Supplementing Nitrogen in Combination with Rhizobium Inoculation and Soil Mulch in Peanut (Arachis hypogaea L.) Production System: Part II. Effect on Phenology, Growth, Yield Attributes, Pod Quality, Profitability and Nitrogen Use Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Characteristics
2.2. Experimental Details
2.3. Measurements and Analytical Procedures
2.3.1. Growth and Yield Attributes
2.3.2. Nutrient and Quality Assessment
2.3.3. Calculation of Nutrient Indices
2.3.4. Economics Analysis
2.3.5. Statistical Analysis
3. Results and Discussions
3.1. Growth Attributes
3.2. Yield Attribution Characteristics
3.3. Nutrient Uptake
3.4. Quality Traits
3.5. N Use Efficiency
3.6. Economic Benefits Achieved with Different Treatments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ojiewo, C.; Janila, P.; Bhatnagar-Mathur, P.; Pandey, M.K.; Desmae, H.; Okori, P.; Mwololo, J.; Ajeigbe, H.; Njuguna-Mungai, E.; Muricho, G.; et al. Advances in crop improvement and delivery research for nutritional quality and health benefits of groundnut (Arachis hypogaea L.). Front. Plant Sci. 2020, 11, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GOI. Agriculture. Statistical Year Book India. Government of India. Ministry of Statistics and Programme Implementation, New Delhi. 2018. Available online: http://www.mospi.gov.in/statistical-year-book-india/2018/177 (accessed on 17 February 2020).
- Rathnakumar, A.L.; Singh, R.; Parmar, D.L.; Misram, J.B. Groundnut: A crop profile and compendium of notified varieties of India; Directorate of Groundnut Research: Gurajat, India, 2013. [Google Scholar]
- Jain, N.K.; Jat, R.A.; Yadav, R.S.; Bhaduri, D.; Meena, H.N. Polythene mulching and fertigation in peanut (Arachis hypogaea): Effect on crop productivity, quality, water productivity and economic profitability. Indian J. Agric. Sci. 2018, 88, 1168–1178. [Google Scholar]
- Jain, N.K.; Meena, H.N.; Bhaduri, D. Improvement in productivity, water-use efficiency, and soil nutrient dynamics of summer peanut (Arachis hypogaea L.) through use of polythene mulch, hydrogel, and nutrient management. Commun. Soil Sci. Plant Anal. 2017, 48, 549–564. [Google Scholar] [CrossRef]
- Awe, G.; Reichert, J.M.; Timm, L.C.; Wendroth, O.O. Temporal processes of soil water status in a sugarcane field under residue management. Plant Soil 2014, 387, 395–411. [Google Scholar] [CrossRef]
- Martín-Closas, L.; Costa, J.; Pelacho, A.M. Agronomic Effects of Biodegradable Films on Crop and Field Environment. In Green Chemistry and Sustainable Technology; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2017; pp. 67–104. [Google Scholar]
- Wang, Y.P.; Li, X.G.; Fu, T.; Wang, L.; Turner, N.C.; Siddique, K.H.; Li, F.-M. Multi-site assessment of the effects of plastic-film mulch on the soil organic carbon balance in semiarid areas of China. Agric. For. Meteorol. 2016, 228, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Mohapatra, A.K.B.; Dixit, L. Integrated nutrient management in rainy season groundnut (Arachis hypogaea). Indian J. Agron. 2010, 55, 123–127. [Google Scholar]
- Jat, N.L.; Jain, N.K.; Choudhary, G.R. Integrated nutrient management in fenugreek (Trigonella foenumgraecum). Indian J. Agron. 2006, 51, 331–333. [Google Scholar]
- Xie, K.-Y.; Li, X.; He, F.; Zhang, Y.; Wan, L.; David, B.H.; Wang, D.; Qin, Y.; Gamal, M.A.F. Effect of nitrogen fertilization on yield, N content, and nitrogen fixation of alfalfa and smooth bromegrass grown alone or in mixture in greenhouse pots. J. Integr. Agric. 2015, 14, 1864–1876. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Cassman, K.; Specht, J.; Walters, D.; Weiss, A.; Dobermann, A. Nitrogen uptake, fixation and response to fertilizer N in soybeans: A review. Field Crop. Res. 2008, 108, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Gorissen, S.H.M.; Crombag, J.J.R.; Senden, J.M.G.; Waterval, W.A.H.; Bierau, J.; Verdijk, L.B.; Van Loon, L.J.C. Protein content and amino acid composition of commercially available plant-based protein isolates. Amino Acids 2018, 50, 1685–1695. [Google Scholar] [CrossRef] [Green Version]
- Ohyama, T.; Minagawa, R.; Ishikawa, S.; Yamamoto, M.; Hung, N.V.P.; Ohtake, N.; Sueyoshi, K.; Sato, T.; Nagumo, Y.; Takahashi, Y. Soybean seed production and nitrogen nutrition. In A Comprehensive Survey of International Soybean Research-Genetics, Physiology, Agronomy and Nitrogen Relationships; IntechOpen: London, UK, 2013; pp. 115–157. [Google Scholar]
- Osborne, S.L.; Riedell, W.E. Impact of low rates of nitrogen applied at planting on soybean nitrogen fixation. J. Plant Nutr. 2011, 34, 436–448. [Google Scholar] [CrossRef]
- Moreau, D.; Voisin, A.S.; Salon, C.; Munier–Jolain, N. The model symbiotic association between Medicago truncatula cv. Jemalong and Rhizobium meliloti strain 2011 leads to N–stressed plants when symbiotic N2 fixation in the main N source for plant growth. J. Exp. Bot. 2008, 59, 3509–3522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathenge, C.; Thuita, M.; Masso, C.; Gweyi-Onyango, J.; Vanlauwe, B. Variability of soybean response to rhizobia inoculant, vermicompost, and a legume-specific fertilizer blend in Siaya County of Kenya. Soil Tillage Res. 2019, 194, 104290. [Google Scholar] [CrossRef] [PubMed]
- Arora, N.K. Plant microbe symbiosis: Fundamentals and advances. In Plant Microbe Symbiosis: Fundamentals and Advances; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Argaw, A. Development of environmental friendly bioinoculate for peanut (Arachis hypogea L.) production in Eastern Ethiopia. Environ. Syst. Res. 2017, 6, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Argaw, A. Integrating inorganic NP application and Bradyrhizobium inoculation to minimize production cost of peanut (Arachis hypogea L.) in Eastern Ethiopia. Agric. Food Secur. 2018, 7, 20. [Google Scholar] [CrossRef]
- Nievas, F.; Bogino, P.; Nocelli, N.; Giordano, W. Genotypic analysis of isolated peanut-nodulating rhizobial strains reveals differences among populations obtained from soils with different cropping histories. Appl. Soil Ecol. 2012, 53, 74–82. [Google Scholar] [CrossRef]
- Mondal, M.; Skalicky, M.; Garai, S.; Gunri, S.K.; Hossain, A.; Sarkar, S.; Banerjee, H.; Kundu, R.; Brestic, M.; Barutcular, C.; et al. Supplementing nitrogen in combination with Rhizobium inoculation and soil mulch in peanut (Arachis hypogaea L.) production system: Part I. Effect on productivity, nutrient dynamics, soil moisture and microbial activity. Agronomy 2020, in press. [Google Scholar]
- Ray, K.; Banerjee, H.; Bhattacharyya, K.; Dutta, S.; Phonglosa, A.; Pari, A.; Sarkar, S. Site-specific nutrient management for maize hybrids in an inceptisol of West Bengal, India. Exp. Agric. 2017, 54, 874–887. [Google Scholar] [CrossRef]
- Deshwal, V.K.; Dubey, R.C.; Maheshwari, D.K. Isolation of plant growth promoting strains of BradyRhizobium (Arachis sp.) With biocontrol potential against Macrophomina phaseolina causing charcoal rot of peanut. Curr. Sci. 2003, 84, 443–448. [Google Scholar]
- Mondal, M.; Gunri, S.K.; Sengupta, A.; Kundu, R. Productivity enhancement of rabi groundnut (Arachis hypogaea L.) under polythene mulching and rhizobium inoculation under new alluvial zone of West Bengal. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2308–2313. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Tam, H.M.; Wani, S.P.; Long, T.D. Effect of mulch on soil temperature, moisture, weed infestation and yield of groundnut in northern Vietnam. Field Crop. Res. 2006, 95, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Namvar, A.; Seyed, S.R.; Khandan, T.; Jafari, M.M. Seed inoculation and inorganic nitrogen fertilization effects on some physiologicaland agronomical traits of chickpea (Cicer arietinum L.) in irrigated condition. J. Cent. Eur. Agric. 2013, 14, 28–40. [Google Scholar] [CrossRef] [Green Version]
- Caliskan, S.; Özkaya, I.; Caliskan, M.; Arslan, M. The effects of nitrogen and iron fertilization on growth, yield and fertilizer use efficiency of soybean in a Mediterranean-type soil. Field Crop. Res. 2008, 108, 126–132. [Google Scholar] [CrossRef]
- Mishra, M.; Kumar, U.; Mishra, P.K.; Prakash, V. Efficiency of plant growth promoting Rhizobacteria for the enhancement of Cicer arietinum L. growth and germination under salinity. Adv. Biol. Res. 2010, 4, 92–96. [Google Scholar]
- Anikwe, M.; Mbah, C.; Ezeaku, P.; Onyia, V. Tillage and plastic mulch effects on soil properties and growth and yield of cocoyam (Colocasia esculenta) on an ultisol in southeastern Nigeria. Soil Tillage Res. 2007, 93, 264–272. [Google Scholar] [CrossRef]
- Stefanelli, D.; Goodwin, I.; Jones, R. Minimal nitrogen and water use in horticulture: Effects on quality and content of selected nutrients. Food Res. Int. 2010, 43, 1833–1843. [Google Scholar] [CrossRef]
- Badawi, F.; Biomy, A.; Desoky, A. Peanut plant growth and yield as influenced by co-inoculation with Bradyrhizobium and some rhizo-microorganisms under sandy loam soil conditions. Ann. Agric. Sci. 2011, 56, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Janagard, M.S.; Ebadi-Segherloo, A. Inoculated soybean response to starter nitrogen in conventional cropping system in Moghan. J. Agron. 2016, 15, 26–32. [Google Scholar] [CrossRef] [Green Version]
- Masso, C.; Mukhongo, R.W.; Thuita, M.; Abaidoo, R.; Ulzen, J.; Kariuki, G.; Kalumuna, M. Biological inoculants for sustainable intensification of agriculture in sub-Saharan Africa smallholder farming systems. In Climate Change and Multi-Dimensional Sustainability in African Agriculture; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2016; pp. 639–658. [Google Scholar]
- Sogut, T. Rhizobium inoculation improves yield and nitrogen accumulation in soybean (Glycine max) cultivars better than fertilizer. N. Z. J. Crop. Hort. 2006, 34, 115–120. [Google Scholar] [CrossRef]
- Ghosh, P.; Dayal, D.; Bandyopadhyay, K.; Mohanty, M. Evaluation of straw and polythene mulch for enhancing productivity of irrigated summer groundnut. Field Crop. Res. 2006, 99, 76–86. [Google Scholar] [CrossRef]
- Subrahmaniyan, K.; Kalaiselvan, P.; Balasubramanian, T.N. Microclimate variations in relation to different types of polyethylene-film mulch on growth and yield of groundnut (Arachishypogaea). Indian J. Agron. 2008, 53, 184–188. [Google Scholar]
- Abbasi, A.; Jafari, D.; Sharifi, S.R. Nitrogen rates effects and seed inoculation with Rhizobium leguminosarum and plant growth promoting Rhizobacteria (PGPR) on yield and total dry matter of chickpea (Cicer arietinum L.). J. Eng. Appl. 2013, 3–23, 3275–3280. [Google Scholar]
- Bekere, W.; Kebede, T.; Dawud, J. Growth and nodulation response of soybean (Glycine max L.) to lime, Bradyrhizobium japonicum and nitrogen fertilizer in acid soil at Melko, South Western Ethiopia. Int. J. Soil Sci. 2013, 8, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Keino, L.; Baijukya, F.; Ng’Etich, W.; Otinga, A.N.; Okalebo, J.R.; Njoroge, R.; Mukalama, J. Nutrients limiting soybean (Glycine max l) growth in acrisols and ferralsols of Western Kenya. PLoS ONE 2015, 10, e0145202. [Google Scholar] [CrossRef] [Green Version]
- Werner, D.; Newton, W.E. Nitrogen Fixation in Agriculture, Forestry, Ecology, and Environment; Springer: New York, NY, USA, 2005. [Google Scholar]
- Subrahmaniyan, K.; Kalaiselvan, P.; Balasubramanian, T.N.; Zhou, W. Soil properties and yield of groundnut associated with herbicides, plant geometry, and plastic mulch. Commun. Soil Sci. Plant Anal. 2008, 39, 1206–1234. [Google Scholar] [CrossRef]
- Hasan, M.; Bin Sahid, I. Evaluation of rhizobium inoculation in combination with phosphorus and nitrogen fertilization on groundnut growth and yield. J. Agron. 2016, 15, 142–146. [Google Scholar] [CrossRef] [Green Version]
- Asante, M.; Ahiabor, B.D.K.; Atakora, W.K. Growth, Nodulation, and Yield Responses of groundnut (Arachis hypogaea L.) as influenced by combined application of rhizobium inoculant and phosphorus in the Guinea Savanna zone of Ghana. Int. J. Agron. 2020, 2020, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Jat, N.L.; Puniya, M.M.; Shivran, A.C.; Choudhary, S. Fertility levels and biofertilizers on nutrient concentrations, uptake and quality of groundnut. Ann. Agric. Res. New Series 2014, 35, 71–74. [Google Scholar]
- Devi, K.N.; Singh, T.B.; Athokpam, H.S.; Singh, N.B.; Samurailatpam, D. Influence of inorganic, biological and organic manures on nodulation and yield of soybean (Glycine max Merril L.) and soil properties. Aust. J. Crop Sci. 2013, 7, 1407–1415. [Google Scholar]
- Ronner, E.; Franke, A.; Vanlauwe, B.; Dianda, M.; Edeh, E.; Ukem, B.; Bala, A.; Van Heerwaarden, J.; Giller, K.E. Understanding variability in soybean yield and response to P-fertilizer and rhizobium inoculants on farmers’ fields in northern Nigeria. Field Crop. Res. 2016, 186, 133–145. [Google Scholar] [CrossRef]
- Schütz, L.; Gattinger, A.; Meier, M.; Müller, A.; Boller, T.; Mäder, P.; Mathimaran, N. Improving crop yield and nutrient use efficiency via biofertilization-A global meta-analysis. Front. Plant Sci. 2018, 8, 2204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Liu, J.; Zhang, A.; Chen, J.; Cheng, G.; Sun, B.; Pi, X.; Dyck, M.; Si, B.; Zhao, Y.; et al. Effects of straw and plastic film mulching on greenhouse gas emissions in Loess Plateau, China: A field study of 2 consecutive wheat-maize rotation cycles. Sci. Total. Environ. 2017, 579, 814–824. [Google Scholar] [CrossRef] [PubMed]
- Kiani, M.; Gheysari, M.; Mostafazadeh-Fard, B.; Majidi, M.M.; Karchani, K.; Hoogenboom, G. Effect of the interaction of water and nitrogen on sunflower under drip irrigation in an arid region. Agric. Water Manag. 2016, 171, 162–172. [Google Scholar] [CrossRef]
- Srivastava, R.; Panda, R.; Chakraborty, A.; Halder, D. Enhancing grain yield, biomass and nitrogen use efficiency of maize by varying sowing dates and nitrogen rate under rainfed and irrigated conditions. Field Crop. Res. 2018, 221, 339–349. [Google Scholar] [CrossRef]
- Stamatiadis, S.; Tsadilas, C.; Samaras, V.; Schepers, J.; Eskridge, K. Nitrogen uptake and N-use efficiency of Mediterranean cotton under varied deficit irrigation and N fertilization. Eur. J. Agron. 2016, 73, 144–151. [Google Scholar] [CrossRef]
- Jin, L.; Cui, H.; Li, B.; Zhang, J.; Dong, S.-T.; Liu, P. Effects of integrated agronomic management practices on yield and nitrogen efficiency of summer maize in North China. Field Crop. Res. 2012, 134, 30–35. [Google Scholar] [CrossRef]
- Zhu, L.; Liu, J.; Luo, S.-S.; Bu, L.-D.; Chen, X.-P.; Li, S. Soil mulching can mitigate soil water deficiency impacts on rainfed maize production in semiarid environments. J. Integr. Agric. 2015, 14, 58–66. [Google Scholar] [CrossRef]
- Love, S.L.; Stark, J.C.; Salaiz, T. Response of four potato cultivars to rate and timing of nitrogen fertilizer. Am. J. Potato Res. 2005, 82, 21–30. [Google Scholar] [CrossRef]
- Baishya, L.K.; Kumar, M.; Ghosh, M.; Ghosh, D.C. Effect of integrated nutrient management on growth, productivity and economics of rainfed potato in Meghalaya hills. Int. J. Agric. Environ. Biotechnol. 2013, 6, 69–77. [Google Scholar]
Nutrient Management | Seedling Emergence (%) | Days to Emergence | Leaf Area Index | Nodule Number Plant−1 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
45 DAE | 60 DAE | 45 DAE | 60 DAE | |||||||||||||||
M | NM | Mean | M | NM | Mean | M | NM | Mean | M | NM | Mean | M | NM | Mean | M | NM | Mean | |
100% RDN | 97.00 a | 91.00 a | 94.00 A | 6.00 | 10.00 | 8.00 | 2.97 c | 2.67 f | 2.82 B | 3.46 b | 3.07 g | 3.26 B | 33.10 a | 29.50 a | 31.30 C | 49.76 a | 43.50 a | 46.63 D |
75% RDN | 95.00 a | 88.00 a | 91.50 ABC | 6.00 | 10.00 | 8.00 | 2.86 d | 2.55 h | 2.71 C | 3.32 d | 2.87 h | 3.09 C | 36.23 a | 31.80 a | 33.52 BC | 54.56 a | 46.66 a | 50.61 C |
50% RDN | 95.00 a | 90.00 a | 92.50 AB | 6.00 | 12.00 | 9.00 | 2.60 g | 2.41 j | 2.51 E | 2.74 i | 2.32 l | 2.53 E | 36.50 a | 35.93 a | 36.22 AB | 56.86 a | 53.93 a | 55.39 AB |
100% RDN + Rh | 97.00 a | 88.00 a | 92.50 AB | 5.00 | 10.00 | 7.50 | 3.14 a | 2.76 e | 2.95 A | 3.52 a | 3.16 e | 3.34 A | 35.70 a | 33.97 a | 34.83 B | 54.56 a | 51.26 a | 52.91 BC |
75% RDN + Rh | 96.00 a | 89.00 a | 92.50 AB | 5.00 | 11.00 | 8.00 | 3.06 b | 2.60 g | 2.83 B | 3.42 c | 2.11 f | 3.27 B | 37.23 a | 33.63 a | 35.43 B | 57.30 a | 50.33 a | 53.81 B |
50% RDN + Rh | 94.00 a | 86.00 a | 90.00 BC | 6.00 | 12.00 | 8.00 | 2.68 f | 2.48 i | 2.58 D | 3.07 g | 2.43 j | 2.75 D | 41.03 a | 37.47 a | 39.25 A | 58.23 a | 55.60 a | 56.92 A |
Rhizobium (Rh) | 93.00 a | 85.00 a | 89.00 C | 6.00 | 13.00 | 9.50 | 2.47 i | 2.26 k | 2.36 F | 2.36 k | 2.16 m | 2.26 F | 17.33 a | 21.03 a | 19.18 D | 33.0 a | 27.46 a | 30.23 E |
Mean | 95.29 A | 88.17 B | 5.71 | 11.28 | 2.83 A | 2.53 B | 3.13 A | 2.73 B | 33.73 A | 31.90 A | 52.04 A | 46.96 B | ||||||
Sources of variation | SEm± | LSD | SEm± | LSD | SEm± | LSD | SEm± | LSD | SEm± | LSD | SEm± | LSD | ||||||
SC | 0.46 | 2.77 ** | 0.001 | 0.01 ** | 0.001 | 0.003 ** | 0.59 | ns | 0.24 | 1.44 ** | ||||||||
N | 1.02 | 2.97 * | 0.007 | 0.03 ** | 0.002 | 0.006 ** | 1.10 | 3.19 * | 0.87 | 2.55 * | ||||||||
SC × N | 1.41 | ns | 0.01 | 0.04 ** | 0.003 | 0.009 ** | 1.55 | ns | 1.17 | ns |
Nutrient Management | Seedling Emergence (%) | Days to Emergence | Leaf Area Index | Nodule Number Plant−1 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
45 DAE | 60 DAE | 45 DAE | 60 DAE | |||||||||||||||
M | NM | Mean | M | NM | Mean | M | NM | Mean | M | NM | Mean | M | NM | Mean | M | NM | Mean | |
100% RDN | 94.00 a | 88.00 a | 91.00 A | 5.0 | 12.0 | 8.5 | 2.94 b | 2.61 f | 2.77 B | 3.69 b | 3.21 e | 3.45 B | 24.44 de | 23.19 e | 23.81 D | 53.17 fg | 49.30 h | 51.23 E |
75% RDN | 95.00 a | 89.00 a | 92.00 A | 6.0 | 11.0 | 8.5 | 2.78 d | 2.48 i | 2.63 D | 3.45 c | 2.96 f | 3.20 C | 25.09 cd | 24.33 de | 24.71 CD | 58.57 cde | 52.57 fgh | 55.57 CD |
50% RDN | 95.00 a | 88.00 a | 91.50 A | 6.0 | 12.0 | 9.0 | 2.56 h | 2.33 k | 2.45 F | 2.87 f | 2.43 h | 2.65 E | 26.73 b | 24.38 de | 25.56 BC | 60.07 abc | 55.33 efg | 57.70 BC |
100% RDN + Rh | 96.00 a | 90.00 a | 93.00 A | 5.0 | 11.0 | 8.0 | 3.01 a | 2.67 e | 2.84 A | 3.95 a | 3.35 cd | 3.65 A | 23.79 de | 24.00 de | 23.89 D | 56.17 def | 51.97 gh | 54.07 D |
75% RDN + Rh | 96.00 a | 88.00 a | 92.00 A | 6.0 | 12.0 | 9.0 | 2.89 c | 2.58 g | 2.74 C | 3.64 b | 3.27 de | 3.45 B | 33.42 a | 26.23 bc | 29.82 A | 59.60 bcd | 57.33 cde | 58.46 B |
50% RDN + Rh | 94.00 a | 89.00 a | 91.50 A | 5.0 | 12.0 | 8.5 | 2.62 f | 2.37 j | 2.50 E | 3.28 de | 2.59 g | 2.94 D | 27.38 b | 25.22 cd | 26.30 B | 63.43 a | 62.27 ab | 62.80 A |
Rhizobium (Rh) | 89.00 a | 86.00 a | 87.50 B | 7.0 | 11.0 | 9.0 | 2.39 j | 2.21 l | 2.30 G | 2.47 h | 2.20 i | 2.33 F | 20.25 f | 17.73 g | 18.99 E | 37.0 i | 21.17 j | 29.08 F |
Mean | 94.14 A | 88.29 B | 5.7 | 11.60 | 2.74 A | 2.47 B | 3.33 A | 2.86 B | 25.87 A | 23.58 B | 55.40 A | 50.00 B | ||||||
Sources of variation | SEm± | LSD | SEm± | LSD | SEm± | LSD | SEm± | LSD | SEm± | LSD | SEm± | LSD | ||||||
SC | 0.46 | 2.77 * | 0.002 | 0.01 ** | 0.02 | 0.05 ** | 0.18 | 0.52 ** | 0.23 | 1.42 ** | ||||||||
N | 1.02 | 2.97 ** | 0.005 | 0.01 ** | 0.03 | 0.08 ** | 0.34 | 0.97 ** | 0.84 | 2.44 ** | ||||||||
SC × N | 1.41 | ns | 0.006 | 0.02 ** | 0.04 | 0.12 ** | 0.47 | 1.38 ** | 1.12 | 3.25 * |
Nutrient Management | Pod Dry wt. (g Plant−1) | Peg to Pod Conversion (%) | Shelling (%) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2015–2016 | 2016–2017 | 2015–2016 | 2016–2017 | 2015–2016 | 2016–2017 | |||||||||||||
M | NM | Mean | M | NM | Mean | M | NM | Mean | M | NM | Mean | M | NM | Mean | M | NM | Mean | |
100% RDN | 30.26 ab | 22.08 ef | 26.17 B | 30.23 b | 20.23 f | 25.23 C | 83.06 bc | 74.86 cde | 78.96 B | 85.92 a | 76.16 a | 81.04 B | 71.33 a | 69.03 a | 70.18 AB | 71.17 a | 69.80 a | 70.48 B |
75% RDN | 24.44 de | 19.79 fgh | 22.11 D | 27.61 c | 19.57 fg | 23.59 D | 69.24 ef | 65.28 f | 67.26 C | 75.28 a | 72.30 a | 73.79 C | 69.16 a | 67.47 a | 68.31 CD | 69.22 a | 67.91 a | 68.56 C |
50% RDN | 17.14 hi | 14.21 jk | 15.67 E | 22.80 e | 17.43 gh | 20.12 E | 69.23 ef | 63.51 f | 66.37 C | 72.14 a | 72.60 a | 72.37 C | 69.07 a | 65.31 a | 67.19 DE | 68.47 a | 66.18 a | 67.32 C |
100% RDN + Rh | 32.53 a | 26.58 cd | 29.56 A | 35.40 a | 22.64 e | 29.02 A | 97.85 a | 80.87 bc | 89.36 A | 92.92 a | 84.60 a | 88.76 A | 72.47 a | 70.68 a | 71.57 A | 74.23 a | 71.34 a | 72.78 A |
75% RDN + Rh | 28.34 bc | 20.23 fg | 24.28 C | 33.90 a | 20.20 f | 27.05 B | 87.94 b | 70.48 def | 79.21 B | 84.27 a | 76.31 a | 80.29 B | 70.24 a | 69.23 a | 69.74 BC | 72.42 a | 70.43 a | 71.42 AB |
50% RDN + Rh | 18.73 gh | 15.22 ij | 16.97 E | 25.46 d | 19.00 fg | 22.23 D | 78.85 cd | 63.55 f | 71.20 C | 78.31 a | 70.72 a | 74.52 C | 69.90 a | 66.32 a | 68.11 CD | 68.79 a | 66.75 a | 67.77 C |
Rhizobium (Rh) | 11.97 k | 8.29 l | 10.13 F | 16.00 h | 9.87 i | 12.93 F | 64.11 f | 43.45 g | 53.78 D | 66.38 a | 58.72 a | 62.55 D | 67.90 a | 64.17 a | 66.04 E | 67.04 a | 64.57 a | 65.80 D |
Mean | 23.34 A | 18.06 B | 27.34 A | 18.42 B | 78.61 A | 66.00 B | 79.32 A | 73.06 B | 70.01 A | 67.46 B | 70.19 A | 68.14 B | ||||||
Sources of variation | SEm± | LSD | SEm± | LSD | SEm± | LSD | SEm± | LSD | SEm± | LSD | SEm± | LSD | ||||||
SC | 0.24 | 0.98 ** | 0.27 | 0.80 ** | 0.89 | 3.03 ** | 0.92 | 2.67 ** | 0.39 | 2.39 * | 0.30 | 1.81 * | ||||||
N | 0.64 | 1.84 ** | 0.51 | 1.49 ** | 2.83 | 5.67 ** | 1.72 | 4.99 ** | 0.59 | 1.72 ** | 0.51 | 1.49 ** | ||||||
SC × N | 0.88 | 2.60 * | 0.72 | 2.10 ** | 3.81 | 8.02 * | 2.43 | ns | 0.87 | ns | 0.73 | ns |
Nutrient Management | N Uptake | P Uptake | K Uptake | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Kernel | Haulm | Kernel | Haulm | Kernel | Haulm | |||||||||||||
M | NM | Mean | M | NM | Mean | M | NM | Mean | M | NM | Mean | M | NM | Mean | M | NM | Mean | |
100% RDN | 101.73 b | 83.23 d | 92.48 B | 79.07 bc | 66.94 ef | 73.00 B | 21.16 b | 17.49 e | 19.33 B | 7.00 a | 5.64 cd | 6.33 A | 19.22 b | 15.55 de | 17.38 B | 58.14 b | 49.60 de | 53.87 B |
75% RDN | 94.30 c | 76.02 ef | 85.16 C | 73.97 d | 62.07 gh | 68.02 C | 19.65 c | 15.89 f | 17.77 C | 6.08 b | 5.00 e | 5.54 b | 16.66 cd | 13.49 f | 15.08 CD | 53.42 c | 44.04 f | 48.73 C |
50% RDN | 85.66 d | 68.41 g | 77.04 D | 67.28 ef | 56.68 i | 61.98 D | 16.02 f | 12.94 g | 14.48 E | 5.37 d | 4.60 f | 4.99 c | 15.99 de | 12.81 f | 14.40 D | 48.52 e | 41.32 f | 44.92 D |
100% RDN + Rh | 115.55 a | 88.43 cd | 101.99 A | 84.25 a | 69.50 e | 76.87 A | 24.93 a | 18.98 cd | 21.96 A | 6.91 a | 5.87 bc | 6.39 A | 21.50 a | 15.97 de | 18.73 A | 62.79 a | 51.79 cd | 57.29 A |
75% RDN + Rh | 102.75 b | 81.39 de | 92.07 B | 80.18 b | 65.46 fg | 72.82 B | 21.31 b | 17.11 ef | 19.21 B | 6.83 a | 5.53 cd | 6.18 A | 18.97 b | 14.98 e | 16.97 B | 58.03 b | 47.00 e | 52.51 B |
50% RDN + Rh | 94.13 c | 71.77 fg | 82.95 C | 75.79 cd | 59.80 hi | 67.79 C | 18.02 de | 14.06 g | 16.04 D | 6.07 b | 4.96 e | 5.52 b | 17.52 c | 13.65 f | 15.59 C | 53.72 c | 43.67 f | 48.70 C |
Rhizobium (Rh) | 39.99 h | 32.22 i | 36.10 E | 34.77 j | 30.29 k | 32.53 E | 7.25 h | 6.58 h | 6.92 F | 2.64 g | 2.53 g | 2.58 d | 7.73 g | 6.25 h | 6.99 E | 26.41 g | 23.58 h | 25.00 E |
Mean | 90.59 A | 71.64 B | 70.76 A | 58.68 B | 18.33 A | 14.72 B | 5.84 A | 4.88 B | 16.80 A | 13.24 B | 51.58 A | 43.00 B | ||||||
Sources of variation | SEm± | LSD | SEm± | LSD | SEm± | LSD | SEm± | LSD | SEm± | LSD | SEm± | LSD | ||||||
SC | 0.87 | 2.53 ** | 0.48 | 1.39 ** | 0.17 | 0.51 ** | 0.05 | 0.13 ** | 0.16 | 0.47 ** | 0.35 | 1.00 ** | ||||||
N | 1.63 | 4.74 ** | 0.90 | 2.60 ** | 0.33 | 0.95 ** | 0.08 | 0.25 ** | 0.30 | 0.88 ** | 0.65 | 1.88 ** | ||||||
SC × N | 2.30 | 6.70 ** | 1.27 | 3.68 ** | 0.46 | 1.34 ** | 0.12 | 0.35 ** | 0.43 | 1.24 ** | 0.92 | 2.66 ** |
Nutrient Management | N Uptake | P Uptake | K Uptake | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Kernel | Haulm | Kernel | Haulm | Kernel | Haulm | |||||||||||||
M | NM | Mean | M | NM | Mean | M | NM | Mean | M | NM | Mean | M | NM | Mean | M | NM | Mean | |
100% RDN | 108.09 b | 83.76 ef | 95.92 B | 84.40 a | 75.26 ba | 79.83 AB | 22.44 b | 18.02 d | 20.23 B | 6.96 a | 6.16 a | 6.56 A | 20.00 b | 16.03 def | 18.02 B | 60.69 a | 54.54 a | 57.62 AB |
75% RDN | 94.71 cd | 77.17 fg | 85.94 C | 74.86 a | 66.49 a | 70.68 CD | 18.04 d | 15.48 e | 16.76 D | 6.21 a | 5.57 a | 5.89 B | 17.29 cd | 14.76 fg | 16.02 D | 53.64 a | 47.89 a | 50.76 CD |
50% RDN | 87.97 de | 67.95 h | 77.96 D | 66.85 a | 60.42 a | 63.63 E | 14.81 e | 12.30 f | 13.56 F | 5.57 a | 5.06 a | 5.31 C | 15.83 def | 12.80 h | 14.31 E | 49.15 a | 44.35 a | 46.75 D |
100% RDN + Rh | 119.29 a | 91.10 de | 105.19 A | 88.81 a | 76.52 a | 82.66 A | 25.10 a | 20.06 c | 22.58 A | 7.37 a | 6.43 a | 6.90 A | 21.81 a | 16.99 cde | 19.40 A | 64.97 a | 56.47 a | 60.72 A |
75% RDN + Rh | 102.54 bc | 85.23 e | 93.89 B | 80.08 a | 72.07 a | 76.08 BC | 19.90 c | 16.96 d | 18.43 C | 6.73 a | 6.03 a | 6.38 AB | 18.44 c | 15.64 ef | 17.04 C | 57.59 a | 52.15 a | 54.87 BC |
50% RDN + Rh | 95.49 cd | 73.98 gh | 84.74 C | 71.65 a | 63.68 a | 67.67 DE | 16.98 d | 14.13 e | 15.55 E | 5.41 a | 5.33 a | 5.37 C | 17.01 cde | 13.66 gh | 15.33 D | 52.85 a | 45.96 a | 49.40 D |
Rhizobium (Rh) | 38.89 i | 29.93 j | 34.41 E | 32.18 a | 29.64 a | 30.91 F | 6.07 g | 5.21 g | 5.64 G | 2.75 a | 2.48 a | 2.61 D | 7.09 i | 5.72 j | 6.40 F | 24.55 a | 21.97 a | 23.26 E |
Mean | 92.42 A | 72.73 B | 71.26 A | 63.44 B | 17.62 A | 14.59 B | 5.86 A | 5.30 B | 16.78 A | 13.66 B | 51.92 a | 46.19 a | ||||||
Sources of variation | SEm± | LSD | SEm± | LSD | SEm± | LSD | SEm± | LSD | SEm± | LSD | SEm± | LSD | ||||||
SC | 0.99 | 2.89 ** | 1.12 | 3.26 ** | 0.18 | 0.54 ** | 0.09 | 0.27 ** | 0.18 | 0.52 ** | 0.82 | 2.39 ** | ||||||
N | 1.86 | 5.40 ** | 2.10 | 6.11 ** | 0.35 | 1.00 ** | 0.17 | 0.51 ** | 0.33 | 0.97 ** | 1.54 | 4.46 ** | ||||||
SC × N | 2.63 | 7.64 * | 2.97 | ns | 0.49 | 1.42 ** | 0.25 | ns | 0.47 | 1.37 * | 2.17 | ns |
Nutrient Management | Oil % | Protein % | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2015–2016 | 2016–2017 | 2015–2016 | 2016–2017 | |||||||||
M | NM | Mean | M | NM | Mean | M | NM | Mean | M | NM | Mean | |
100% RDN | 46.98 b | 46.96 b | 46.97 B | 48.19 a | 48.26 a | 48.22 B | 25.65 ab | 25.67 ab | 25.66 AB | 25.48 d | 25.53 c | 25.51 B |
75% RDN | 45.135 d | 45.12 d | 45.12 D | 45.99 a | 45.98 a | 45.98 D | 24.87 bcd | 24.56 cde | 24.71 CD | 24.62 g | 24.53 h | 24.58 D |
50% RDN | 42.27 f | 41.95 g | 42.11 F | 43.08 a | 42.97 a | 43.02 E | 23.56 ef | 23.52 f | 23.54 E | 23.38 l | 23.54 k | 23.46 F |
100% RDN + Rh | 47.85 a | 47.75 a | 47.80 A | 48.91 a | 48.76 a | 48.83 A | 26.26 a | 26.24 a | 26.25 A | 26.35 b | 26.28 b | 26.31 A |
75% RDN + Rh | 45.53 c | 45.55 c | 45.54 C | 46.65 a | 46.45 a | 46.55 C | 25.19 bc | 25.16 bc | 25.17 BC | 24.93 f | 25.02 e | 24.98 C |
50% RDN + Rh | 42.43 e | 42.41 e | 42.42 E | 43.55 a | 43.31 a | 43.43 E | 24.07 def | 24.12 def | 24.09 DE | 23.62 j | 23.76 i | 23.69 E |
Rhizobium (Rh) | 38.33 h | 38.28 h | 38.30 G | 39.01 a | 38.71 a | 38.85 F | 20.88 h | 20.92 g | 20.90 F | 21.50 n | 21.58 m | 21.54 G |
Mean | 44.07 A | 44.00 A | 45.05 A | 44.91 A | 24.35 A | 24.31 A | 24.33 A | 24.25 B | ||||
Sources of variation | SEm± | LSD | SEm± | LSD | SEm± | LSD | SEm± | LSD | ||||
SC | 0.016 | ns | 0.002 | ns | 0.12 | ns | 0.004 | 0.01 ** | ||||
N | 0.027 | 0.080 ** | 0.165 | 0.48 ** | 0.23 | 0.67 ** | 0.008 | 0.02 ** | ||||
SC × N | 0.040 | 0.114 ** | 0.216 | ns | 0.32 | 0.93 ** | 0.011 | 0.03 ** |
Nutrient Management | Partial Factor Productivity of Applied Nitrogen (PFPN) | Agronomic Efficiency of Applied Nitrogen (AEN) | Crop Recovery Efficiency of Applied Nitrogen (REN) | Physiological Efficiency of Applied Nitrogen (PEN) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M | NM | Mean | M | NM | Mean | M | NM | Mean | M | NM | Mean | |
100% RDN | 153.20 | 128.00 | 140.60 | 89.60 | 76.40 | 83.00 | 3.49 | 2.83 | 3.16 | 25.68 | 26.98 | 26.33 |
75% RDN | 192.00 | 162.67 | 177.33 | 107.20 | 93.87 | 100.53 | 3.43 | 2.96 | 3.19 | 31.25 | 31.75 | 31.50 |
50% RDN | 276.80 | 230.40 | 253.60 | 149.60 | 127.20 | 138.40 | 3.96 | 3.21 | 3.59 | 37.74 | 39.61 | 38.67 |
100% RDN + Rh | 158.40 | 131.60 | 145.00 | 94.80 | 80.00 | 87.40 | 4.11 | 3.18 | 3.64 | 23.05 | 25.19 | 24.12 |
75% RDN + Rh | 200.00 | 169.07 | 184.53 | 115.20 | 100.27 | 107.73 | 4.13 | 3.68 | 3.90 | 27.92 | 27.22 | 27.57 |
50% RDN + Rh | 289.60 | 232.00 | 260.80 | 162.40 | 128.80 | 145.60 | 4.95 | 3.95 | 4.45 | 32.80 | 32.57 | 32.69 |
Rhizobium (Rh) | ||||||||||||
Mean | 211.67 | 175.62 | 119.80 | 101.09 | 4.01 | 3.30 | 29.74 | 30.55 |
Nutrient Management | Partial Factor Productivity of Applied Nitrogen (PFPN) | Agronomic Efficiency of Applied Nitrogen (AEN) | Crop Recovery Efficiency of Applied Nitrogen (REN) | Physiological Efficiency of Applied Nitrogen (PEN) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
M | NM | Mean | M | NM | Mean | M | NM | Mean | M | NM | Mean | |
100% RDN | 146.00 | 120.00 | 133.00 | 78.80 | 64.40 | 71.60 | 2.81 | 2.13 | 2.47 | 28.00 | 30.27 | 29.14 |
75% RDN | 186.13 | 151.47 | 168.80 | 96.53 | 77.33 | 86.93 | 3.08 | 2.19 | 2.64 | 31.31 | 35.27 | 33.29 |
50% RDN | 265.60 | 214.40 | 240.00 | 131.20 | 103.20 | 117.20 | 3.40 | 2.25 | 2.82 | 38.60 | 45.89 | 42.24 |
100% RDN + Rh | 154.80 | 124.40 | 139.60 | 87.60 | 68.80 | 78.20 | 3.57 | 2.44 | 3.01 | 24.51 | 28.22 | 26.37 |
75% RDN + Rh | 197.33 | 156.80 | 177.07 | 107.73 | 82.67 | 95.20 | 3.87 | 2.66 | 3.26 | 27.87 | 31.08 | 29.47 |
50% RDN + Rh | 284.80 | 221.60 | 253.20 | 150.40 | 110.40 | 130.40 | 4.76 | 2.77 | 3.76 | 31.61 | 39.89 | 35.75 |
Rhizobium (Rh) | ||||||||||||
Mean | 205.78 | 164.78 | 108.71 | 84.47 | 3.58 | 2.41 | 30.32 | 35.10 |
Nutrient Management | Cost of Cultivation (USD ha−1) | Gross Return (USD ha−1) | Net Return (USD ha−1) | B:C ratio | ICBR | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | NM | Mean | M | NM | Mean | M | NM | Mean | M | NM | Mean | M | NM | Mean | |
100% RDN | 767.3 | 692.27 | 729.79 | 1952.37 | 1636.32 | 1794.35 | 1185.07 | 944.05 | 1064.56 | 2.54 | 2.36 | 2.46 | 0.117 | 0.078 | 0.097 |
75% RDN | 761.81 | 686.78 | 724.29 | 1840.23 | 1559.86 | 1697.49 | 1078.42 | 873.08 | 973.20 | 2.42 | 2.27 | 2.34 | 0.123 | 0.078 | 0.101 |
50% RDN | 754.01 | 678.98 | 716.49 | 1763.76 | 1473.20 | 1615.93 | 1009.75 | 794.22 | 899.44 | 2.34 | 2.17 | 2.26 | 0.125 | 0.077 | 0.101 |
100% RDN + Rh. | 774.8 | 699.77 | 737.29 | 2018.64 | 1682.20 | 1850.42 | 1243.84 | 982.43 | 1113.13 | 2.61 | 2.40 | 2.51 | 0.117 | 0.082 | 0.099 |
75% RDN + Rh | 769.31 | 694.28 | 731.8 | 1911.59 | 1621.03 | 1763.76 | 1142.28 | 926.75 | 1031.96 | 2.48 | 2.33 | 2.41 | 0.122 | 0.081 | 0.102 |
50% RDN + Rh | 761.51 | 686.48 | 723.99 | 1845.32 | 1478.30 | 1661.81 | 1083.81 | 791.82 | 937.82 | 2.42 | 2.15 | 2.30 | 0.123 | 0.086 | 0.104 |
Rhizobium (Rh) | 691.6 | 616.57 | 654.08 | 815.61 | 662.69 | 734.05 | 124.01 | 46.12 | 79.97 | 1.18 | 1.07 | 1.12 | 0.491 | 0.000 | 0.245 |
Mean | 754.33 | 679.3 | 1733.18 | 1442.62 | 0.00 | 978.85 | 763.32 | 0.00 | 2.30 | 2.12 | 0.174 | 0.069 |
Nutrient Management | Cost of Cultivation (USD ha−1) | Gross Return (USD ha−1) | Net Return (USD ha−1) | B:C ratio | ICBR | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
M | NM | Mean | M | NM | Mean | M | NM | Mean | M | NM | Mean | M | NM | Mean | |
100% RDN | 789.56 | 714.53 | 752.04 | 2012.08 | 1684.87 | 1848.48 | 1222.52 | 970.34 | 1096.43 | 2.55 | 2.36 | 2.45 | 0.118 | 0.081 | 0.103 |
75% RDN | 772.16 | 697.13 | 734.65 | 1894.96 | 1605.04 | 1750.00 | 1122.80 | 907.91 | 1015.36 | 2.45 | 2.30 | 2.38 | 0.115 | 0.070 | 0.103 |
50% RDN | 754.53 | 679.50 | 717.02 | 1818.28 | 1515.76 | 1667.02 | 1063.75 | 836.26 | 950.00 | 2.41 | 2.23 | 2.32 | 0.107 | 0.056 | 0.100 |
100% RDN + Rh | 789.56 | 714.53 | 752.04 | 2080.88 | 1731.09 | 1905.99 | 1291.32 | 1016.56 | 1153.94 | 2.64 | 2.42 | 2.53 | 0.112 | 0.078 | 0.102 |
75% RDN + Rh | 772.16 | 697.13 | 734.65 | 1971.11 | 1669.12 | 1820.12 | 1198.95 | 971.99 | 1085.47 | 2.55 | 2.39 | 2.47 | 0.108 | 0.065 | 0.102 |
50% RDN + Rh | 754.53 | 679.50 | 717.02 | 1902.31 | 1523.63 | 1712.97 | 1147.78 | 844.13 | 995.96 | 2.52 | 2.24 | 2.38 | 0.100 | 0.055 | 0.098 |
Rhizobium (Rh) | 707.91 | 632.88 | 670.39 | 838.24 | 681.72 | 759.98 | 130.33 | 48.84 | 89.58 | 1.18 | 1.08 | 1.13 | 0.479 | ||
Mean | 762.92 | 687.89 | 1788.27 | 1487.32 | 1025.35 | 799.43 | 2.33 | 2.15 | 0.057 | 0.068 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mondal, M.; Skalicky, M.; Garai, S.; Hossain, A.; Sarkar, S.; Banerjee, H.; Kundu, R.; Brestic, M.; Barutcular, C.; Erman, M.; et al. Supplementing Nitrogen in Combination with Rhizobium Inoculation and Soil Mulch in Peanut (Arachis hypogaea L.) Production System: Part II. Effect on Phenology, Growth, Yield Attributes, Pod Quality, Profitability and Nitrogen Use Efficiency. Agronomy 2020, 10, 1513. https://doi.org/10.3390/agronomy10101513
Mondal M, Skalicky M, Garai S, Hossain A, Sarkar S, Banerjee H, Kundu R, Brestic M, Barutcular C, Erman M, et al. Supplementing Nitrogen in Combination with Rhizobium Inoculation and Soil Mulch in Peanut (Arachis hypogaea L.) Production System: Part II. Effect on Phenology, Growth, Yield Attributes, Pod Quality, Profitability and Nitrogen Use Efficiency. Agronomy. 2020; 10(10):1513. https://doi.org/10.3390/agronomy10101513
Chicago/Turabian StyleMondal, Mousumi, Milan Skalicky, Sourav Garai, Akbar Hossain, Sukamal Sarkar, Hirak Banerjee, Rajib Kundu, Marian Brestic, Celaleddin Barutcular, Murat Erman, and et al. 2020. "Supplementing Nitrogen in Combination with Rhizobium Inoculation and Soil Mulch in Peanut (Arachis hypogaea L.) Production System: Part II. Effect on Phenology, Growth, Yield Attributes, Pod Quality, Profitability and Nitrogen Use Efficiency" Agronomy 10, no. 10: 1513. https://doi.org/10.3390/agronomy10101513
APA StyleMondal, M., Skalicky, M., Garai, S., Hossain, A., Sarkar, S., Banerjee, H., Kundu, R., Brestic, M., Barutcular, C., Erman, M., EL Sabagh, A., & Laing, A. M. (2020). Supplementing Nitrogen in Combination with Rhizobium Inoculation and Soil Mulch in Peanut (Arachis hypogaea L.) Production System: Part II. Effect on Phenology, Growth, Yield Attributes, Pod Quality, Profitability and Nitrogen Use Efficiency. Agronomy, 10(10), 1513. https://doi.org/10.3390/agronomy10101513