Using Phosphorus-Rich Biochars to Remediate Lead-Contaminated Soil: Influence on Soil Enzymes and Extractable P
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Conflicts of Interest
Additional Information
References
- Dermatas, D.; Chrysochoou, M.; Grubb, D.G.; Xu, X. Phosphate treatment of firing range soils: Lead fixation or phosphorus release? J. Environ. Qual. 2008, 37, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Aschengrau, A.; Beiser, A.; Bellinger, D.; Copenhafer, D.; Weitzman, M. Residential lead-based-paint hazard remediation and soil lead abatement: Their impact among children with mildly elevated blood lead levels. Am. J. Public Health 1997, 87, 1698–1702. [Google Scholar] [CrossRef]
- Yang, K.; Cattle, S.R. Bioaccessibility of lead in urban soil of Broken Hill, Australia: A study based on in vitro digestion and the IEUBK model. Sci. Total Environ. 2015, 538, 922–933. [Google Scholar] [CrossRef]
- Kilgour, D.W.; Moseley, R.A.; Savage, K.S.; Jardine, P.M. Potential negative consequences of adding phosphorus-based fertilizers to immobilize lead in soil. J. Environ. Qual. 2008, 37, 1733–1740. [Google Scholar] [CrossRef]
- Netherway, P.; Reichman, S.M.; Laidlaw, M.; Scheckel, K.; Pingitore, N.; Gasco, G.; Mendez, A.; Surapaneni, A.; Paz-Ferreiro, J. Phosphorus-rich biochars can transform lead in an urban contaminated soil. J. Environ. Qual. 2019, 48, 1091–1099. [Google Scholar] [CrossRef]
- Uchimiya, M.; Bannon, D.I.; Wartelle, L.H. Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil. J. Agric. Food Chem. 2012, 60, 1798–1809. [Google Scholar] [CrossRef]
- Rees, F.; Simonnot, M.O.; Morel, J.L. Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase. Eur. J. Soil Sci. 2014, 65, 149–161. [Google Scholar] [CrossRef]
- Lu, H.; Li, Z.; Fu, S.; Méndez, A.; Gascó, G.; Pa-Ferreiro, J. Effect of biochar in cadmium availability and soil biological activity in an Anthosol following acid rain deposition and aging. Water Air Soil Pollut. 2015, 226, 164. [Google Scholar] [CrossRef]
- Ni, J.J.; Bordoloi, S.; Shao, W.; Garg, A.; Xu, G.; Sarmah, A.K. Two-year evaluation of hydraulic properties of biochar-amended vegetated soil for application in landfill cover system. Sci. Total Environ. 2020, 712, 136486. [Google Scholar] [CrossRef]
- ISO 2017. ISO 18504: 2017 Soil Quality—Sustainable Remediation; International Organization for Standardization: Geneva, Switzerland, 2017.
- Paz-Ferreiro, J.; Fu, S. Biological indices for soil quality evaluation: Perspectives and limitations. Land Degrad. Dev. 2016, 27, 14–25. [Google Scholar] [CrossRef]
- Puglisi, E.; del Rea, A.A.M.; Rao, M.A.; Gianfreda, L. Development and validation of numerical indexes integrating enzyme activities of soils. Soil Biol. Biochem. 2006, 38, 1673–1681. [Google Scholar] [CrossRef]
- Bandara, T.; Herath, I.; Kumarathilaka, P.; Seneviratne, M.; Seneviratne, G.; Rajakaruna, N.; Vithanage, M.; Ok, Y.S. Role of woody biochar and fungal-bacterial co-inoculation on enzyme activity and metal immobilization in serpentine soil. J. Soil Sediments 2017, 17, 665–673. [Google Scholar] [CrossRef] [Green Version]
- Paz-Ferreiro, J.; Trasar-Cepeda, C.; Leirós, M.C.; Seoane, S.; Gil-Sotres, F. Effect of management and climate on biochemical properties of grassland soils from Galicia (NW Spain). Eur. J. Soil Biol. 2010, 46, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Paz-Ferreiro, J.; Gascó, G.; Gutiérrez, B.; Méndez, A. Soil biochemical activities and the geometric mean of enzyme activities after application of sewage sludge and sewage sludge biochar to soil. Biol. Fertil. Soils 2012, 48, 511–517. [Google Scholar] [CrossRef]
- García-Ruiz, R.; Ochoa, V.; Hinojosa, M.B.; Carreira, J.A. Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems. Soil Biol. Biochem. 2008, 40, 2137–2145. [Google Scholar] [CrossRef]
- Rayment, G.E.; Higginson, F.R. Australian Laboratory Handbook of Soil and Water Chemical Methods; Rayment, G.E., Higginson, F.R., Eds.; Inkata Press: Melbourne, Australia, 1992. [Google Scholar]
- Dick, R.P. A review: Long-term effects of agricultural systems on soil biochemical and microbial parameters. Agric. Ecosyst. Environ. 1992, 40, 25–36. [Google Scholar] [CrossRef]
- Wang, T.; Camps-Arbestain, M.; Hedley, M.; Bishop, P. Predicting phosphorus bioavailability from high-ash biochars. Plant Soil 2012, 357, 173–187. [Google Scholar] [CrossRef]
- Foster, E.J.; Fogle, E.J.; Cotrufo, M.F. Sorption to biochar impacts β-Glucosidase and phosphatase enzyme activities. Agriculture 2018, 8, 158. [Google Scholar] [CrossRef] [Green Version]
- Kinney, T.J.; Masiello, C.A.; Dugan, B.; Hockaday, W.C.; Dean, M.R.; Zygourakis, K.; Barnes, R.T. Hydrologic properties of biochars produced at different temperatures. Biomass Bioenergy 2012, 41, 34–43. [Google Scholar] [CrossRef]
- Trasar-Cepeda, C.; Leirós, M.C.; Seoane, S.; Gil-Sotres, F. Limitations of soil enzymes as indicators of soil pollution. Soil Biol. Biochem. 2000, 32, 1867–1875. [Google Scholar] [CrossRef]
- Benevente, I.; Gasco, G.; Plaza, C.; Paz-Ferreiro, J.; Mendez, A. Choice of pyrolysis parameters for urban wastes affects soil enzymes and plant germination in a Mediterranean soil. Sci. Total Environ. 2018, 634, 1308–1314. [Google Scholar] [CrossRef]
- Hawkins, H.J.; Hettasch, H.; Mesjasz-Przybylowicz, J.; Przybylowicz, W.; Cramer, M.D. Phosphorus toxicity in the Proteaceae: A problem in post-agricultural lands. Sci. Hortic. 2008, 117, 357–365. [Google Scholar] [CrossRef]
- Kariman, K.; Barker, S.; Jost, R.; Finnegan, P.; Tibbett, M. Sensitivity of jarrah (Eucalyptus marginata) to phosphate, phosphite, and arsenate pulses as influenced by fungal symbiotic associations. Mycorrhiza 2016, 26, 401–415. [Google Scholar] [CrossRef] [Green Version]
- Handreck, K. Phosphorus requirements of Australian native plants. Aust. J. Soil Res. 1997, 35, 241. [Google Scholar] [CrossRef]
- Pizzeghello, D.; Berti, A.; Nardi, S.; Morari, F. Relationship between soil test phosphorus and phosphorus release to solution in three soils after long-term mineral and manure application. Agric. Ecosyst. Environ. 2016, 233, 214–223. [Google Scholar] [CrossRef]
- Adhikari, S.; Gasco, G.; Mendez, A.; Surapaneni, A.; Jegatheesan, V.; Shah, K.; Paz-Ferreiro, J. Influence of pyrolysis parameters on phosphorus fractions of biosolids derived biochar. Sci. Total Environ. 2019, 695, 133846. [Google Scholar] [CrossRef]
Sample | Phosphomonoesterase | β-Glucosidase | Arylsulfatase | GMea | Olsen P (mg/kg) |
---|---|---|---|---|---|
Control | 4.56 ± 0.09c | 1.21 ± 0.10e | 0.17 ± 0.02de | 0.99 ± 0.03ef | 14 ± 2a |
PL300 | 2.87 ± 0.10b | 1.03 ± 0.05cd | 0.13 ± 0.02bc | 0.74 ± 0.05b | 17 ± 3a |
PL400 | 4.53 ± 0.44c | 0.94 ± 0.09bc | 0.11 ± 0.01b | 0.76 ± 0.04bc | 23 ± 2a |
PL500 | 5.66 ± 0.15de | 1.15 ± 0.11cde | 0.21 ± 0.01f | 1.12 ± 0.03g | 24 ± 1a |
BS300 | 5.24 ± 0.16d | 1.16 ± 0.05cde | 0.15 ± 0.01cd | 0.97 ± 0.01de | 17 ± 2a |
BS400 | 5.92 ± 0.14ef | 0.83 ± 0.08b | 0.12 ± 0.01b | 0.84 ± 0.05bc | 18 ± 2a |
BS500 | 6.47 ± 0.28e | 1.09 ± 0.01cde | 0.19 ± 0.02ef | 1.09 ± 0.05fg | 16 ± 2a |
MCP | 2.02 ± 0.10a | 0.65 ± 0.04a | 0.08 ± 0.01a | 0.46 ± 0.02a | 170 ± 23b |
NTS | 7.23 ± 0.51f | 0.83 ± 0.04b | 0.12 ± 0.01b | 0.86 ± 0.10cd | 16 ± 1a |
Property | Factor 1 | Factor 2 |
---|---|---|
pH | 0.992 | −0.051 |
CEC | 0.955 | −0.075 |
Surface area | 0.227 | 0.696 |
H/C ratio | −0.954 | −0.121 |
Total P | 0.992 | −0.060 |
Phosphomonoesterase | −0.446 | 0.786 |
β-glucosidase | 0.195 | 0.606 |
Arylsulfatase | 0.157 | 0.892 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Netherway, P.; Gascó, G.; Méndez, A.; Surapaneni, A.; Reichman, S.; Shah, K.; Paz-Ferreiro, J. Using Phosphorus-Rich Biochars to Remediate Lead-Contaminated Soil: Influence on Soil Enzymes and Extractable P. Agronomy 2020, 10, 454. https://doi.org/10.3390/agronomy10040454
Netherway P, Gascó G, Méndez A, Surapaneni A, Reichman S, Shah K, Paz-Ferreiro J. Using Phosphorus-Rich Biochars to Remediate Lead-Contaminated Soil: Influence on Soil Enzymes and Extractable P. Agronomy. 2020; 10(4):454. https://doi.org/10.3390/agronomy10040454
Chicago/Turabian StyleNetherway, Pacian, Gabriel Gascó, Ana Méndez, Aravind Surapaneni, Suzie Reichman, Kalpit Shah, and Jorge Paz-Ferreiro. 2020. "Using Phosphorus-Rich Biochars to Remediate Lead-Contaminated Soil: Influence on Soil Enzymes and Extractable P" Agronomy 10, no. 4: 454. https://doi.org/10.3390/agronomy10040454
APA StyleNetherway, P., Gascó, G., Méndez, A., Surapaneni, A., Reichman, S., Shah, K., & Paz-Ferreiro, J. (2020). Using Phosphorus-Rich Biochars to Remediate Lead-Contaminated Soil: Influence on Soil Enzymes and Extractable P. Agronomy, 10(4), 454. https://doi.org/10.3390/agronomy10040454