Silage of Intercropping Corn, Palisade Grass, and Pigeon Pea Increases Protein Content and Reduces In Vitro Methane Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Trial Characterization
2.2. Forage Harvest
2.3. In Vitro Gas Production Assay
2.4. Statistical Analyses
3. Results
4. Discussion
4.1. Total Dry Matter Production
4.2. Bromatological Quality of Intercropped Silage
4.3. In Vitro Gas Production
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kremen, C.; Iles, A.; Bacon, C. Diversified Farming Systems: An Agroecological, Systems-based Alternative to Modern Industrial Agriculture. Ecol. Soc. 2012, 17, 17. [Google Scholar] [CrossRef]
- Anghinoni, I.; Carvalho, P.D.F.; Costa, S.D.A. Abordagem sistêmica do solo em sistemas integrados de produção agrícola e pecuária no subtrópico brasileiro. Tópicos Ci Solo 2013, 8, 325–380. [Google Scholar]
- De Moraes, A.; Carvalho, P.C.D.F.; Lustosa, S.B.C.; Lang, C.R.; Deiss, L. Research on Integrated Crop-Livestock Systems in Brazil. Rev. Ciênc. Agron. 2014, 45, 1024–1031. [Google Scholar] [CrossRef]
- Hendrickson, J.R.; Hanson, J.D.; Tanaka, D.L.; Sassenrath, G. Principles of integrated agricultural systems: Introduction to processes and definition. Renew. Agric. Food Syst. 2008, 23, 265–271. [Google Scholar] [CrossRef] [Green Version]
- Soussana, J.-F.; Lemaire, G. Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agric. Ecosyst. Environ. 2014, 190, 9–17. [Google Scholar] [CrossRef]
- Martin, G.; Moraine, M.; Ryschawy, J.; Magne, M.A.; Asai, M.; Sarthou, J.P.; Duru, M.; Therond, O. Crop-livestock integration beyond the farm level: A review of prospects and issues. Agron. Sustain. Dev. 2016, 36, 53. [Google Scholar] [CrossRef]
- Pariz, C.M.; Andreotti, M.; Tarsitano, M.A.A.; Bergamaschine, A.F.; Buzetti, S.; Chioderoli, C.A. Desempenhos técnicos e econômicos da consorciação de milho com forrageiras dos gêneros Panicum e Brachiaria em sistema de integração lavoura-pecuária. Pesq. Agropec. Trop. 2009, 39, 360–370. [Google Scholar]
- Longhini, V.Z.; Andreotti, M.; De Souza, W.C.R.; Costa, N.R.; Filho, M.C.M.T.; Montanari, R. Nitrogen fertilization and inoculation with diazotrophic bacteria in corn intercropped with xaraés grass. Rev. Bras. Cienc. Agrar. 2017, 12, 340–347. [Google Scholar] [CrossRef]
- Ramírez-Restrepo, C.A.; Vera-Infanzón, R.R.; Rao, I.M. Predicting methane emissions, animal-environmental metrics and carbon footprint from Brahman (Bos indicus) breeding herd systems based on long-term research on grazing of neotropical savanna and Brachiaria decumbens pastures. Agric. Syst. 2020, 184, 102892. [Google Scholar] [CrossRef]
- Crusciol, C.A.C.; Mateus, G.P.; Nascente, A.S.; Martins, P.O.; Borghi, E.; Pariz, C.M. An Innovative Crop-Forage Intercrop System: Early Cycle Soybean Cultivars and Palisadegrass. Agron. J. 2012, 104, 1085–1095. [Google Scholar] [CrossRef]
- Crusciol, C.A.C.; Nascente, A.S.; Mateus, G.P.; Borghi, E.; Leles, E.P.; Santos, N.D. Effect of intercropping on yields of corn with different relative maturities and palisade grass. Agron. J. 2013, 105, 599–606. [Google Scholar] [CrossRef]
- Crusciol, C.; Nascente, A.S.; Mateus, G.; Pariz, C.; Martins, P.; Borghi, E. Intercropping soybean and palisade grass for enhanced land use efficiency and revenue in a no till system. Eur. J. Agron. 2014, 58, 53–62. [Google Scholar] [CrossRef]
- Pariz, C.M.; Costa, C.; Crusciol, C.A.C.; Meirelles, P.R.L.; Castilhos, A.M.; Andreotti, M.; Costa, N.R.; Martello, J.M.; Souza, D.M.; Sarto, J.R.W.; et al. Production and Soil Responses to Intercropping of Forage Grasses with Corn and Soybean Silage. Agron. J. 2016, 108, 2541–2553. [Google Scholar] [CrossRef]
- Pariz, C.M.; Costa, C.; Crusciol, C.A.C.; Castilhos, A.M.; Meirelles, P.; Roça, R.D.O.; Pinheiro, R.S.B.; Kuwahara, F.A.; Martello, J.M.; Cavasano, F.A.; et al. Lamb production responses to grass grazing in a companion crop system with corn silage and oversowing of yellow oat in a tropical region. Agric. Syst. 2017, 151, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Pariz, C.M.; Costa, C.; Crusciol, C.A.C.; Meirelles, P.R.L.; Castilhos, A.M.; Andreotti, M.; Costa, N.R.; Martello, J.M.; Souza, D.M.; Protes, V.M.; et al. Production, nutrient cycling and soil compaction to grazing of grass companion cropping with corn and soybean. Nutr. Cycl. Agroecosyst. 2017, 108, 35–54. [Google Scholar] [CrossRef] [Green Version]
- Pascoaloto, I.M.; Andreotti, M.; Da Cruz, S.S.; Sabbag, O.J.; Borghi, E.; De Lima, G.C.; Modesto, V.C. Análise econômica de consórcios de sorgo com forrageiras ou guandu-anão sucedidos por soja ou milho. Pesqui. Agropecu. Bras. 2017, 52, 833–840. [Google Scholar] [CrossRef] [Green Version]
- Costa, N.R.; Andreotti, M.; Buzetti, S.; Lopes, K.S.M.; Dos Santos, F.G.; Pariz, C.M. Acúmulo de macronutrientes e decomposição da palhada de braquiárias em razão da adubação nitrogenada durante e após o consórcio com a cultura do milho. Rev. Bras. Cienc. 2014, 38, 1223–1233. [Google Scholar] [CrossRef] [Green Version]
- Calonego, J.C.; Raphael, J.P.; Rigon, J.P.; Neto, L.D.O.; Rosolem, C.A. Soil compaction management and soybean yields with cover crops under no-till and occasional chiseling. Eur. J. Agron. 2017, 85, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Snapp, S.S.; Swinton, S.M.; Labarta, R.; Mutch, D.; Black, J.R.; Leep, R.; Nyiraneza, J.; O’Neil, K. Evaluating cover crops for benefits, costs and performance within cropping system niches. Agron. J. 2005, 97, 322–332. [Google Scholar]
- Castro, G.S.; Crusciol, C.; Calonego, J.C.; Rosolem, C.A. Management Impacts on Soil Organic Matter of Tropical Soils. Vadose Zone J. 2015, 14, 1–8. [Google Scholar] [CrossRef]
- Costa, N.R.; Andreotti, M.; Lopes, K.S.M.; Yokobatake, K.L.; Ferreira, J.P.; Pariz, C.M.; Bonini, C.D.S.B.; Longhini, V.Z. Atributos do Solo e Acúmulo de Carbono na Integração Lavoura-Pecuária em Sistema Plantio Direto. Rev. Bras. Cienc. 2015, 39, 852–863. [Google Scholar] [CrossRef] [Green Version]
- Bonetti, J.D.A.; Paulino, H.B.; De Souza, E.D.; Carneiro, M.A.C.; Da Silva, G.N. Influência do sistema integrado de produção agropecuária no solo e na produtividade de soja e braquiária. Pesqui. Agropecuária Trop. 2015, 45, 104–112. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, P.; Kluthcouski, J.; Favarin, J.L.; Santos, D.D.C. Consórcio de milho com braquiária e guandu-anão em sistema de dessecação parcial. Pesqui. Agropecuária Bras. 2011, 46, 1184–1192. [Google Scholar] [CrossRef] [Green Version]
- Heinrichs, R.; Vitti, G.C.; Moreira, A.; De Figueiredo, P.A.M.; Fancelli, A.L.; Corazza, E.J. Características químicas de solo e rendimento de fitomassa de adubos verdes e de grãos de milho, decorrente do cultivo consorciado. Rev. Bras. Cienc. 2005, 29, 71–79. [Google Scholar] [CrossRef]
- Nunes, U.R.; Andrade Júnior, V.C.; Silva, E.B.; Santos, N.F.; Costa, H.A.O.; Ferreira, C.A. Covering crops straw production and common bean productivity in no-tillage system. Pesqui. Agropecu. Bras. 2006, 41, 943–948. [Google Scholar] [CrossRef]
- Garcia, C.M.D.P.; Costa, C.; Meirelles, P.R.D.L.; Andreotti, M.; Pariz, C.M.; Freitas, L.A.; Filho, M.C.M.T. Wet and dry corn yield under intercrop culivation with marandu grass and/or dwarf pigeon pea and nutritional value of the marandu grass in succession. Aust. J. Crop. Sci. 2016, 10, 1564–1571. [Google Scholar] [CrossRef]
- Ferreira, L.G.; Cláudio, F.L.; Santos, L.C.; Alves, E.M.; Paim, T.P. Produção de silagem em sistemas consorciados de milho (Zea mays), guandu (Cajanus cajan) e braquiária (Urochloa brizantha). In Proceedings of the IV Congresso Estadual de Iniciação Científica do IF Goiano, Goiania, Brasil, 21–24 September 2015. [Google Scholar]
- Melesse, A.; Steingass, H.; Schollenberger, M.; Holstein, J.; Rodehutscord, M. Nutrient compositions and in vitro methane production profiles of leaves and whole pods of twelve tropical multipurpose tree species cultivated in Ethiopia. Agrofor. Syst. 2017, 93, 135–147. [Google Scholar] [CrossRef]
- Dias Cardoso, M.R.; Noronha Marcuzzo, F.F.; Barros, J.R. Climatic classification of Koppen-Geiger for the state of Goias and the Federal District. Acta Geogr. 2014, 8, 40–55. [Google Scholar]
- Spaargaren, O.C.; Deckers, J. The World Reference Base for Soil Resources. In Soils of Tropical Forest Ecosystems; Springer: Berlin/Heidelberg, Germany, 1998; pp. 21–28. [Google Scholar]
- Staff, S. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; US Department of Agriculture Handbook; US Government Printing Office: Washington, DC, USA, 1999; p. 489.
- Krüger, A.M.; Lima, P.D.M.T.; Filho, A.L.A.; Moro, J.D.G.; De Carvalho, I.Q.; Abdalla, A.L.; Jobim, C.C. Dry matter concentration and corn silage density: Effects on forage quality. Trop. Grassl.-Forrajes Trop. 2020, 8, 20–27. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis of AOAC International, 18th ed.; Horwitz, W., Latimer, G.W., Jr., Eds.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2011. [Google Scholar]
- Van Soest, P.; Robertson, J.; Lewis, B. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [PubMed]
- Bueno, I.C.S.; Filho, S.L.C.; Gobbo, S.P.; Louvandini, H.; Vitti, D.M.; Abdalla, A.L. Influence of inoculum source in a gas production method. Anim. Feed. Sci. Technol. 2005, 123, 95–105. [Google Scholar] [CrossRef]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed. Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Mauricio, R.M.; Mould, F.L.; Dhanoa, M.S.; Owen, E.; Channa, K.S.; Theodorou, M.K. A semi-automated in vitro gas production technique for ruminant feedstuff evaluation. Anim. Feed. Sci. Technol. 1999, 79, 321–330. [Google Scholar] [CrossRef]
- Longo, C.; Bueno, I.C.S.; Nozella, E.; Goddoy, P.; Filho, S.C.; Abdalla, A.L. The influence of head-space and inoculum dilution on in vitro ruminal methane measurements. Int. Congr. Ser. 2006, 1293, 62–65. [Google Scholar] [CrossRef]
- Lima, P.D.M.T.; Moreira, G.D.; Sakita, G.; Natel, A.S.; De Mattos, W.T.; Gimenes, F.M.A.; Gerdes, L.; McManus, C.; Abdalla, A.L.; Louvandini, H. Nutritional evaluation of the legume Macrotyloma axillare using in vitro and in vivo bioassays in sheep. J. Anim. Physiol. Anim. Nutr. 2017, 102, e669–e676. [Google Scholar] [CrossRef]
- Blümmel, M.; Makkar, H.P.S.; Becker, K. In vitro gas production: A technique revisited. J. Anim. Physiol. Anim. Nutr. 1997, 77, 24–34. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Usinglme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. 2018. Available online: https://www.r-project.org/ (accessed on 13 February 2012).
- Fox, J.; Weisberg, S. An {R} Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019; Available online: https://socialsciences.mcmaster.ca/jfox/Books/Companion/ (accessed on 1 August 2020).
- Lenth, R.; Singmann, H.; Love, J.; Buerkner, P.; Herve, M. Emmeans: Estimated Marginal Means, Aka Least-Squares Means. R Package Version 1.4.8. 2020. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 1 August 2020).
- Lê, S.; Josse, J.; Husson, F. FactoMineR: AnRPackage for Multivariate Analysis. J. Stat. Softw. 2008, 25, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Kassambara, A.; Mundt, F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.7. 2020. Available online: https://CRAN.R-project.org/package=factoextra (accessed on 10 August 2020).
- Harrell, F.E.; Dupont, C. “Hmisc: Harrell Miscellaneous”. R Package Version 4.0-0. 2020. Available online: https://CRAN.R-project.org/package=Hmisc (accessed on 10 August 2020).
- Rosseel, Y. Lavaan: An R package for structural equation modeling and more. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Epskamp, S.; Epskamp, M.S.; MplusAutomation, S. Package ‘semPlot’. R Package Version 1.1.2. 2019. Available online: https://cran.r-project.org/package=semPlot (accessed on 10 August 2020).
- Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R Package Version 0.4.0. 2020. Available online: https://CRAN.R-project.org/package=ggpubr (accessed on 29 July 2020).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Schreiber, J.B.; Nora, A.; Stage, F.K.; Barlow, E.A.; King, J. Reporting Structural Equation Modeling and Confirmatory Factor Analysis Results: A Review. J. Educ. Res. 2006, 99, 323–338. [Google Scholar] [CrossRef]
- Geng, Q.; Aizizi, A.; Lai, N.; Li, Q.; Chen, S. Impact of Climatic Factors and Nitrogen Levels Drivers on Crop Yield in the Arid Region of China. Int. J. Plant Prod. 2020, 1–11. [Google Scholar] [CrossRef]
- Strieder, M.L.; Da Silva, P.R.F.; Rambo, L.; Bergamaschi, H.; Dalmago, G.A.; Endrigo, P.C.; Jandrey, D.B. Características de dossel e rendimento de milho em diferentes espaçamentos e sistemas de manejo. Pesqui. Agropecuária Bras. 2008, 43, 309–317. [Google Scholar] [CrossRef]
- Bayu, W.; Rethman, N.F.; Hammes, P.S. Growth and yield compensation in sorghum (Sorghum bicolorL. Moench) as a function of planting density and nitrogen fertilizer in semi-arid areas of northeastern Ethiopia. S. Afr. J. Plant Soil 2005, 22, 76–83. [Google Scholar] [CrossRef]
- Coser, T.R.; Ramos, M.L.G.; De Figueiredo, C.C.; Urquiaga, S.; De Carvalho, A.M.; Barros, F.V.; Mendonça, M.T. Nitrogen uptake efficiency of maize in monoculture and intercropped with Brachiaria humidicola and Panicum maximum in a dystrophic Red-Yellow Latosol of the Brazilian Cerrado. Crop. Pasture Sci. 2016, 67, 47–54. [Google Scholar] [CrossRef]
- De Oliveira, S.M.; De Almeida, R.E.M.; Junior, C.P.; Reis, A.F.D.B.; Souza, L.F.N.; Favarin, J.L. Contribution of corn intercropped with Brachiaria species to nutrient cycling1. Pesqui. Agropecuária Trop. 2019, 49, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Sanches, I.R.; Lazarini, E.; Pechoto, E.A.P.; Dos Santos, F.L.; Bossolani, J.W.; Parra, L.F.; Meneghette, H.H.A. Maize second-crop intercropped with forages and soil correction depths: Grain yield and forages root distribution. Res. Soc. Dev. 2020, 9, e798974778. [Google Scholar] [CrossRef]
- Makino, P.A.; Ceccon, G.; Ribeiro, L.M.; Ceccon, F. Agronomic performance and photosynthetically active radiation intercepted by maize intercropped with brachiaria. J. Neotrop. Agric. 2019, 6, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Souza, W.F.; Costa, K.A.P.; Guarnieri, A.; Severiano, E.C.; Silva, J.T.; Teixeira, D.A.A.; Oliveira, S.S.; Dias, M.B.C. Production and quality of the silage of corn intercropped with Paiaguas palisade grass in different forage systems and maturity stages. R. Bras. Zootec. 2019, 48, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Neres, M.A.; Castagnara, D.D.; Silva, F.B.; De Oliveira, P.S.R.; Mesquita, E.E.; Bernardi, T.C.; Guarianti, A.J.; Vogt, A.S.L. Características produtivas, estruturais e bromatológicas dos capins Tifton 85 e Piatã e do feijão-guandu cv. Super N, em cultivo singular ou em associação. Cienc. Rural 2012, 42, 862–869. [Google Scholar] [CrossRef] [Green Version]
- De Moraes, A.; Carvalho, P.C.D.F.; Crusciol, C.A.C.; Lang, C.R.; Pariz, C.M.; Deiss, L.; Sulc, R.M. Integrated Crop-Livestock Systems as a Solution Facing the Destruction of Pampa and Cerrado Biomes in South America by Intensive Monoculture Systems. In Agroecosystem Diversity; Elsevier BV: Amsterdam, The Netherlands, 2019; pp. 257–273. [Google Scholar]
- Onu, P.; Okongwu, S. Performance Characteristics and Nutrient Utilization of Starter Broilers Fed Raw and Processed Pigeon Pea (Cajanus cajan) Seed Meal. Int. J. Poult. Sci. 2006, 5, 693–697. [Google Scholar] [CrossRef] [Green Version]
- Amaefule, K.; Ukpanah, U.; Ibok, A. Performance of Starter Broilers Fed Raw Pigeon Pea [Cajanus cajan (L.) Millsp.] Seed Meal Diets Supplemented with Lysine and or Methionine. Int. J. Poult. Sci. 2011, 10, 205–211. [Google Scholar] [CrossRef]
- Stella, L.A.; Peripolli, V.; Prates, Ê.R.; Barcellos, J.O.J. Composição química das silagens de milho e sorgo com inclusão de planta inteira de soja. Bol. Indústria Anim. 2016, 73, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, M.G.; Costa, K.A.D.P.; De Souza, W.F.; Cruvinel, W.S.; Da Silva, J.T.; Júnior, D.R.D.S. Silage quality of sorghum and Urochloa brizantha cultivars monocropped or intercropped in different planting systems. Acta Sci. Anim. Sci. 2017, 39, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Pereira, D.; Lana, R.; Carmo, D.L.D.; Da Costa, Y.K.S. Chemical composition and fermentative losses of mixed sugarcane and pigeon pea silage. Acta Sci. Anim. Sci. 2019, 41, 43709. [Google Scholar] [CrossRef]
- Rosa, J.R.P.; Da Silva, J.H.S.; Restle, J.; Pascoal, L.L.; Brondani, I.L.; Filho, D.C.A.; De Freitas, A.K. Avaliação do comportamento agronômico da planta e valor nutritivo da silagem de diferentes híbridos de milho (Zea mays, L.). Rev. Bras. Zootec. 2004, 33, 302–312. [Google Scholar] [CrossRef] [Green Version]
- Borghi, E.; Mobricci, C.; Pulz, A.L.; Ono, E.O.; Crusciol, C.A.C. Crescimento de Brachiaria brizantha em cultivo consorciado com milho em sistema de plantio direto. Acta Sci. Agron. 2007, 29, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Costa, N.D.L.; Monteiro, A.L.; Silva, A.L.; De Moraes, A.; Giostri, A.F.; Stivari, T.S.; Gilaverte, S.; Baldissera, T.C.; Pin, E.A. Considerações sobre a degradação da fibra em forragens tropicais associada com suplementos energéticos ou nitrogenados. Arch. Zootec. 2015, 64, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Shafi, A.; Dogra, V.; Gill, T.; Ahuja, P.S.; Sreenivasulu, Y. Simultaneous Over-Expression of PaSOD and RaAPX in Transgenic Arabidopsis thaliana Confers Cold Stress Tolerance through Increase in Vascular Lignifications. PLoS ONE 2014, 9, e110302. [Google Scholar] [CrossRef]
- Arf, O.; Meirelles, F.C.; Portugal, J.R.; Buzetti, S.; De Sá, M.E.; Rodrigues, R.A.F. Benefícios do milho consorciado com gramínea e leguminosas e seus efeitos na produtividade em sistema plantio direto. Rev. Bras. Milho Sorgo 2018, 17, 431–444. [Google Scholar] [CrossRef]
- Patel, S.; Dhillon, N.K. Evaluation of sunnhemp (Crotalaria juncea) as green manure/amendment and its biomass content on root knot nematode (Meloidogyne incognita) in successive crop brinjal. J. Entomol. Zool Stud. 2017, 5, 716–720. [Google Scholar]
- Salton, J.C.; Mercante, F.M.; Tomazi, M.; Zanatta, J.A.; Concenço, G.; Silva, W.M.; Retore, M. Integrated crop-livestock system in tropical Brazil: Toward a sustainable production system. Agric. Ecosyst. Environ. 2014, 190, 70–79. [Google Scholar] [CrossRef]
- Ryschawy, J.; Choisis, N.; Choisis, J.P.; Joannon, A.; Gibon, A. Mixed crop-livestock systems: An economic and environmental-friendly way of farming? Animal 2012, 6, 1722–1730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varshney, R.K.; Penmetsa, R.V.; Dutta, S.; Kulwal, P.L.; Saxena, R.K.; Datta, S.; Dubey, A. Pigeon pea genomics initiative (PGI): An international effort to improve crop productivity of pigeon pea (Cajanus cajan L.). Mol. Breed 2010, 26, 393–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, E.P.D.B.; Stone, L.F.; Partelli, F.L.; Didonet, A.D. Produtividade do feijoeiro comum influenciada por plantas de cobertura e sistemas de manejo do solo. Rev. Bras. Eng. Agrícola Ambient. 2011, 15, 695–701. [Google Scholar] [CrossRef] [Green Version]
- Sekhon, F.S.; Singh, T.; Singh, S. Growth, phenology and yield of pigeon pea (Cajanus cajan) as affected by intercropping systems and application of nutrients level to intercrops. Indian J. Agric. Sci. 2018, 88, 509–514. [Google Scholar]
- Beever, D.E.; Dhanoa, M.S.; Losada, H.R.; Evans, R.T.; Cammell, S.B.; France, J. The effect of forage species and stage of harvest on the processes of digestion occurring in the rumen of cattle. Br. J. Nutr. 1986, 56, 439–454. [Google Scholar] [CrossRef]
- Manella, M.D.Q.; Lourenço, A.J.; Leme, P. Recria de bovinos Nelore em pastos de Brachiaria brizantha com suplementação protéica ou com acesso a banco de proteína de Leucaena lecocephala: Características de fermentação ruminal. Rev. Bras. Zootec. 2003, 32, 1002–1012. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, V.D.S.; Neto, J.A.S.; Valença, R.D.L.; Da Silva, B.C.D.; Dos Santos, A.C.P. Carboidratos fibrosos e não fibrosos na dieta de ruminantes e seus efeitos sobre a microbiota ruminal. Veterinária Notícias 2016, 22, 22. [Google Scholar] [CrossRef]
- Berchielli, T.T.; Messana, J.D.; Canesin, R.C. Produção de metano entérico em pastagens tropicais. Rev. Bras. Saúde Produção Anim. 2012, 13, 954–968. [Google Scholar] [CrossRef] [Green Version]
- Church, D.C. The Ruminant Animal: Digestive Physiology and Nutrition; Waveland Press: Englewood Cliffs, NJ, USA, 1988; p. 563. [Google Scholar]
- Oliveira, V.S.; Santana Neto, J.A.; Valença, R.L. Características químicas e fisiológicas da fermentação ruminal de bovinos em pastejo—Revisão de literatura. Rev. Cient. Eletronica. Med. Vet. 2013, 20. [Google Scholar]
- Moreira, P.C.; de Camargo Wascheck, R.; Dutra, A.R.; Grandsire, C.; de Almeida, O.C.; Moreira, S.D.O.L. Pectina: Um carboidrato complexo e suas aplicações. Rev. Cienci. Ambient. Saude 2008, 35, 343–355. [Google Scholar]
- Savian, J.V.; Schons, R.M.T.; Marchi, D.E.; De Freitas, T.S.; Neto, G.F.D.S.; Mezzalira, J.C.; Berndt, A.; Bayer, C.; Carvalho, P.C.D.F. Rotatinuous stocking: A grazing management innovation that has high potential to mitigate methane emissions by sheep. J. Clean. Prod. 2018, 186, 602–608. [Google Scholar] [CrossRef]
- Cottle, D.J.; Nolan, J.V.; Wiedemann, S.G. Ruminant enteric methane mitigation: A review. Anim. Prod. Sci. 2011, 51, 491–514. [Google Scholar] [CrossRef]
- Lovett, D.; Lovell, S.; Stack, L.; Callan, J.; Finlay, M.; Conolly, J.; O’Mara, F. Effect of forage/concentrate ratio and dietary coconut oil level on methane output and performance of finishing beef heifers. Livest. Prod. Sci. 2003, 84, 135–146. [Google Scholar] [CrossRef]
- Martin, C.; Morgavi, D.P.; Doreau, M. Methane mitigation in ruminants: From microbe to the farm scale. Animal 2009, 4, 351–365. [Google Scholar] [CrossRef] [Green Version]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Boadi, D.; Benchaar, C.; Chiquette, J.; Massé, D. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Can. J. Anim. Sci. 2004, 84, 319–335. [Google Scholar] [CrossRef]
- Guan, H.; Wittenberg, K.; Ominski, K.H.; Krause, D.O. Efficacy of ionophores in cattle diets for mitigation of enteric methane1. J. Anim. Sci. 2006, 84, 1896–1906. [Google Scholar] [CrossRef] [Green Version]
- Odongo, N.; Bagg, R.; Vessie, G.; Dick, P.; Or-Rashid, M.; Hook, S.; Gray, J.; Kebreab, E.; France, J.; McBride, B. Long-Term Effects of Feeding Monensin on Methane Production in Lactating Dairy Cows. J. Dairy Sci. 2007, 90, 1781–1788. [Google Scholar] [CrossRef]
- Patra, A.K. Enteric methane mitigation technologies for ruminant livestock: A synthesis of current research and future directions. Environ. Monit. Assess. 2011, 184, 1929–1952. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.K.; Saxena, J. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 2010, 91, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Vaddella, V.; Zhou, D. Effects of chestnut tannins and coconut oil on growth performance, methane emission, ruminal fermentation, and microbial populations in sheep. J. Dairy Sci. 2011, 94, 6069–6077. [Google Scholar] [CrossRef] [PubMed]
Corn | Corn + PP + Bb | p-Value | |
---|---|---|---|
Ash | 50.4 ± 1.05 | 52.6 ± 0.61 | 0.078 |
Crude Protein | 59.9 ± 2.88 | 69.1 ± 1.43 | 0.006 |
Neutral detergent fiber | 521 ± 9.97 | 543 ± 5.76 | 0.069 |
Acid detergent fiber | 295 ± 6.66 | 330 ± 3.85 | <0.001 |
Lignin | 33.3 ± 2.39 | 45.9 ± 1.38 | <0.001 |
Corn | Corn + PP + Bb | p-Value | |
---|---|---|---|
GP-DM | 76.4 ± 1.44 | 69.4 ± 0.83 | <0.001 |
CH4-DM | 5.73 ± 0.22 | 4.34 ± 0.13 | <0.001 |
DOM | 422 ± 5.95 | 399 ± 3.44 | 0.001 |
GP-DOM | 32.3 ± 0.97 | 27.7 ± 0.56 | <0.001 |
CH4-DOM | 2.45 ± 0.10 | 1.74 ± 0.06 | <0.001 |
PF | 4.87 ± 0.10 | 4.99 ± 0.06 | 0.301 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ligoski, B.; Gonçalves, L.F.; Claudio, F.L.; Alves, E.M.; Krüger, A.M.; Bizzuti, B.E.; Lima, P.d.M.T.; Abdalla, A.L.; Paim, T.d.P. Silage of Intercropping Corn, Palisade Grass, and Pigeon Pea Increases Protein Content and Reduces In Vitro Methane Production. Agronomy 2020, 10, 1784. https://doi.org/10.3390/agronomy10111784
Ligoski B, Gonçalves LF, Claudio FL, Alves EM, Krüger AM, Bizzuti BE, Lima PdMT, Abdalla AL, Paim TdP. Silage of Intercropping Corn, Palisade Grass, and Pigeon Pea Increases Protein Content and Reduces In Vitro Methane Production. Agronomy. 2020; 10(11):1784. https://doi.org/10.3390/agronomy10111784
Chicago/Turabian StyleLigoski, Beatriz, Lucas Ferreira Gonçalves, Flavio Lopes Claudio, Estenio Moreira Alves, Ana Maria Krüger, Beatriz Elisa Bizzuti, Paulo de Mello Tavares Lima, Adibe Luiz Abdalla, and Tiago do Prado Paim. 2020. "Silage of Intercropping Corn, Palisade Grass, and Pigeon Pea Increases Protein Content and Reduces In Vitro Methane Production" Agronomy 10, no. 11: 1784. https://doi.org/10.3390/agronomy10111784
APA StyleLigoski, B., Gonçalves, L. F., Claudio, F. L., Alves, E. M., Krüger, A. M., Bizzuti, B. E., Lima, P. d. M. T., Abdalla, A. L., & Paim, T. d. P. (2020). Silage of Intercropping Corn, Palisade Grass, and Pigeon Pea Increases Protein Content and Reduces In Vitro Methane Production. Agronomy, 10(11), 1784. https://doi.org/10.3390/agronomy10111784