Teosinte (Dioon mejiae) Flour: Nutritional and Physicochemical Characterization of the Seed Flour of the Living Fossil in Honduras
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Proximate Analysis
2.3. Determination of Free Sugars
2.4. Determination of Fatty Acid Profile
2.5. Determination of Amino Acid Profile
2.6. Minerals
2.7. Determination of Dietary Fiber
2.8. Starch, Resistant Starch, Amylose, and Amylopectin
2.9. Scanning Electron Microscopy (SEM)
2.10. Differential Scanning Calorimetry (DSC)
2.11. pH
2.12. Titratable Acidity
2.13. Water Activity (aw)
2.14. Statistical Analysis
3. Results and Discussion
3.1. Chemical and Nutritional Composition
3.2. Fatty Acid Profile
3.3. Amino Acid Profile
3.4. Mineral Content
3.5. Teosinte Flour and Starch Morphology by Scanning Electron Microscopy (SEM)
3.6. Teosinte Flour and Starch Gelatinization Thermal Properties
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Standley, P.C.; Williams, L.O. Dioon Mejiae, a new cycad from Honduras. Ceiba 1950, 1, 36–38. [Google Scholar]
- Bonta, M.; Flores-Pinot, O.; Graham, D.; Haynes, J.; Sandoval, G. Ethnobotany and conservation of tiusinte (Dioon mejiae Standley & Williams, Zamiaceae) in northeastern Honduras. J. Ethnobiol. 2006, 26, 228–257. [Google Scholar]
- Haynes, J.; Bonta, M. Cícadas de Honduras. Informe Final de la Expedición; Miami, Montgomery Botanical Center: Florida, FL, USA, 2003. [Google Scholar]
- AOAC. Official Methods of Analyses of the Association of Analytical Chemists, 18th ed.; AOAC: Washington, DC, USA, 2005. [Google Scholar]
- Espitia-Pérez, P.J.; Pardo-Plaza, Y.J.; Montalvo-Puente, A.P. Proximate analysis characteristics of flours obtained from Papocho and Pelipita plantains (Musa ABB Simmonds). Acta Agron. 2013, 62, 189–195. [Google Scholar]
- Watt, B.; Merrill, A.L. Composition of Foods: Raw, Processed, and Prepared; Consumer and Food Economics Research Division/Agricultural: Washington, DC, USA, 1963. [Google Scholar]
- Doughty, E. Separation of acids, carbohydrates and fermentation products by HPLC. Lebensmittel-Und Biotechnol. 1995, 12, 100–101. [Google Scholar]
- Bligh, E.G.; Dyer, W.J. A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Hartman, L.; Lago, R. Rapid preparation of fat acids methil esters from lipids. Lab. Pract. 1973, 22, 475–476. [Google Scholar]
- Cohen, S.A.; Meys, M.; Tarvin, T.L. The Pico Tag Method. A Manual of Advanced Techniques for Amino Acid Analysis. Waters; Chromatography Millipore Corp: Milford, MA, USA, 1988. [Google Scholar]
- AOAC. Official Methods of Analyses of the Association of Analytical Chemists, 19th ed.; AOAC: Washington, DC, USA, 2012. [Google Scholar]
- AOAC. Official Methods of Analyses of the Association of Analytical Chemists, 17th ed.; AOAC: Washington, DC, USA, 2012. [Google Scholar]
- Benítez, V.; Mollá, E.; Martín-Cabrejas, M.A.; Aguilera, Y.; López-Andréu, F.J.; Terry, L.A.; Esteban, R.M. The impact of pasteurisation and sterilisation on bioactive compounds of onion by-products. Food Bioproc. Technol. 2013, 6, 1979–1989. [Google Scholar] [CrossRef]
- Lucas, J.C.; Quintero, V.D.; Cárdenas Valencia, C.A. Caracterización de harina y almidón obtenidos a partir de plátano guineo AAAea (Musa sapientum L.). Acta Agron. 2013, 62, 83–96. [Google Scholar]
- AOAC. Official Methods of Analysis. Association of Official Analytical Chemists, Method 2002.02.; AOAC: Washington, DC, USA, 2002. [Google Scholar]
- AACC. Approved Methods of the AACC; American Association of Cereal Chemist: St. Paul, MN, USA, 2002. [Google Scholar]
- Aghamirzaei, M.; Heydari-Dalfard, A.; Karami, F.; Fathi, M. Pseudo-cereals as a functional ingredient: effects on bread nutritional and physiological properties- Review. Int. J. Agric. Crop Sci. 2013, 4, 1574–1580. [Google Scholar]
- Techeira, N.; Sívoli, L.; Perdomo, B.; Ramírez, A.; Sosa, F. Caracterización fisicoquímica, funcional y nutricional de harinas crudas obtenidas a partir de diferentes variedades de yuca (Manihot esculenta crantz), batata (Ipomoea batatas lam) y ñame (Dioscorea alata), cultivadas en Venezuela. Interciencia 2014, 39, 191–197. [Google Scholar]
- Punia, S.; Sandhu, K.S.; Siroha, A.K. Difference in protein content of wheat (Triticum aestivum L.): Effect on functional, pasting, color and antioxidant properties. J. Saudi Soc. Agric. Sci. 2017, 18, 378–384. [Google Scholar] [CrossRef]
- De Gusmão, R.P.; Cavalcanti-Mata, M.E.R.M.; Duarte, M.E.M.; Gusmão, T.A.S. Particle size, morphological, rheological, physicochemical characterization and designation of minerals in mesquite flour (Proposis julifrora). J. Cereal Sci. 2016, 69, 119–124. [Google Scholar] [CrossRef]
- Srichuwong, S.; Curti, D.; Austin, S.; King, R.; Lamothe, L.; Gloria-Hernandez, H. Physicochemical properties and starch digestibility of whole grain sorghums, millet, quinoa and amaranth flours, as affected by starch and non-starch constituents. Food Chem. 2017, 233, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann-Sardá, F.A.; de Lima, F.N.R.; Lopes, N.T.T.; de Santos, A.O.; de Tobaruela, E.C.; Kato, E.T.M.; Menezes, E.W. Identification of carbohydrate parameters in commercial unripe banana flour. Food Res. Int. 2016, 81, 203–209. [Google Scholar] [CrossRef]
- Kraithong, S.; Lee, S.; Rawdkuen, S. Physicochemical and functional properties of Thai organic rice flour. J. Cereal Sci. 2018, 79, 259–266. [Google Scholar] [CrossRef]
- Zhu, L.J.; Liu, Q.Q.; Wilson, J.D.; Gu, M.H.; Shi, Y.C. Digestibility and physicochemical properties of rice (Oryza sativa L.) flours and starches differing in amylose content. Carbohyd. Polym. 2011, 86, 1751–1759. [Google Scholar] [CrossRef]
- Zúñiga, R. Trigo Blanco, Valor Nutricional y Potencial (No. SB191. W5-Z8t); Instituto de Investigaciones Agropecuarias: Chillán, Chile, 2007. [Google Scholar]
- Hager, A.S.; Wolter, A.; Jacob, F.; Zannini, E.; Arendt, E.K. Nutritional properties and ultra-structure of commercial gluten free flours from different botanical sources compared to wheat flours. J. Cereal Sci. 2012, 56, 239–247. [Google Scholar] [CrossRef]
- Pellegrini, M.; Lucas-Gonzales, R.; Ricci, A.; Fontecha, J.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Chemical, fatty acid, polyphenolic profile, techno-functional and antioxidant properties of flours obtained from quinoa (Chenopodium quinoa Willd) seeds. Ind. Crops Prod. 2018, 111, 38–46. [Google Scholar] [CrossRef]
- Aguilar, P.V.; Villalobos, D.H. Harinas y almidones de yuca, ñame, camote y ñampí: propiedades funcionales y posibles aplicaciones en la industria alimentaria. Tec. Marcha 2013, 26, 37–45. [Google Scholar]
- Fox, B.A.; Cameron, A.G. Carbohidratos. Ciencia de los Alimentos, Nutrición y Salud; Limusa, S.A., Ed.; LIMUSA: Ciudad de México, Mexico, 1997. [Google Scholar]
- Bello-Perez, L.A.; Paredes-López, O. Starches of some food crops, changes during processing and their nutraceutical potential. Food Eng. Rev. 2009, 1, 50–65. [Google Scholar] [CrossRef]
- Bello-Perez, L.A.; Gonzalez-Soto, R.A.; Sanchez-Rivero, M.M.; Gutierrez-Meraz, F.; Vargas-Torres, A. Extrusion of starches from non-conventional sources for resistant starch production. Agrociencia 2006, 40, 441–448. [Google Scholar]
- Morales-Medina, R.; del Mar Muñío, M.; Guadix, E.M.; Guadix, A. Production of resistant starch by enzymatic debranching in legume flours. Carbohydr. Polym. 2014, 101, 1176–1183. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Zaragoza, E.; Riquelme-Navarrete, M.J.; Sánchez-Zapata, E.; Pérez-Álvarez, J.A. Resistant starch as functional ingredient: A review. Food Res. Int. 2010, 43, 931–942. [Google Scholar] [CrossRef]
- Raigond, P.; Ezekiel, R.; Raigond, B. Resistant starch in food: A review. J. Sci. Food Agric. 2015, 95, 1968–1978. [Google Scholar] [CrossRef] [PubMed]
- Sciammaro, L.; Ferrero, C.; Puppo, C. Physicochemical and nutritional characterization of sweet snacks formulated with Prosopis alba flour. LWT-Food Sci. Tech. 2018, 93, 24–31. [Google Scholar] [CrossRef]
- MINSAL. Reglamento Sanitario de los Alimentos-Ministerio de Salud. Gobierno de Chile. 2015. Available online: http://web.minsal.cl/reglamento-sanitario-de-los-alimentos/ (accessed on 1 March 2020).
- Rached, L.B.; De Vizcarrondo, C.A.; Rincón, A.M.; Padilla, F. Evaluación de harinas y almidones de mapuey (Dioscorea trifida), variedades blanco y morado. Ar. Latinoam. Nutric. 2006, 56, 375–383. [Google Scholar]
- Ballesteros-Vásquez, M.N.; Valenzuela-Calvillo, L.S.; Artalejo-Ochoa, E.; Robles-Sardin, A.E. Ácidos grasos trans: Un análisis del efecto de su consumo en la salud humana, regulación del contenido en alimentos y alternativas para disminuirlos. Nutric. Hospital. 2012, 27, 54–64. [Google Scholar]
- Saini, R.K.; Keum, Y.S. Omega-3 and omega-6 polyunsaturated fatty acids: Dietary sources, metabolismo, and significance-A review. Life Sci. 2018, 203, 255–267. [Google Scholar] [CrossRef]
- Simopoulos, A.P. Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed. Pharmacother. 2006, 60, 502–507. [Google Scholar] [CrossRef]
- Calder, P.C. Mechanisms of Action of (n-3) Fatty Acids, 2. J. Nutr. 2012, 142, 592S–599S. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C. Omega-3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? Br. J. Clin. Pharmacol. 2013, 75, 645–662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gopalan, C.; Ramasatri, B.; Balasubramanian, S.C. Nutritive Value of Indian Food Hyderabad; National Institute of Nutrition, Indian Council for Medical Research: New Delhi, India, 1976. [Google Scholar]
- Shobana, S.; Krishnaswamy, K.; Sudha, V.; Malleshi, N.G.; Anjana, R.M.; Palaniappan, L.; Mohan, V. Finger millet (Ragi, Eleusine coracana L.): A review of its nutritional properties, processing, and plausible health benefits. In Advances in Food and Nutrition Research; Academic Press: Cambridgeshire, Cambridge, UK, 2013; Volume 69, pp. 1–39. [Google Scholar]
- World Health Organization (WHO). Protein and Amino Acid Requirements in Human Nutrition. Technical Report Series 935; Report of a Joint WHO/FAO/UNU Expert Consultation; United Nations University: Ginebra, Switzerland, 2007. [Google Scholar]
- Brito, A.L.B.; Oliveira, A.F.; Nogueira, A.R.A.; Pessoa, A.G.G.; Pontes, L.F.B.L. Determination of inorganic constituents and physicochemical characterization of functional flour samples. Microchem. J. 2017, 132, 112–118. [Google Scholar] [CrossRef] [Green Version]
- Rybicka, I.; Gliszczyńska-Świgło, A. Minerals in grain gluten-free products. The content of calcium, potassium, magnesium, sodium, copper, iron, manganese, and zinc. J. Food Compos. Anal. 2017, 59, 61–67. [Google Scholar] [CrossRef]
- Delpeuch, F.; Favier, J.C. Characteristics of starches from tropical food plants: alpha-amylase hydrolysis, swelling and solubility patterns. Annal. Technol. Agric. 1980, 29, 53–67. [Google Scholar]
- Ratnayake, W.S.; Jackson, D.S. Starch gelatinization. Adv. Food Nutr. Res. 2008, 55, 221–268. [Google Scholar]
- Kaur, M.; Singh, N.; Sandhu, K.S.; Guraya, H.S. Physicochemical, morphological, thermal and rheological properties of starches separated from kernels of some Indian mango cultivars (Mangifera indica L.). Food Chem. 2004, 85, 131–140. [Google Scholar] [CrossRef]
- Osundahunsi, O.F.; Fagbemi, T.N.; Kesselman, E.; Shimoni, E. Comparison of the physicochemical properties and pasting characteristics of flour and starch from red and white sweet potato cultivars. J. Agric. Food Chem. 2003, 51, 2232–2236. [Google Scholar] [CrossRef]
- Pineda–Gómez, P.; Coral, D.F.; Ramos-Rivera, D.; Rosales Rivera, A. Estudio de las propiedades térmicas de harinas de maíz producidas por tratamiento térmico-alcalino. Ing. Cien. 2011, 7, 119–142. [Google Scholar]
- Roman, L.; Gomez, M.; Li, C.; Hamaker, B.R.; Martinez, M.M. Biophysical features of cereal endosperm that decrease starch digestibility. Carbohydr. Polym. 2017, 165, 180–188. [Google Scholar] [CrossRef] [Green Version]
- Menegassi, B.; Pilosof, A.M.; Arêas, J.A. Comparison of properties of native and extruded amaranth (Amaranthus cruentus L. –BRS Alegria) flour. LWT-Food Sci. Technol. 2011, 44, 1915–1921. [Google Scholar] [CrossRef]
Parameters | g/100 g |
---|---|
Moisture | 13.11 ± 0.20 |
Ash | 1.56 ± 0.03 |
Proteins * | 9.67 ± 0.08 |
Fat | 1.16 ± 0.23 |
Total dietary fiber | 6.24 ± 0.32 |
Soluble dietary fiber | 1.47 ± 0.16 |
Insoluble dietary fiber | 4.77 ± 0.19 |
Total carbohydrates ** | 68.26 ± 0.45 |
Total starch | 67.90 ± 0.68 |
Free sugars | 0.36 ± 0.01 |
Glucose | 0.12 ± 0.01 |
Fructose | 0.24 ± 0.01 |
Energy (Kcal/100 g) | 343.68 |
Component | g/100 g Starch |
---|---|
Amylose | 30.61 ± 1.13 |
Amylopectin | 69.39 ± 1.13 |
Resistant starch | 52.47 ± 0.83 |
Parameter | |
---|---|
Water activity (aw) | 0.59 ± 0.00 |
Acidity index (%) | 0.10 ± 0.00 |
Fatty Acids | g/100 g |
---|---|
C4:0 | 0.02 ± 0.01 |
C6:0 | 0.01 ± 0.00 |
C8:0 | 0.03 ± 0.01 |
C11:0 | 0.03 ± 0.00 |
C12:0 | 0.02 ± 0.00 |
C12:0 | 0.17 ± 0.01 |
C15:0 | 0.05 ± 0.00 |
C16:0 | 21.91 ± 0.14 |
C16:1 | 0.84 ± 0.00 |
C17:0 | 0.24 ± 0.00 |
C18:0 | 5.43 ± 0.03 |
C18:1-trans (n-9) | 0.06 ± 0.00 |
C18:1-cis (n-9) | 47.16 ± 0.06 |
C18:2-trans (n-6) | 0.08 ± 0.00 |
C18:2-cis (n-6) | 14.95 ± 0.04 |
C20:0 | 1.42 ± 0.01 |
C20:1 | 0.51 ± 0.06 |
Cla2 | 0.36 ± 0.00 |
Cla3 | 0.29 ± 0.00 |
C20:2 | 0.79 ± 0.01 |
C22:0 | 2.35 ± 0.02 |
C22:1n-9 | 0.10 ± 0.01 |
C23:0 | 0.14 ± 0.00 |
C20:5n-3 | 0.46 ± 0.01 |
C24:0 | 0.14 ± 0.01 |
∑SFA * | 31.99 ± 0.10 |
∑MUFA ** | 48.70 ± 0.11 |
∑PUFA *** | 16.95 ± 0.03 |
∑ ω-3 | 0.46 ± 0.01 |
∑ ω-6 | 14.95 ± 0.04 |
n-6/n-3 | 32.5 |
∑CLA | 0.65 ± 0.01 |
∑ MUFA + PUFA | 65.64 ± 0.09 |
Amino Acid | g/100 g |
---|---|
Lysine | 0.51 ± 0.03 |
Phenylalanine | 0.71 ± 0.02 |
Tyrosine | 0.73 ± 0.02 |
Methionine | 0.08 ± 0.01 |
Cystine | ND * |
Threonine | 0.48 ± 0.01 |
Leucine | 1.37 ± 0.04 |
Isoleucine | 0.49 ± 0.01 |
Valine | 0.51 ± 0.01 |
Aspartic acid | 0.57 ± 0.03 |
Glutamic acid | 1.28 ± 0.06 |
Serine | 0.43 ± 0.01 |
Histidine | 0.18 ± 0.02 |
Arginine | 0.62 ± 0.01 |
Alanine | 0.44 ± 0.00 |
Proline | 0.81 ± 0.01 |
Glycine | 0.43 ± 0.02 |
∑Total | 9.63 ± 0.33 |
Mineral | Content (mg/100 g) |
---|---|
Iron (Fe) | 6.85 ± 0.63 |
Zinc (Zn) | 1.46 ± 0.13 |
Calcium (Ca) | 14.86 ± 1.86 |
Sodium (Na) | 0.86 ± 0.07 |
Phosphorus (P) | 241 ± 0.01 |
T0 (°C) | Tp (°C) | Tc (°C) | ΔH (J/g) | ΔT (Tc-T0) | |
---|---|---|---|---|---|
Flour | 77.92 ± 0.35 | 82.28 ± 0.72 | 87.13 ± 0.91 | 1.37 ± 0.25 | 9.21 |
Starch | 70.97 ± 0.08 | 75.07 ± 0.00 | 79.60 ± 0.06 | 1.21 ± 0.05 | 8.69 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bastias-Montes, J.-M.; Flores-Varela, L.-E.; Reyes-Calderón, O.-A.; Vidal-San-Martín, C.; Muñoz-Fariña, O.; Quevedo-León, R.; Acuña-Nelson, S.-M. Teosinte (Dioon mejiae) Flour: Nutritional and Physicochemical Characterization of the Seed Flour of the Living Fossil in Honduras. Agronomy 2020, 10, 481. https://doi.org/10.3390/agronomy10040481
Bastias-Montes J-M, Flores-Varela L-E, Reyes-Calderón O-A, Vidal-San-Martín C, Muñoz-Fariña O, Quevedo-León R, Acuña-Nelson S-M. Teosinte (Dioon mejiae) Flour: Nutritional and Physicochemical Characterization of the Seed Flour of the Living Fossil in Honduras. Agronomy. 2020; 10(4):481. https://doi.org/10.3390/agronomy10040481
Chicago/Turabian StyleBastias-Montes, José-Miguel, Laura-Elena Flores-Varela, Onán-Alonso Reyes-Calderón, Carla Vidal-San-Martín, Ociel Muñoz-Fariña, Roberto Quevedo-León, and Sergio-Miguel Acuña-Nelson. 2020. "Teosinte (Dioon mejiae) Flour: Nutritional and Physicochemical Characterization of the Seed Flour of the Living Fossil in Honduras" Agronomy 10, no. 4: 481. https://doi.org/10.3390/agronomy10040481
APA StyleBastias-Montes, J.-M., Flores-Varela, L.-E., Reyes-Calderón, O.-A., Vidal-San-Martín, C., Muñoz-Fariña, O., Quevedo-León, R., & Acuña-Nelson, S.-M. (2020). Teosinte (Dioon mejiae) Flour: Nutritional and Physicochemical Characterization of the Seed Flour of the Living Fossil in Honduras. Agronomy, 10(4), 481. https://doi.org/10.3390/agronomy10040481