e | |
Ash from Pennsylvania fanpetals (APF) | 0.25 Hh | 29.2 e | 32.5 b | 134.6 a | 114.5 b |
0.50 Hh | 26.2 a | 38.0 c | 133.7 a | 116.0 b | |
1.00 Hh | 15.0 c | 64.3 e | 156.0 a | 109.5 a | |
Average for ash type | |||||
Ash from energy willow (AEW) | 20.7 A | 85.4 B | 153.2 B | 84.1 A | |
Ash from Pennsylvania fanpetals (APF) | 18.3 A | 50.9 A | 104.0 A | 76.7 A |
Specification | Dose | Cu | Mn | Zn | Fe | Cr | Ni | Pb |
---|---|---|---|---|---|---|---|---|
mg kg−1 | ||||||||
Very light soil | ||||||||
Control | 0 | 3.71 a * | 85.9 ab | 5.64 bc | 557 a | 0.33 ac | 0.41 b | 3.50 c |
Ash from energy willow (AFW) | 0.25 Hh | 3.70 a | 82.5 ab | 5.41 a–c | 594 bc | 0.46 ab | 0.32 ab | 4.66 a |
0.50 Hh | 3.70 a | 94.9 b | 6.13 c | 605 c | 0.42 a–c | 0.19 ac | 4.55 ab | |
1.00 Hh | 4.07 c | 85.1 ab | 6.03 c | 579 a–c | 0.61 b | 0.34 ab | 4.78 a | |
Ash from Pennsylvania fanpetals (APF) | 0.25 Hh | 3.43 b | 86.7 ab | 4.32 a | 568 ab | 0.49 ab | 0.34 ab | 3.21 c |
0.50 Hh | 3.69 a | 69.5 c | 4.75 ab | 557 a | 0.17 c | 0.11 c | 4.37 ab | |
1.00 Hh | 3.71 a | 83.7 ab | 4.71 ab | 586 a–c | 0.58 ab | 0.33 ab | 4.20 b | |
Light soil | ||||||||
Control | 0 | 3.84 a | 61.9 b | 5.15 b | 514 a | 0.16 c | 0.16 a | 4.17 ab |
Ash from energy willow (AFW) | 0.25 Hh | 3.94 a | 76.2 ac | 4.08 a | 548 ab | 0.31 b | 0.19 a | 4.22 a |
0.50 Hh | 4.18 b | 66.3 ab | 4.33 a | 517 a | 0.33 b | 0.39 b | 4.25 a | |
1.00 Hh | 4.68 c | 77.8 a | 5.10 b | 600 b | 0.30 b | 0.28 ab | 4.55 a | |
Ash from Pennsylvania fanpetals (APF) | 0.25 Hh | 3.88 a | 60.8 b | 3.75 a | 506 a | 0.19 ac | 0.26 ab | 4.46 b |
0.50 Hh | 3.94 a | 77.5 a | 3.82 a | 564 ab | 0.24 a | 0.20 a | 3.73 a | |
1.00 Hh | 4.13 b | 82.1 a | 3.96 a | 583.8 b | 0.24 a | 0.21 a | 4.22 a | |
Medium soil | ||||||||
Control | 0 | 8.02 a | 72.8 a–c | 5.53 ab | 1142 b | 0.71 b | 1.09 a | 5.57 a |
Ash from energy willow (AFW) | 0.25 Hh | 7.62 b | 63.2 c | 4.95 acd | 998 c | 0.51 a | 1.04 a | 4.92 ab |
0.50 Hh | 7.87 ab | 75.1 ab | 5.34 abd | 1059 a–c | 0.54 a | 1.02 a | 4.95 ab | |
1.00 Hh | 8.10 a | 80.0 a | 5.93 b | 1066 a–c | 0.51 a | 0.70 b | 4.87 ab | |
Ash from Pennsylvania fanpetals (APF) | 0.25 Hh | 8.87 c | 67.8 bc | 5.54 ab | 1031 ac | 0.80 b | 0.90 ab | 5.39 a |
0.50 Hh | 8.11 a | 82.4 a | 4.71 cd | 1108 ab | 0.78 b | 0.97 a | 4.08 b | |
1.00 Hh | 7.99 a | 74.1 ab | 4.63 c | 1111 ab | 0.46 a | 1.09 a | 5.17 a | |
Average for ash type | ||||||||
Ash from energy willow (AFW) | 5.32 a | 77.9 a | 5.26 b | 735 a | 0.44 a | 0.50 a | 4.64 b | |
Ash from Pennsylvania fanpetals (APF) | 5.31 a | 76.1 a | 4.47 a | 729 a | 0.44 a | 0.49 a | 4.31 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wierzbowska, J.; Sienkiewicz, S.; Żarczyński, P.; Krzebietke, S. Environmental Application of Ash from Incinerated Biomass. Agronomy 2020, 10, 482. https://doi.org/10.3390/agronomy10040482
Wierzbowska J, Sienkiewicz S, Żarczyński P, Krzebietke S. Environmental Application of Ash from Incinerated Biomass. Agronomy. 2020; 10(4):482. https://doi.org/10.3390/agronomy10040482
Chicago/Turabian StyleWierzbowska, Jadwiga, Stanislaw Sienkiewicz, Piotr Żarczyński, and Sławomir Krzebietke. 2020. "Environmental Application of Ash from Incinerated Biomass" Agronomy 10, no. 4: 482. https://doi.org/10.3390/agronomy10040482
APA StyleWierzbowska, J., Sienkiewicz, S., Żarczyński, P., & Krzebietke, S. (2020). Environmental Application of Ash from Incinerated Biomass. Agronomy, 10(4), 482. https://doi.org/10.3390/agronomy10040482