Contrasting Growth, Photosynthesis, Antioxidant Responses and Water Use Efficiency in Two Medicago sativa L. Genotypes under Different Phosphorus and Soil Water Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Set-Up
2.2. Gas Exchange Measurements
2.3. Plant Measurements
2.4. Water-Use Efficiency and P-Use Efficiency
2.5. ROS and Lipid Peroxidation
2.6. Antioxidant Enzymes Assay
2.7. Statistical Analyses
3. Results
3.1. Plant Growth and Dry Mass Allocation
3.2. Shoot Morphology
3.3. Gas Exchange
3.4. Water-Use Efficiency and Phosphorus-Use Efficiency
3.5. Relative Oxygen Species (ROS) and Lipid Membrane Peroxidation
3.6. Antioxidant Enzyme Activities
4. Discussion
4.1. Plant Growth, Dry Matter Allocation and Morphology
4.2. Photosynthesis and Water- and P-Use Efficiency
4.3. ROS Production, Lipid Peroxidation, and Antioxidative Defense System
4.4. Whole Plant Responses to Both Water and P Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fan, J.W.; Du, Y.L.; Turner, N.C.; Wang, B.R.; Fang, Y.; Xi, Y.; Guo, X.R.; Li, F.M. Changes in root morphology and physiology to limited phosphorus and moisture in a locally-selected cultivar and an introduced cultivar of Medicago sativa L. growing in alkaline soil. Plant Soil 2015, 392, 215–226. [Google Scholar] [CrossRef]
- Jia, Y.; Li, F.M.; Wang, X.L.; Xu, J.Z. Dynamics of soil organic carbon and soil fertility affected by alfalfa productivity in a semiarid agro-ecosystem. Biogeochemistry 2006, 80, 233–243. [Google Scholar] [CrossRef]
- Jiang, H.M.; Jiang, J.P.; Jia, Y.; Li, F.M.; Xu, J.Z. Soil carbon pool and effects of soil fertility in seeded alfalfa fields on the semi-arid Loess Plateau in China. Soil Biol. Biochem. 2006, 38, 2350–2358. [Google Scholar] [CrossRef]
- Fan, J.W.; Du, Y.L.; Wang, B.R.; Turner, N.C.; Wang, T.; Abbott, L.K.; Stefanova, K.; Siddique, K.H.M.; Li, F.M. Forage yield, soil water depletion, shoot nitrogen and phosphorus uptake and concentration, of young and old stands of alfalfa in response to nitrogen and phosphorus fertilisation in a semiarid environment. Field Crop Res. 2016, 198, 247–257. [Google Scholar] [CrossRef]
- Gu, Y.J.; Han, C.L.; Fan, J.W.; Shi, X.P.; Kong, M.; Shi, X.Y.; Siddique, K.H.M.; Zhao, Y.Y.; Li, F.M. Alfalfa forage yield, soil water and P availability in response to plastic film mulch and P fertilization in a semiarid environment. Field Crop Res. 2018, 215, 94–103. [Google Scholar] [CrossRef]
- Turner, N.C.; Molyneux, N.; Yang, S.; Xiong, Y.C.; Siddique, K.H.M. Climate change in south-west Australia and north-west China: Challenges and opportunities for crop production. Crop. Pasture Sci. 2011, 62, 445–456. [Google Scholar] [CrossRef]
- Cordell, D.; Drangert, J.O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Suriyagoda, L.D.; Ryan, M.H.; Renton, M.; Lambers, H. Multiple adaptive responses of Australian native perennial legumes with pasture potential to grow in phosphorus- and moisture-limited environments. Ann. Bot. 2010, 105, 755–767. [Google Scholar] [CrossRef] [Green Version]
- Suriyagoda, L.D.; Ryan, M.H.; Renton, M.; Lambers, H. Plant responses to limited moisture and phosphorus availability: A meta-analysis. Adv. Agron. 2014, 124, 143–200. [Google Scholar]
- Jiang, M.; Zhang, J. Role of abscisic acid in water stress-induced antioxidant defense in leaves of maize seedlings. Free Radic. Res. 2002, 36, 1001–1015. [Google Scholar] [CrossRef]
- Desai, S.; Naik, D.; Cumming, J.R. The influence of phosphorus availability and Laccaria bicolor symbiosis on phosphate acquisition, antioxidant enzyme activity, and rhizospheric carbon flux in Populus tremuloides. Mycorrhiza 2014, 24, 369–382. [Google Scholar] [CrossRef]
- Asada, K. The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50, 601–639. [Google Scholar] [CrossRef] [PubMed]
- Plaxton, W.C.; Tran, H.T. Metabolic adaptation of phosphate-starved plants. Plant Physiol. 2011, 156, 1006–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tariq, A.; Pan, K.; Olatunji, O.A.; Graciano, C.; Li, Z.; Sun, F.; Sun, X.; Song, D.; Chen, W.; Zhang, A.; et al. Phosphorous Application Improves Drought Tolerance of Phoebe zhennan. Front. Plant Sci. 2017, 8, 1561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, Y.L.; Wang, Z.Y.; Fan, J.W.; Turner, N.C.; Wang, T.; Li, F.M. β-Aminobutyric acid increases abscisic acid accumulation and desiccation tolerance and decreases water use but fails to improve grain yield in two spring wheat cultivars under soil drying. J. Exp. Bot. 2012, 63, 4849–4860. [Google Scholar] [CrossRef]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [Green Version]
- Noctor, G.; Foyer, C.H. Ascorbate and glutathione: Keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 249–279. [Google Scholar] [CrossRef]
- Chen, S.; Zhao, H.; Ding, G.; Xu, F. Genotypic differences in antioxidant response to phosphorus deficiency in Brassica napus. Plant Soil 2015, 391, 19–32. [Google Scholar] [CrossRef]
- Du, Y.L.; Wang, Z.Y.; Fan, J.W.; Turner, N.C.; He, J.; Wang, T.; Li, F.M. Exogenous abscisic acid reduces water loss and improves antioxidant defence, desiccation tolerance and transpiration efficiency in two spring wheat cultivars subjected to a soil water deficit. Funct. Plant Biol. 2013, 40, 494–506. [Google Scholar] [CrossRef]
- Zhang, C.; Shi, S.; Liu, Z.; Yang, F.; Yin, G. Drought tolerance in alfalfa (Medicago sativa L.) varieties is associated with enhanced antioxidative protection and declined lipid peroxidation. J. Plant Physiol. 2019, 232, 226–240. [Google Scholar] [CrossRef]
- Jia, Y.; Li, F.M.; Wang, X.L. Soil quality responses to alfalfa watered with a field micro-catchment technique in the Loess Plateau of China. Field Crop Res. 2006, 95, 64–74. [Google Scholar] [CrossRef]
- Xu, H.Z.; Yang, Z.P.; Xian, C.Z.; Li, S.Z.; Hu, Y.R.; Yu, H.Y.; Yu, J.Y. Research report of an alfalfa introduction trail. Pratac Sci. 2005, 22, 47–52. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ. 1954, 939, 1–19. [Google Scholar]
- Elstner, E.F.; Heupel, A. Inhibition of nitrite formation from hydroxylammoniumchloride: A simple assay for superoxide dismutase. Anal. Biochem. 1976, 70, 616–620. [Google Scholar] [CrossRef]
- Brennan, T.; Frenkel, C. Involvement of hydrogen peroxide in the regulation of senescence in pear. Plant Physiol. 1977, 59, 411–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Xu, C.; Zou, Q.; Meng, Q. Improvements of method for measurement of malondialdehyde in plant tissues. Plant Physiol. Commun. 1994, 30, 207–210. [Google Scholar]
- Giannopolitis, C.N.; Ries, S.K. Superoxide dismutase: I. Occurrence in higher plants. Plant Physiol. 1977, 59, 309–314. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. In Methods in Enzymology; Packer, L., Ed.; Academic Press: London, UK, 1984. [Google Scholar]
- Amako, K.; Chen, G.X.; Asada, K. Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants. Plant Cell Physiol. 1994, 35, 497–504. [Google Scholar]
- Schaedle, M. Chloroplast glutathione reductase. Plant Physiol. 1977, 59, 1011–1012. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Jin, Y.; Du, Y.L.; Wang, T.; Turner, N.C.; Yang, R.P.; Siddique, K.H.M.; Li, F.M. Genotypic variation in yield, yield components, root morphology and architecture, in soybean in relation to water and phosphorus supply. Front. Plant Sci. 2017, 8, 1499. [Google Scholar] [CrossRef] [Green Version]
- Wouterlood, M.; Cawthray, G.R.; Turner, S.; Lambers, H.; Veneklaas, E.J. Rhizosphere carboxylate concentrations of chickpea are affected by genotype and soil type. Plant Soil 2004, 261, 1–10. [Google Scholar] [CrossRef]
- Weiner, J. Allocation, plasticity and allometry in plants. Perspect. Plant Ecol. 2004, 6, 207–215. [Google Scholar] [CrossRef]
- Pang, J.; Ryan, M.H.; Tibbett, M.; Cawthray, G.R.; Siddique, K.H.M.; Bolland, M.D.; Denton, M.D.; Lambers, H. Variation in morphological and physiological parameters in herbaceous perennial legumes in response to phosphorus supply. Plant Soil 2010, 331, 241–255. [Google Scholar] [CrossRef]
- Cho, L.H.; Yoon, J.; An, G. The control of flowering time by environmental factors. Plant J. 2017, 90, 708–719. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.W.; Turner, N.C.; Xu, D.H.; Jin, Y.; He, J.; Li, F.M. Limits to the height growth of Caragana korshinskii resprouts. Tree Physiol. 2013, 33, 275–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shangguan, Z.P.; Lei, T.W.; Shao, M.A.; Xue, Q.W. Effects of phosphorus nutrient on the hydraulic conductivity of sorghum (Sorghum vulgare Pers.) seedling roots under water deficiency. J. Integr. Plant. Biol. 2005, 47, 421–427. [Google Scholar] [CrossRef]
- Irvine, J.; Perks, M.P.; Magnani, F.; Grace, J. The response of Pinus sylvestris to drought: Stomatal control of transpiration and hydraulic conductance. Tree Physiol. 1998, 18, 393–402. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Li, H.; Shen, Q.; Tang, X.; Xiong, C.; Li, H.; Pang, J.; Ryan, M.H.; Lambers, H.; Shen, J. Tradeoffs among root morphology, exudation and mycorrhizal symbioses for phosphorus-acquisition strategies of 16 crop species. New Phytol. 2019, 223, 882–895. [Google Scholar] [CrossRef]
Character. | Source of Variability | ||||||
---|---|---|---|---|---|---|---|
G | P | W | G × P | G ×W | P × W | G × P × W | |
Total dry mass (g plant−1) | *** (0.050) | *** (0.071) | *** (0.061) | *** (0.100) | *** (0.087) | *** (0.123) | n.s. |
Shoot dry mass (g plant−1) | *** (0.037) | *** (0.053) | *** (0.046) | * (0.074) | ** (0.064) | *** (0.091) | n.s. |
Root dry mass (g plant−1) | *** (0.024) | *** (0.036) | *** (0.031) | *** (0.051) | *** (0.044) | *** (0.061) | ** (0.087) |
Plant height (mm) | *** (1.5) | *** (2.1) | *** (1.8) | n.s. | n.s. | *** (3.6) | n.s. |
Number of branches per plant | *** (0.15) | *** (0.21) | *** (0.18) | n.s. | n.s. | n.s. | n.s. |
Total leaf area (cm2 plant−1) | n.s. | *** (8.5) | *** (7.3) | n.s. | n.s. | *** (14.7) | n.s. |
Stem diameter at base (mm) | ** (0.17) | *** (0.24) | *** (0.21) | * (0.34) | *** (0.29) | *** (0.41) | n.s. |
Net photosynthetic rate (Pn) (μmol CO2 m−2 s−1) | *** (0.51) | *** (0.72) | *** (0.62) | n.s. | *** (0.88) | *** (1.25) | n.s. |
Stomatal conductance (gs) (mmol H2O m−2 s−1) | ** (6.3) | ** (8.9) | *** (7.7) | n.s. | n.s. | n.s. | n.s. |
Transpiration rate (Tr) (mmol H2O m−2 s−1) | *** (0.09) | *** (0.12) | *** (0.11) | n.s. | n.s. | ** (0.21) | n.s. |
Intrinsic water use efficiency (WUEi, Pn/Tr) | n.s. | *** (0.22) | n.s. | n.s. | *** (0.27) | *** (0.38) | n.s. |
Water-use efficiency (WUE) (g total DM kg−1 H2O) | * (0.057) | *** (0.081) | *** (0.070) | n.s. | * (0.099) | *** (0.139) | * (0.197) |
P-use efficiency (PUE) (g total DM mg−1 applied P) | ** (0.010) | *** (0.012) | *** (0.012) | n.s. | * (0.017) | *** (0.021) | n.s. |
Production rate of reactive oxygen species (O2−) (nmol g−1 FW min−1) | n.s. | *** (0.28) | *** (0.24) | n.s. | * (0.34) | n.s. | n.s. |
Hydrogen peroxide concentration (H2O2) (μmol g−1 FW) | * (0.22) | *** (0.31) | *** (0.27) | n.s. | ** (0.38) | n.s. | n.s. |
Malondialdehyde (MDA) concentration (nmol g−1 FW) | * (0.26) | *** (0.37) | *** (0.32) | n.s. | ** (0.45) | n.s. | n.s. |
Superoxidae dismutase (SOD) activity (U g−1 FW) | n.s. | *** (5.74) | *** (4.94) | * (8.12) | *** (7.03) | n.s. | n.s. |
Catalase (CAT) activity (μmol g−1 FW min−1) | n.s. | *** (1.9) | *** (1.6) | n.s. | *** (2.3) | ** (3.3) | n.s. |
Ascorbate peroxidae (APX) activity (μmol g−1 FW min−1) | ** (9.1) | *** (12.9) | *** (11.1) | n.s. | n.s. | * (22.3) | n.s. |
Glutathione reductase (GR) activity (μmol g−1 FW min−1) | n.s. | *** (0.028) | *** (0.024) | n.s. | n.s. | n.s. | n.s. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.-W.; Yang, X.-W.; Wang, T.; Li, Y.; Zhao, H.; Du, Y.-L. Contrasting Growth, Photosynthesis, Antioxidant Responses and Water Use Efficiency in Two Medicago sativa L. Genotypes under Different Phosphorus and Soil Water Conditions. Agronomy 2020, 10, 1534. https://doi.org/10.3390/agronomy10101534
Fan J-W, Yang X-W, Wang T, Li Y, Zhao H, Du Y-L. Contrasting Growth, Photosynthesis, Antioxidant Responses and Water Use Efficiency in Two Medicago sativa L. Genotypes under Different Phosphorus and Soil Water Conditions. Agronomy. 2020; 10(10):1534. https://doi.org/10.3390/agronomy10101534
Chicago/Turabian StyleFan, Jing-Wei, Xiao-Wei Yang, Tao Wang, Yuan Li, Hong Zhao, and Yan-Lei Du. 2020. "Contrasting Growth, Photosynthesis, Antioxidant Responses and Water Use Efficiency in Two Medicago sativa L. Genotypes under Different Phosphorus and Soil Water Conditions" Agronomy 10, no. 10: 1534. https://doi.org/10.3390/agronomy10101534
APA StyleFan, J.-W., Yang, X.-W., Wang, T., Li, Y., Zhao, H., & Du, Y.-L. (2020). Contrasting Growth, Photosynthesis, Antioxidant Responses and Water Use Efficiency in Two Medicago sativa L. Genotypes under Different Phosphorus and Soil Water Conditions. Agronomy, 10(10), 1534. https://doi.org/10.3390/agronomy10101534