Statistical Analysis versus the M5P Machine Learning Algorithm to Analyze the Yield of Winter Wheat in a Long-Term Fertilizer Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Management
2.3. Data Description
2.4. Data Analysis
2.4.1. ANOVA Test
2.4.2. Linear Mixed-Effects Models
2.4.3. Machine Learning Model
2.4.4. Evaluation Metrics
3. Results
3.1. Grain Yield of Winter Wheat
3.2. Modeling and Predictors
3.2.1. Linear Mixed-Effects Model
3.2.2. Machine Learning Model
3.2.3. Comparing Models and Model Fit
4. Discussion
4.1. Grain Yield of Winter Wheat and Treatment Effects
4.2. Environmental Effect on the Winter Wheat Yield
4.3. Comparing Models and Model Fits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT Online Database. Available online: http://faostat.fao.org/ (accessed on 10 December 2019).
- Destatis. Available online: https://www.destatis.de/DE/PresseService/Presse/Pressemitteilungen/2016/12/PD16_470_412.html (accessed on 25 March 2020).
- Ahrends, H.E.; Eugster, W.; Gaiser, T.; Rueda-Ayala, V.; Hüging, H.; Ewert, F.; Siebert, S. Genetic yield gains of winter wheat in Germany over more than 100 years (1895–2007) under contrasting fertilizer applications. Environ. Res. Lett. 2018, 13, 104003. [Google Scholar] [CrossRef]
- Laidig, F.; Piepho, H.-P.; Rentel, D.; Drobek, T.; Meyer, U.; Huesken, A. Breeding progress, variation, and correlation of grain and quality traits in winter rye hybrid and population varieties and national on-farm progress in Germany over 26 years. Theor. Appl. Genet. 2017, 130, 981–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macholdt, J.; Honermeier, B. Stability analysis for grain yield of winter wheat in a long-term field experiment. Arch. Agron. Soil Sci. 2019, 65, 686–699. [Google Scholar] [CrossRef]
- Macholdt, J.; Piepho, H.-P.; Honermeier, B. Mineral NPK and manure fertilization affecting the yield stability of winter wheat: Results from a long-term field experiment. Eur. J. Agron. 2019, 102, 14–22. [Google Scholar] [CrossRef]
- Rasmussen, P.E.; Goulding, K.W.; Brown, J.R.; Grace, P.R.; Janzen, H.H.; Körschens, M. Long-term agroecosystem experiments: Assessing agricultural sustainability and global change. Science 1998, 282, 893–896. [Google Scholar] [CrossRef] [PubMed]
- Wessolek, G.; Asseng, S. Trade-off between wheat yield and drainage under current and climate change conditions in northeast Germany. Eur. J. Agron. 2006, 24, 333–342. [Google Scholar] [CrossRef]
- Wechsung, F.; Gerstengarbe, F.W.; Lasch, P.; Lüttger, A. Die Ertragsfähigkeit Deutscher Ackerflächen Unter Klimawandel. Available online: www.pik-potsdam.de/glowa/pdf/bvvg/zusammenfassung11_9.pdf (accessed on 14 December 2019).
- Ellmer, F.; Baumecker, M. 65 Years long-term experiments at Thyrow. Results for sustainable crop production at sandy soils. Arch. Agron. Soil Sci. 2002, 48, 521–531. [Google Scholar] [CrossRef]
- Ellmer, F.; Erekul, O.; Kohn, W. Influence of long-term different organic-mineral fertilization on yield, yield structure and bread-making quality of winter wheat. Arch. Agron. Soil Sci. 2001, 47, 423–444. [Google Scholar] [CrossRef]
- Verch, G.; Kächele, H.; Höltl, K.; Richter, C.; Fuchs, C. Comparing the profitability of tillage methods in Northeast Germany—A field trial from 2002 to 2005. Soil Tillage Res. 2009, 104, 16–21. [Google Scholar] [CrossRef]
- Ellerbrock, R.H.; Hohn, A.; Rogasik, J. Functional analysis of soil organic matter as affected by long-term manurial treatment. Eur. J. Soil Sci. 1999, 50, 65–71. [Google Scholar] [CrossRef]
- Chmielewski, F.M.; Kohn, W. Impact of weather on yield components of spring cereals over 30 years. Agric. For. Meteorol. 1999, 96, 49–58. [Google Scholar] [CrossRef]
- Chmielewski, F.M.; Köhn, W. Impact of weather on yield components of winter rye over 30 years. Agric. For. Meteorol. 2000, 102, 253–261. [Google Scholar] [CrossRef]
- Gauch, H.G. Statistical analysis of yield trials by AMMI and GGE. Crop Sci. 2006, 46, 1488–1500. [Google Scholar] [CrossRef]
- Krupnik, T.J.; Ahmed, Z.U.; Timsina, J.; Yasmin, S.; Hossain, F.; Al Mamun, A.; Mridha, A.I.; McDonald, A.J. Untangling crop management and environmental influences on wheat yield variability in Bangladesh: An application of non-parametric approaches. Agric. Syst. 2015, 139, 166–179. [Google Scholar] [CrossRef]
- Yang, R.-C. Towards understanding and use of mixed-model analysis of agricultural experiments. Can. J. Plant Sci. 2010, 90, 605–627. [Google Scholar] [CrossRef]
- Virk, D.; Witcombe, J. Evaluating cultivars in unbalanced on-farm participatory trials. Field Crops Res. 2008, 106, 105–115. [Google Scholar] [CrossRef]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–51. [Google Scholar] [CrossRef]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.-S.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef]
- Hopfield, J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 1982, 79, 2554–2558. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L.; Friedman, J.; Olshen, R.; Stone, C. Classification and regression trees. Wadsworth Int. Group 1984, 37, 237–251. [Google Scholar]
- Piepho, H. Analysing disease incidence data from designed experiments by generalized linear mixed models. Plant Pathol. 1999, 48, 668–674. [Google Scholar] [CrossRef]
- Lobell, D.B.; Ortiz-Monasterio, J.I.; Asner, G.P.; Naylor, R.L.; Falcon, W.P. Combining field surveys, remote sensing, and regression trees to understand yield variations in an irrigated wheat landscape. Agron. J. 2005, 97, 241–249. [Google Scholar]
- Zheng, H.; Chen, L.; Han, X.; Zhao, X.; Ma, Y. Classification and regression tree (CART) for analysis of soybean yield variability among fields in Northeast China: The importance of phosphorus application rates under drought conditions. Agric. Ecosyst. Environ. 2009, 132, 98–105. [Google Scholar] [CrossRef]
- Ferraro, D.O.; Rivero, D.E.; Ghersa, C.M. An analysis of the factors that influence sugarcane yield in Northern Argentina using classification and regression trees. Field Crops Res. 2009, 112, 149–157. [Google Scholar] [CrossRef]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Trajanov, A.; Spiegel, H.; Debeljak, M.; Sandén, T. Using data mining techniques to model primary productivity from international long-term ecological research (ILTER) agricultural experiments in Austria. Reg. Environ. Chang. 2019, 19, 325–337. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.-Y.; Ying, L. Decision tree methods: Applications for classification and prediction. Shanghai Arch. Psychiatry 2015, 27, 130. [Google Scholar]
- Loh, W.-Y. Regression tree models for designed experiments. Optim. Inst. Math. Stat. 2006, 49, 210–228. [Google Scholar]
- Bzdok, D.; Altman, N.; Krzywinski, M. Points of Significance: Statistics versus Machine Learning. Nat. Methods 2018, 15, 233–234. [Google Scholar] [CrossRef]
- Barkusky, D. Long-Term Field Experiment V140 Muencheberg from 1963 to 2009-Plots (Version 1.0); BonaRes Data Centre (Leibniz Centre for Agricultural Landscape Research (ZALF)): Müncheberg, Germany, 2018. [Google Scholar] [CrossRef]
- Mirschel, W.; Barkusky, D.; Hufnagel, J.; Kersebaum, K.C.; Nendel, C.; Laacke, L.; Luzi, K.; Rosner, G. Coherent multi-variable field data set of an intensive cropping system for agro-ecosystem modelling from Müncheberg, Germany. Open Data J. Agric. Res. 2016, 2, 6–15. [Google Scholar] [CrossRef] [Green Version]
- Thai, T.H.; Bellingrath-Kimura, S.D.; Hoffmann, C.; Barkusky, D. Effect of long-term fertilizer regimes and weather on spring barley yields in sandy soil in North-East Germany. Arch. Agron. Soil Sci. 2020, 66, 1812–1826. [Google Scholar] [CrossRef]
- DWD. DWD Station Number 03376. Available online: https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/daily/kl/historical/ (accessed on 25 October 2019).
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Grömping, U. Relative importance for linear regression in R: The package relaimpo. J. Stat. Softw. 2006, 17, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Quinlan, J.R. Learning with continuous classes. In Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, Hobart, Tasmania, 16–18 November 1992; pp. 343–348. [Google Scholar]
- Wang, Y.W.; Ian, H. Inducing model trees for continuous classes. In Proceedings of the 9th European Conference on Machine Learning, Prague, Czech Republic, 23–25 April 1997. [Google Scholar]
- Azzeh, M. Software effort estimation based on optimized model tree. In Proceedings of the 7th International Conference on Predictive Models in Software Engineering, Banff, AB, Canada, 20–21 September 2011; pp. 1–8. [Google Scholar]
- Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining: Practical Machine Learning Tools and Techniques, 4th ed.; Morgan Kaufmann (MK) Publishers is an imprint of Elsevier: Burlington, MA, USA, 2016; ISBN 9780128042915. [Google Scholar]
- Thi Kieu Tran, T.; Lee, T.; Shin, J.-Y.; Kim, J.-S.; Kamruzzaman, M. Deep learning-based maximum temperature forecasting assisted with meta-learning for hyperparameter optimization. Atmosphere 2020, 11, 487. [Google Scholar] [CrossRef]
- Fixen, P.E.; West, F.B. Nitrogen fertilizers: Meeting contemporary challenges. J. Hum. Environ. 2002, 31, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Blanchet, G.; Gavazov, K.; Bragazza, L.; Sinaj, S. Responses of soil properties and crop yields to different inorganic and organic amendments in a Swiss conventional farming system. Agric. Ecosyst. Environ. 2016, 230, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Barzegar, A.; Yousefi, A.; Daryashenas, A. The effect of addition of different amounts and types of organic materials on soil physical properties and yield of wheat. Plant Soil 2002, 247, 295–301. [Google Scholar] [CrossRef]
- Haynes, R.J.; Naidu, R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: A review. Nutr. Cycl. Agroecosyst. 1998, 51, 123–137. [Google Scholar] [CrossRef]
- Omari, R.A.; Aung, H.P.; Hou, M.; Yokoyama, T.; Onwona-Agyeman, S.; Oikawa, Y.; Fujii, Y.; Bellingrath-Kimura, S.D. Influence of different plant materials in combination with chicken manure on soil carbon and nitrogen contents and vegetable yield. Pedosphere 2016, 26, 510–521. [Google Scholar] [CrossRef]
- Rasmussen, I.S.; Dresbøll, D.B.; Thorup-Kristensen, K. Winter wheat cultivars and nitrogen (N) fertilization-effects on root growth, N uptake efficiency and N use efficiency. Eur. J. Agron. 2015, 68, 38–49. [Google Scholar] [CrossRef]
- Acevedo, E.; Silva, P.; Silva, H. Wheat growth and physiology. In Bread Wheat, Improvement and Production; Fao. Org: Rome, Italy, 2002; p. 30. [Google Scholar]
- Evans, L.T.; Wardlaw, I.; Fischer, R. Crop Physiology: Some Case Histories; Evans, L., Ed.; the Syndics of Cambridge University Press: Cambridge, UK, 1975. [Google Scholar]
- Zheng, D.; Yang, X.; Mínguez, M.I.; Mu, C.; He, Q.; Wu, X. Effect of freezing temperature and duration on winter survival and grain yield of winter wheat. Agric. For. Meteorol. 2018, 260, 1–8. [Google Scholar] [CrossRef]
- Bergjord Olsen, A.; Persson, T.; de Wit, A.; Nkurunziza, L.; Sindhøj, E.; Eckersten, H. Estimating winter survival of winter wheat by simulations of plant frost tolerance. J. Agron. Crop Sci. 2018, 204, 62–73. [Google Scholar] [CrossRef]
- Barlow, K.; Christy, B.; O’leary, G.; Riffkin, P.; Nuttall, J. Simulating the impact of extreme heat and frost events on wheat crop production: A review. Field Crops Res. 2015, 171, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Lollato, R.; Knapp, M.; Redmond, C. Factors to Consider in Winter Survival of Wheat. Agronomy eUpdates-Kansas State University. 2019. Available online: https://webapp.agron.ksu.edu/agr_social/article_new/factors-to-consider-in-winter-survival-of-wheat-362-1 (accessed on 7 June 2020).
- Persson, T.; Bergjord Olsen, A.; Nkurunziza, L.; Sindhöj, E.; Eckersten, H. Estimation of crown temperature of winter wheat and the effect on simulation of frost tolerance. J. Agron. Crop Sci. 2017, 203, 161–176. [Google Scholar] [CrossRef]
- WCG. World Climate Guide—Climate Germany. Available online: https://www.climatestotravel.com/climate/germany#:~:text=In%20most%20of%20Germany%2C%20the,F)%20in%20July%20and%20August (accessed on 21 April 2020).
- Altenbach, S.; DuPont, F.; Kothari, K.; Chan, R.; Johnson, E.; Lieu, D. Temperature, water and fertilizer influence the timing of key events during grain development in a US spring wheat. J. Cereal Sci. 2003, 37, 9–20. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, G.P.; Prasad, P.V.; Fritz, A.K.; Kirkham, M.B.; Gill, B.S. Effects of drought and high temperature stress on synthetic hexaploid wheat. Funct. Plant Biol. 2012, 39, 190–198. [Google Scholar] [CrossRef]
- Wiebe, K.; Lotze-Campen, H.; Sands, R.; Tabeau, A.; van der Mensbrugghe, D.; Biewald, A.; Bodirsky, B.; Islam, S.; Kavallari, A.; Mason-D’Croz, D. Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environ. Res. Lett. 2015, 10, 085010. [Google Scholar] [CrossRef]
- Lobell, D.B.; Sibley, A.; Ortiz-Monasterio, J.I. Extreme heat effects on wheat senescence in India. Nat. Clim. Chang. 2012, 2, 186–189. [Google Scholar] [CrossRef]
- Meng, T.; Carew, R.; Florkowski, W.J.; Klepacka, A.M. Analyzing temperature and precipitation influences on yield distributions of canola and spring wheat in Saskatchewan. J. Appl. Meteorol. Climatol. 2017, 56, 897–913. [Google Scholar] [CrossRef] [Green Version]
- Shimoda, S.; Hamasaki, T.; Hirota, T.; Kanno, H.; Nishio, Z. Sensitivity of wheat yield to temperature changes with regional sunlight characteristics in eastern Hokkaido. Int. J. Climatol. 2015, 35, 4176–4185. [Google Scholar] [CrossRef]
- Spiertz, J. Relation between green area duration and grain yield in some varieties of spring wheat. Neth. J. Agr. Sci. 1971, 19, 211–222. [Google Scholar] [CrossRef]
- Hejcman, M.; Kunzova, E. Sustainability of winter wheat production on sandy-loamy Cambisol in the Czech Republic: Results from a long-term fertilizer and crop rotation experiment. Field Crops Res. 2010, 115, 191–199. [Google Scholar] [CrossRef]
- Kunzová, E.; Hejcman, M. Yield development of winter wheat over 50 years of FYM, N, P and K fertilizer application on black earth soil in the Czech Republic. Field Crops Res. 2009, 111, 226–234. [Google Scholar] [CrossRef]
- Kunzová, E.; Hejcman, M. Yield development of winter wheat over 50 years of nitrogen, phosphorus and potassium application on greyic Phaeozem in the Czech Republic. Eur. J. Agron. 2010, 33, 166–174. [Google Scholar] [CrossRef]
- Evans, J.; Scott, G.; Lemerle, D.; Kaiser, A.; Orchard, B.; Murray, G.; Armstrong, E. Impact of legume ‘break’ crops on the yield and grain quality of wheat and relationship with soil mineral N and crop N content. Aust. J. Agric. Res. 2003, 54, 777–788. [Google Scholar] [CrossRef]
- Seremesic, S.; Milosev, D.; Djalovic, I.; Zeremski, T.; Ninkov, J. Management of soil organic carbon in maintaining soil productivity and yield stability of winter wheat. Plant Soil Environ. 2011, 57, 216–221. [Google Scholar] [CrossRef] [Green Version]
- Sihag, P.; Karimi, S.M.; Angelaki, A. Random forest, M5P and regression analysis to estimate the field unsaturated hydraulic conductivity. Appl. Water Sci. 2019, 9, 129. [Google Scholar] [CrossRef] [Green Version]
- Lehtinen, T.; Dersch, G.; Söllinger, J.; Baumgarten, A.; Schlatter, N.; Aichberger, K.; Spiegel, H. Long-term amendment of four different compost types on a loamy silt Cambisol: Impact on soil organic matter, nutrients and yields. Arch. Agron. Soil Sci. 2017, 63, 663–673. [Google Scholar] [CrossRef]
- Spiegel, H.; Sandén, T.; Dersch, G.; Baumgarten, A.; Gründling, R.; Franko, U. Soil organic matter and nutrient dynamics following different management of crop residues at two sites in Austria. In Soil Management and Climate Change; Elsevier: Amsterdam, The Netherlands, 2018; pp. 253–265. [Google Scholar]
Group Treatment | Yield (Mg DM ha−1) | ±Se | CV | Percent Change in Yield Relative to Control (%) | Percent Change in Yield Relative to PK + fym2 (%) |
---|---|---|---|---|---|
Control | 1.48 a | 0.19 | 0.33 | - | −34 |
NPK | 4.10 c | 0.41 | 0.26 | 179 | 85 |
PK + fym2 | 2.23 b | 0.32 | 0.39 | 51 | - |
NPK + fym1 | 4.11 cd | 0.40 | 0.26 | 179 | 85 |
NPK + fym2 | 4.42 d | 0.45 | 0.27 | 200 | 99 |
NPK + straw | 4.23 cd | 0.42 | 0.26 | 187 | 90 |
Source | Type III Sum of Squares | df | Mean Square | F | Sig. | Eta Squared (h2) |
---|---|---|---|---|---|---|
Corrected Model | 2315.99 | 146 | 15.86 | 32.40 | *** | - |
Intercept | 17,142.05 | 1 | 17,142.05 | 35,009.21 | *** | - |
Treatment | 920.13 | 20 | 46.01 | 93.96 | *** | 34 |
Year | 1148.10 | 6 | 191.35 | 390.79 | *** | 42 |
Treatment x Year | 154.63 | 120 | 1.29 | 2.63 | *** | 6 |
Error | 462.71 | 945 | 0.49 | - | - | 17 |
Total | 21,013.49 | 1092 | - | - | - | - |
Corrected Total | 2778.71 | 1091 | - | - | - | - |
Model | M0: Intercept Only | M: with Predictors | ||||
---|---|---|---|---|---|---|
Estimate (β, Mg ha−1) | s.e. | p-Values | Estimate (β, Mg ha−1) | s.e. | p-Values | |
Fixed effects | ||||||
Intercept | 4.081 | 0.443 | *** | −2.426 | 0.231 | *** |
N fertilizer rate | - | - | - | 0.012 | 0.001 | *** |
Freezing days in December | - | - | - | 0.144 | 0.011 | *** |
Precipitation in June | - | - | - | 0.005 | 0.001 | *** |
Freezing days in February | - | - | - | 0.134 | 0.007 | *** |
Preceding crop yield | - | - | - | 0.157 | 0.015 | *** |
Days Tmax > 30 °C in July | - | - | - | −0.139 | 0.016 | *** |
Temperature in October | - | - | - | 0.215 | 0.017 | *** |
Total N in soil | - | - | - | 0.001 | 0.0001 | *** |
Rm2 | 0 | - | - | 0.73 | - | - |
Random effects | Variance | SD | Variance | SD | ||
Plot | 0.82 | 0.90 | *** | 0.09 | 0.31 | *** |
Block | 0.09 | 0.31 | *** | 0.06 | 0.26 | *** |
Year | 1.01 | 1.01 | *** | - | - | ns |
Residual | 0.51 | 0.71 | - | 0.46 | 0.68 | - |
Deviance | 2702.30 | - | - | 2516.9 | - | - |
Rc2 (Total) | 0.79 | - | - | 0.8 | - | - |
LMM | Relative Contributions with Confidence Intervals (%) | M5P Regression Tree | Relative Contributions with Confidence Intervals (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
No. | Predictors | Relative important variables | Lower | Upper | No. | Predictors | Relative important variables | Lower | Upper |
Fixed effects | |||||||||
1 | Nitrogen fertilizer rate | 21.7 a | 19.2 | 24.3 | 1 | Freezing days in December | 31.7 a | 29.2 | 34.2 |
2 | Freezing days in December | 17.3 b | 15.7 | 19.0 | 2 | Nitrogen fertilizer rate | 22.5 b | 19.7 | 25.6 |
3 | Precipitation in June | 8.2 cd | 6.9 | 9.6 | 3 | Preceding crop yield | 7.9 c | 6.5 | 9.2 |
4 | Freezing days in February | 7.6 cde | 6.3 | 9.2 | 4 | Temperature in October | 5 de | 3.9 | 6.3 |
5 | Preceding crop yield | 6.6 def | 5.6 | 7.7 | 5 | Freezing days in February | 4.6 de | 3.6 | 5.8 |
6 | Days Tmax > 30 °C in July | 6.0 ef | 5.3 | 6.8 | 6 | Total nitrogen in the soil | 3.0 f | 2.4 | 3.8 |
7 | Temperature in October | 3.9 gh | 3.0 | 4.9 | 7 | SOC | 2.3 g | 2 | 2.8 |
8 | Total nitrogen in the soil | 3.3 gh | 2.5 | 4.1 | 8 | FYM | 0.4 h | 0.3 | 0.6 |
Random effects | |||||||||
1 | Plot | 15.2 | - | - | - | - | - | - | |
2 | Block | 10.5 | - | - | - | - | - | - | |
Statistical indicators | |||||||||
R2 | 0.8 | - | - | - | - | 0.8 | - | - | - |
RMSE | 0.68 | - | - | - | - | 0.74 | - | - | - |
MAE | 0.54 | - | - | - | - | 0.58 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thai, T.H.; Omari, R.A.; Barkusky, D.; Bellingrath-Kimura, S.D. Statistical Analysis versus the M5P Machine Learning Algorithm to Analyze the Yield of Winter Wheat in a Long-Term Fertilizer Experiment. Agronomy 2020, 10, 1779. https://doi.org/10.3390/agronomy10111779
Thai TH, Omari RA, Barkusky D, Bellingrath-Kimura SD. Statistical Analysis versus the M5P Machine Learning Algorithm to Analyze the Yield of Winter Wheat in a Long-Term Fertilizer Experiment. Agronomy. 2020; 10(11):1779. https://doi.org/10.3390/agronomy10111779
Chicago/Turabian StyleThai, Thi Huyen, Richard Ansong Omari, Dietmar Barkusky, and Sonoko Dorothea Bellingrath-Kimura. 2020. "Statistical Analysis versus the M5P Machine Learning Algorithm to Analyze the Yield of Winter Wheat in a Long-Term Fertilizer Experiment" Agronomy 10, no. 11: 1779. https://doi.org/10.3390/agronomy10111779
APA StyleThai, T. H., Omari, R. A., Barkusky, D., & Bellingrath-Kimura, S. D. (2020). Statistical Analysis versus the M5P Machine Learning Algorithm to Analyze the Yield of Winter Wheat in a Long-Term Fertilizer Experiment. Agronomy, 10(11), 1779. https://doi.org/10.3390/agronomy10111779