Biochar Reduces the Stability of Soil Aggregates during Intensive Leaching Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil and Biochar Characterization
2.2. Experimental Design and Column Preparation
2.3. Leaching Experiment
2.4. Analytical Methods
2.5. Statistical Analyses
3. Results
3.1. Cumulative Leaching Losses of Base Cations
3.2. Final Soil Properties
3.3. Water-Stable Aggregates
4. Discussion
4.1. Base Cations Dynamics and Exchange Complex
4.2. The Implications of Intensive Leaching for Soil Aggregation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Blanco-Canqui, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef] [Green Version]
- Demisie, W.; Liu, Z.; Zhang, M. Effect of biochar on carbon fractions and enzyme activity of red soil. Catena 2014, 121, 214–221. [Google Scholar] [CrossRef]
- Teutscherova, N.; Lojka, B.; Houška, J.; Masaguer, A.; Benito, M.; Vazquez, E. Application of holm oak biochar alters dynamics of enzymatic and microbial activity in two contrasting Mediterranean soils. Eur. J. Soil Biol. 2018, 88, 15–26. [Google Scholar] [CrossRef]
- Glaser, B.; Lehmann, J.; Zech, W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—A review. Biol. Fertil. Soils 2002, 35, 219–230. [Google Scholar] [CrossRef]
- Wang, D.; Fonte, S.J.; Parikh, S.J.; Six, J.; Scow, K.M. Biochar additions can enhance soil structure and the physical stabilization of C in aggregates. Geoderma 2017, 303, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.H.; Han, F.P.; Zhang, X.C. Effect of biochar on soil aggregates in the Loess Plateau: Results from incubation experiments. Int. J. Agric. Biol. 2012, 14, 975–979. [Google Scholar]
- Soinne, H.; Hovi, J.; Tammeorg, P.; Turtola, E. Effect of biochar on phosphorus sorption and clay soil aggregate stability. Geoderma 2014, 219–220, 162–167. [Google Scholar] [CrossRef]
- Zhou, H.; Fang, H.; Zhang, Q.; Wang, Q.; Chen, C.; Mooney, S.J.; Peng, X.; Du, Z. Biochar enhances soil hydraulic function but not soil aggregation in a sandy loam. Eur. J. Soil Sci. 2019, 70, 291–300. [Google Scholar] [CrossRef]
- Hardie, M.; Clothier, B.; Bound, S.; Oliver, G.; Close, D. Does biochar influence soil physical properties and soil water availability? Plant Soil 2014, 376, 347–361. [Google Scholar] [CrossRef]
- Herath, H.M.S.K.; Camps-Arbestain, M.; Hedley, M. Effect of biochar on soil physical properties in two contrasting soils: An Alfisol and an Andisol. Geoderma 2013, 209, 188–197. [Google Scholar] [CrossRef]
- Jien, S.H.; Wang, C.S. Effects of biochar on soil properties and erosion potential in a highly weathered soil. Catena 2013, 110, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, L.; Wang, F.; Tang, J.; Yu, L.; Zhang, R. Effects of biochar amendment on soil aggregates and hydraulic properties. J. Plant Nutr. Soil Sci. 2013, 13, 991–1002. [Google Scholar] [CrossRef] [Green Version]
- Teutscherova, N.; Vazquez, E.; Masaguer, A.; Navas, M.; Scow, K.M.; Schmidt, R.; Benito, M. Comparison of lime- and biochar-mediated pH changes in nitrification and ammonia oxidizers in degraded acid soil. Biol. Fertil. Soils 2017, 53, 811–821. [Google Scholar] [CrossRef]
- Rehrah, D.; Reddy, M.R.; Novak, J.M.; Bansode, R.R.; Schimmel, K.A.; Yu, J.; Watts, D.W.; Ahmedna, M. Production and characterization of biochars from agricultural by-products for use in soil quality enhancement. J. Anal. Appl. Pyrolysis 2014, 108, 301–309. [Google Scholar] [CrossRef]
- Etiégni, L.; Campbell, A.G. Physical and chemical characteristics of wood ash. Bioresour. Technol. 1991, 37, 173–178. [Google Scholar] [CrossRef]
- Auerswald, K.; Kainz, M.; Angermüller, S.; Steindl, H. Influence of exchangeable potassium on soil erodibility. Soil Use Manag. 1996, 12, 117–121. [Google Scholar] [CrossRef]
- Heil, D.; Sposito, G. Organic Matter Role in Illitic Soil Colloids Flocculation: I. Counter Ions and pH. Soil Sci. Soc. Am. J. 1993, 57, 1241. [Google Scholar] [CrossRef]
- Laird, D.; Fleming, P.; Wang, B.; Horton, R.; Karlen, D. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 2010, 158, 436–442. [Google Scholar] [CrossRef] [Green Version]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Nutrient Leaching in a Colombian Savanna Oxisol Amended with Biochar. J. Environ. Qual. 2012, 41, 1076–1086. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Phan, B.T.; Nguyen, T.X.; Nguyen, V.N.; Van Tran, T.; Bach, Q.V. Contrastive nutrient leaching from two differently textured paddy soils as influenced by biochar addition. J. Soils Sediments 2019. [Google Scholar] [CrossRef]
- Novak, J.M.; Busscher, W.J.; Laird, D.L.; Ahmedna, M.; Watts, D.W.; Niandou, M.A.S. Impact of Biochar Amendment on Fertility of a Southeastern Coastal Plain Soil. Soil Sci. 2009, 174, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Denef, K.; Six, J.; Bossuyt, H.; Frey, S.D.; Elliott, E.T.; Merckx, R.; Paustian, K. Influence of dry-wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics. Soil Biol. Biochem. 2001, 33, 1599–1611. [Google Scholar] [CrossRef]
- Grunwald, D.; Kaiser, M.; Piepho, H.P.; Koch, H.J.; Rauber, R.; Ludwig, B. Effects of biochar and slurry application as well as drying and rewetting on soil macro-aggregate formation in agricultural silty loam soils. Soil Use Manag. 2018, 34, 575–583. [Google Scholar] [CrossRef]
- Teutscherova, N.; Houška, J.; Navas, M.; Masaguer, A.; Benito, M.; Vazquez, E. Leaching of ammonium and nitrate from Acrisol and Calcisol amended with holm oak biochar: A column study. Geoderma 2018, 323, 136–145. [Google Scholar] [CrossRef]
- Laird, D.A.; Fleming, P.; Davis, D.D.; Horton, R.; Wang, B.; Karlen, D.L. Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 2010, 158, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J. A modified single solution method for the determinatio of phosphate in natural waters. Anal. Chem. ACTA 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Kemper, W.D.; Rosenau, R.C. Aggregate Stability and Size Distribution. In Methods of soil Analysis. Part 1. Physical and Mineralogical Methods; American Society of Agronomy, Inc.: Madison, WI, USA, 1986; Volume 9, pp. 425–442. ISBN 978-0891188414. [Google Scholar]
- Yuan, T.L.; Fiskell, J.G.A. Aluminum Studies: II. The Extraction of Aluminum from Some Florida Soils. Soil Sci. Soc. Am. J. 1959, 23, 202–205. [Google Scholar] [CrossRef]
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 3540312102. [Google Scholar]
- Yuan, J.H.; Xu, R.K. Effects of biochars generated from crop residues on chemical properties of acid soils from tropical and subtropical China. Soil Res. 2012, 50, 570–578. [Google Scholar] [CrossRef]
- Wang, L.; Butterly, C.R.; Wang, Y.; Herath, H.M.S.K.; Xi, Y.G.; Xiao, X.J. Effect of crop residue biochar on soil acidity amelioration in strongly acidic tea garden soils. Soil Use Manag. 2014, 30, 119–128. [Google Scholar] [CrossRef]
- Martinsen, V.; Alling, V.; Nurida, N.L.; Mulder, J.; Hale, S.E.; Ritz, C.; Rutherford, D.W.; Heikens, A.; Breedveld, G.D.; Cornelissen, G. pH effects of the addition of three biochars to acidic Indonesian mineral soils. Soil Sci. Plant Nutr. 2015, 61, 821–834. [Google Scholar] [CrossRef] [Green Version]
- Hailegnaw, N.S.; Mercl, F.; Pračke, K.; Száková, J.; Tlustoš, P. Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. J. Soils Sediments 2019, 19, 2405–2416. [Google Scholar] [CrossRef]
- Lentz, R.D.; Ippolito, J.A. Biochar and Manure Affect Calcareous Soil and Corn Silage Nutrient Concentrations and Uptake. J. Environ. Qual. 2012, 41, 1033. [Google Scholar] [CrossRef] [PubMed]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Borken, W.; Matzner, E. Reappraisal of drying and wetting effects on C and N mineralization and fluxes in soils. Glob. Chang. Biol. 2009, 15, 808–824. [Google Scholar] [CrossRef]
- Rousk, J.; Brookes, P.C.; Bååth, E. Contrasting soil pH effects on fungal and bacterial growth suggest functional redundancy in carbon mineralization. Appl. Environ. Microbiol. 2009, 75, 1589–1596. [Google Scholar] [CrossRef] [Green Version]
- Tisdall, J.M. Possible role of soil microorganisms in aggregation in soils. Plant Soil 1994, 159, 115–121. [Google Scholar] [CrossRef]
- Gordon, H.; Haygarth, P.M.; Bardgett, R.D. Drying and rewetting effects on soil microbial community composition and nutrient leaching. Soil Biol. Biochem. 2008, 40, 302–311. [Google Scholar] [CrossRef]
- Rousk, J.; Bååth, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef]
- Vázquez, E.; Benito, M.; Navas, M.; Espejo, R.; Díaz-Pinés, E.; Teutscherova, N. The interactive effect of no-tillage and liming on gross N transformation rates during the summer fallow in an acid Mediterranean soil. Soil Tillage Res. 2019, 194, 104297. [Google Scholar] [CrossRef]
- Amézketa, E. Soil Aggregate Stability: A Review. J. Sustain. Agric. 1999, 14, 83–151. [Google Scholar] [CrossRef]
Soil Properties | Acrisol | Calcisol | Biochar Properties | |
---|---|---|---|---|
pH | 5.65 | 8.00 | pH | 10.2 |
Electric conductivity (µS cm−1) | 49.7 | 570 | Electric conductivity (µS cm−1) | 940 |
CEC (cmolc kg−1) | 2.73 | 8.84 | TC (%) | 68.2 |
TOC (g kg−1) | 25.8 | 9.55 | TN (%) | 0.67 |
Carbonate content (%CaCO3) | n.p. | 21.9 | Cox (%) | 4.70 |
TN (g kg−1) | 1.28 | 0.90 | Ash content (%) | 3.49 |
WSC (mg kg−1) | 78.3 | 29.1 | Carbonates content (%CaCO3) | 11.9 |
WSN (mg kg−1) | 19.0 | 49.2 | WSC (mg kg−1) | 149 |
Field moisture capacity (%) | 16.9 | 18.3 | WSN (mg kg−1) | 93.4 |
Sand (%) | 80.1 | 29.0 | CEC (cmolc kg−1) | 35.1 |
Silt (%) | 6.10 | 42.0 | NH4-N sorption (mg NH4-N g−1) | 2.22 |
Clay (%) | 13.8 | 29.0 | NO3-N sorption (mg NO3-N g−1) | n.s. |
pH | SOM | P | Ca | Mg | K | Al | ECEC | K/ECEC | |
---|---|---|---|---|---|---|---|---|---|
% | mg kg−1 | cmolc kg−1 | % | ||||||
Acrisol | |||||||||
B0 | 3.88 ± 0.02 c | 5.08 ± 0.09 c | 29.3 ± 0.7 c | 0.96 ± 0.02 c | 0.11 ± 0.01 c | 0.05 ± 0.00 c | 1.11 ± 0.04 a | 2.71 ± 0.10 c | 1.98 ± 0.12 b |
B1 | 4.51 ± 0.01 b | 6.12 ± 0.20 b | 38.5 ± 1.4 b | 2.56 ± 0.04 b | 0.18 ± 0.01 b | 0.11 ± 0.01 b | 0.01 ± 0.00 b | 3.42 ± 0.15 b | 3.34 ± 0.21 a |
B2 | 5.06 ± 0.04 a | 7.38 ± 0.08 a | 50.6 ± 1.0 a | 3.82 ± 0.07 a | 0.22 ± 0.01 a | 0.14 ± 0.01 a | 0.08 ± 0.04 b | 4.45 ± 0.08 a | 3.20 ± 0.13 a |
Calcisol | |||||||||
B0 | 8.17 ± 0.01 A | 1.83 ± 0.01 C | 80.9 ± 1.9 A | 24.44 ± 0.15 | 1.34 ± 0.01 A | 0.49 ± 0.01 B | - | 26.3 ± 0.2 | 1.86 ± 0.03 C |
B1 | 8.19 ± 0.01 A | 2.90 ± 0.04 B | 63.4 ± 2.5 B | 24.55 ± 0.37 | 1.27 ± 0.02 B | 0.57 ± 0.00 A | - | 26.4 ± 0.4 | 2.16 ± 0.04 B |
B2 | 8.14 ± 0.01 B | 4.00 ± 0.04 A | 77.8 ± 3.6 A | 24.12 ± 0.14 | 1.29 ± 0.01 B | 0.62 ± 0.00 A | - | 26.0 ± 0.1 | 2.38 ± 0.08 A |
WSA1–2 mm | WSA1–2 mm | |
---|---|---|
% | g kg−1 soil | |
Acrisol | ||
B0 | 91.3 ± 2.7 a | 164 ± 11 a |
B1 | 84.9 ± 3.0 ab | 139 ± 15 a |
B2 | 81.4 ± 4.5 b | 143 ± 10 a |
Calcisol | ||
B0 | 8.96 ± 1.24 A | 49.5 ± 3.9 A |
B1 | 9.84 ± 0.54 A | 52.7 ± 5.8 A |
B2 | 5.62 ± 1.33 B | 30.0 ± 5.9 B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teutscherova, N.; Lojka, B.; Benito, M.; Masaguer, A.; Vázquez, E. Biochar Reduces the Stability of Soil Aggregates during Intensive Leaching Experiment. Agronomy 2020, 10, 1910. https://doi.org/10.3390/agronomy10121910
Teutscherova N, Lojka B, Benito M, Masaguer A, Vázquez E. Biochar Reduces the Stability of Soil Aggregates during Intensive Leaching Experiment. Agronomy. 2020; 10(12):1910. https://doi.org/10.3390/agronomy10121910
Chicago/Turabian StyleTeutscherova, Nikola, Bohdan Lojka, Marta Benito, Alberto Masaguer, and Eduardo Vázquez. 2020. "Biochar Reduces the Stability of Soil Aggregates during Intensive Leaching Experiment" Agronomy 10, no. 12: 1910. https://doi.org/10.3390/agronomy10121910
APA StyleTeutscherova, N., Lojka, B., Benito, M., Masaguer, A., & Vázquez, E. (2020). Biochar Reduces the Stability of Soil Aggregates during Intensive Leaching Experiment. Agronomy, 10(12), 1910. https://doi.org/10.3390/agronomy10121910