Comparative Performance of Integrated Nutrient Management between Composted Agricultural Wastes, Chemical Fertilizers, and Biofertilizers in Improving Soil Quantitative and Qualitative Properties and Crop Yields under Arid Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Soil Descriptions
2.2. Cultural Practices
2.3. Experimental Design and Treatments
2.4. Preparing the Three Types of Organic Compost
2.5. Soil Physical and Chemical Properties
2.6. Measurement of Grain Yield
2.7. Statistical Analyses
3. Results and Discussion
3.1. Impacts of INM Treatments on Soil Chemical Properties
3.2. Impacts of INM Treatments on Soil Physical Properties
3.3. Impacts of INM Treatments on the Soil Biological Properties
3.4. Impacts of Biofertilizer Treatments on Different Soil Properties
3.5. Impacts of INM Treatments on Grain Yield of Different Crops
3.6. Comprehensive Evaluation of the Relationship between INM Strategies and Soil Properties by Principal Component Analysis (PCA)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cobo, J.G.; Dercon, G.; Cadisch, G. Nutrient balances in African land use systems across different spatial scales: A review of approaches, challenges and progress. Agric. Ecosyst. Environ. 2010, 136, 1–15. [Google Scholar] [CrossRef]
- White, P.J.; Brown, P.H. Plant nutrition for sustainable development and global health. Ann. Bot. 2010, 105, 1073–1083. [Google Scholar] [CrossRef] [Green Version]
- Alvarenga, P.; Palma, P.; Mourinha, C.; Farto, M.; Dôres, J.; Patanita, M.; Cunha-Queda, C.; Natal-da-Luz, T.; Renaud, M.; Sousa, J.P. Recycling organic wastes to agricultural land as a way to improve its quality: A field study to evaluate benefits and risks. Waste Manag. 2017, 61, 582–592. [Google Scholar] [CrossRef]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresour. Bioprocess. 2018, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Chew, K.W.; Chia, S.R.; Yen, H.-W.; Nomanbhay, S.; HO, Y.-C.; Show, P.L. Transformation of biomass waste into sustainable organic fertilizers. Sustainability 2019, 11, 2266. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Wu, X.; Zhang, S.; Xing, Y.; Wang, R.; Liang, W. Organic amendment effects on aggregate-associated organic C, microbial biomass C and glomalin in agricultural soils. Catena 2014, 123, 188–194. [Google Scholar] [CrossRef]
- Reichel, R.; Wei, J.; Islam, M.S.; Schmid, C.; Wissel, H.; Schröder, P.; Schloter, M.; Brüggemann, N. Potential of wheat straw, spruce sawdust, and lignin as high organic carbon soil amendments to improve agricultural nitrogen retention capacity: An incubation Study. Front. Plant Sci. 2018, 9, 900. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Monedero, M.A.; Cayuela, M.L.; Sánchez-García, M.; Vandecasteele, B.; D’Hose, T.; López, G.; Martínez-Gaitán, C.; Kuikman, P.J.; Sinicco, T.; Mondini, C. Agronomic evaluation of biochar, compost and biochar-blended compost across different cropping systems: Perspective from the European Project FERTIPLUS. Agronomy 2019, 9, 225. [Google Scholar] [CrossRef] [Green Version]
- Millati, R.; Cahyono, R.B.; Ariyanto, T.; Azzahrani, I.N.; Putri, R.U.; Taherzadeh, M.J. Agricultural, industrial, municipal, and forest wastes: An Overview. In Sustainable Resource Recovery and Zero Waste Approaches, 1st ed.; Taherzadeh, M.J., Wong, J., Pandey, A., Eds.; Springer: Maryland Heights, MO, USA, 2019; pp. 1–22. [Google Scholar]
- El-Mashad, H.M.; van Loon, W.K.P.; Zeeman, G.; Bot, G.P.A.; Lettinga, G. Reuse potential of agricultural wastes in semi-arid regions: Egypt as a case study. A review. Environ. Sci. Biol. Technol. 2003, 2, 53–66. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J. Phosphorus Cycle. In Encyclopedia of Ecology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 4, pp. 181–191. [Google Scholar]
- Peigne, J.; Ball, B.C.; Roger-Estrade, J.; David, C. Is conservation tillage suitable for organic farming? A review. Soil Use Manag. 2007, 23, 129–144. [Google Scholar] [CrossRef]
- Agriculture and Horticulture Development Board. Nutrient Management Guide (RB209). Section 2. Organic Materials. Available online: https://ahdb.org.uk/knowledge-library/rb209-section-2-organic-materials (accessed on 25 April 2019).
- Thomas, C.L.; Acquah, G.E.; Whitmore, A.P.; McGrath, S.P.; Haefele, S.M. The effect of different organic fertilizers on yield and soil and crop nutrient concentrations. Agronomy 2019, 9, 776. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Tian, H.; Lu, C.; Dangal, S.R.S.; Yang, J.; Pan, S. Global manure nitrogen production and application in cropland during 1860–2014: A 5 arcmin gridded global dataset for earth system modelling. Earth Syst. Sci. Data 2017, 9, 667–678. [Google Scholar] [CrossRef] [Green Version]
- Patil, S.B.; Balakrishna Reddy, B.C.; Chitgupekar, S.C.; Patil, B.B. Modern tillage and integrated nutrient management practices for improving soil fertility and productivity of groundnut (Arachis hypogaea L.) under rainfed farming system. Intern. Lett. Nat. Sci. 2015, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Yang, Z.; Wu, W. Role of crop residue management in sustainable agricultural development in the North China Plain. J. Sust. Agric. 2008, 32, 1–24. [Google Scholar] [CrossRef]
- Das, S.; Jeong, S.T.; Das, S.; Kim, P.J. Composted cattle manure increases microbial activity and soil fertility more than composted swine manure in a submerged rice paddy. Front. Microbiol. 2017, 8, 1702. [Google Scholar] [CrossRef]
- Kravchenko, A.N.; Snapp, S.S.; Robertson, G.P. Field-scale experiments reveal persistent yield gaps in low-input and organic cropping systems. Proc. Natl. Acad. Sci. USA 2017, 114, 926–931. [Google Scholar] [CrossRef] [Green Version]
- Wortman, S.E.; Holmes, A.A.; Miernicki, E.; Knoche, K.; Pittelkow, C.M. First-season crop yield response to organic soil amendments: A meta-analysis. Agron. J. 2017, 109, 1210–1217. [Google Scholar] [CrossRef] [Green Version]
- Francioli, D.; Schulz, E.; Lentendu, G.; Wubet, T.; Buscot, F.; Reitz, T. Mineral vs. organic amendments: Microbial community structure, activity and abundance of agriculturally relevant microbes are driven by long term fertilization strategies. Front. Microbiol. 2016, 7, 1446. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Chen, L.; Zhang, J.; Yin, J.; Huang, S. Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations. Front. Microbiol. 2017, 8, 187. [Google Scholar] [CrossRef] [Green Version]
- Ning, C.; Gao, P.; Wang, B.; Lin, W.; Jiang, N.; Cai, K. Impacts of chemical fertilizer reduction and organic amendments supplementation on soil nutrient, enzyme activity and heavy metal content. J. Integr. Agric. 2017, 16, 1819–1831. [Google Scholar] [CrossRef] [Green Version]
- Lazcano, C.; Gómez-Brandón, M.; Revilla, P.; Dominguez, J. Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. Biol. Fert. Soils 2013, 49, 723–733. [Google Scholar] [CrossRef]
- Agegnehu, G.; vanBeek, C.; Bird, M.I. Influence of integrated soil fertility management in wheat and tef productivity and soil chemical properties in the highland tropical environment. J. Soil Sci. Plant Nutr. 2014, 14, 532–545. [Google Scholar] [CrossRef] [Green Version]
- Tayebeh, A.; Abass, A.; Seyed, A.K. Effect of organic and inorganic fertilizers on grain yield and protein banding pattern of wheat. Aust. J. Crop Sci. 2010, 4, 384–389. [Google Scholar]
- Chatterjee, R.; Gajjela, S.; Thirumdasu, R.K. Recycling of organic wastes for sustainable soil health and crop growth. Int. J. Waste Resour. 2017, 7, 296–303. [Google Scholar] [CrossRef]
- Sun, R.; Zhang, X.X.; Guo, X.; Wang, D.; Chu, H. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biol. Biochem. 2015, 88, 9–18. [Google Scholar] [CrossRef]
- Chemura, A. The growth response of coffee (Coffea arabica L.) plants to organic manure, inorganic fertilizers and integrated soil fertility management under different irrigation water supply levels. Int. J. Recycl. Org. Waste Agric. 2014, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Thangarajan, R.; Bolan, N.S.; Naidu, R.; Surapaneni, A. Effects of temperature and amendments on nitrogen mineralization in selected Australian soils. Environ. Sci. Pollut. Res. 2015, 22, 8843–8854. [Google Scholar] [CrossRef]
- Alvarez, C.E.; Amin, M.; Hernández, E.; González, C.J. Effect of compost, farmyard manure and/or chemical fertilizers on potato yield and tuber nutrient content. Biol. Agric. Hortic. 2006, 23, 273–286. [Google Scholar] [CrossRef]
- Thomsen, I.K.; Pedersen, L.; Jørgensen, J.R. Yield and flour quality of spring wheat as affected by soil tillage and animal manure. J. Sci. Food Agric. 2008, 88, 2117–2124. [Google Scholar] [CrossRef]
- Chae, Y.M.; Tabatabai, M.A. Mineralization of nitrogen in soils amended with organic wastes. J. Environ. Qual. 1986, 15, 93–198. [Google Scholar] [CrossRef]
- Garcia, C.; Hernandez, T.; Coll, M.D.; Ondoño, S. Organic amendments for soil restoration in arid and semiarid areas: A review. Aims Environ. Sci. 2017, 4, 640–676. [Google Scholar] [CrossRef]
- Allison, S.D.; Martiny, J.B.H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. USA 2008, 105, 11512–11519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Ni, T.; Li, J.; Lu, Q.; Fang, Z.Y.; Huang, Q.W.; Zhang, R.F.; Li, R.; Shen, B.; Shen, Q.R. Effects of organic–inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice–wheat cropping system. Appl. Soil Ecol. 2016, 99, 1–12. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, S. Composting of a crop residue through treatment with microorganisms and subsequent vermicomposting. Bioresour. Technol. 2002, 85, 107–111. [Google Scholar] [CrossRef]
- Jones, J.B. Laboratory Guide for Conducting Soil Tests and Plant Analysis; CRC Press: Boca Raton, FL, USA, 2001; p. 142. [Google Scholar]
- Walkley, A. A critical examination of a rapid method for determining organic carbon in soils—Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 1947, 63, 251–264. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis; Part 3. Chemical methods. SSSA Book Ser. 5; SSSA: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Schulte, E.E.; Hopkins, B.G. Estimation of organic matter by weight loss-on-ignition. In Soil Organic Matter: Analysis and Interpretation; SSSA Spec. Pub. No. 46; Magdoff, F.R., Tabatabai, M.A., Hanlon, E.A., Eds.; SSSA: Madison, WI, USA, 1996; pp. 21–32. [Google Scholar]
- Miller, R.O.; Kotuby-Amacher, J.; Rodriguez, J.B. Western States Laboratory Proficiency Testing Program: Soil and Plant Analytical Methods. In Plant, Soil and Water Reference Methods for the Western Region; Ver 4.10.; Gavlak, R.G., Horneck, D.A., Miller, R.O., Eds.; Western Rural Development Center: Logan, UT, USA, 1998. [Google Scholar]
- Subbiah, B.V.; Asija, C.L. A rapid procedure for the estimation of available nitrogen in soil. Curr. Sci. 1956, 25, 172–194. [Google Scholar]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; USDA: Washington, DC, USA, 1954. [Google Scholar]
- Donahue, R.L.; Miller, R.W.; Schickluna, J.C. Soils: An Introduction to Soil and Plant Growth, 5th ed.; Prentice Hall Inc.: Eaglewood, NJ, USA, 1983. [Google Scholar]
- Philip, J.R. Hydrostatics and hydrodynamics in swelling soils. Water Resour. Res. 1969, 5, 1070–1077. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass carbon. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Jenkinson, D.S.; Ladd, J.N. Microbial biomass in soil: Measurement and turnover. In Soil Biochemistry; Paul, E.A., Ladd, J.N., Eds.; Marcel Dekker: New York, NY, USA; Basel, Switzerland, 1981; Volume 5, pp. 415–471. [Google Scholar]
- Brookes, P.C.; Powlson, D.S.; Jenkinson, D.S. Phosphorus in the soil biomass. Soil Biol. Biochem. 1984, 16, 169–175. [Google Scholar] [CrossRef]
- Li, R.; Tao, R.; Ling, N.; Chu, G. Chemical, organic and bio-fertilizer management practices effect on soil physicochemical property and antagonistic bacteria abundance of a cotton field: Implications for soil biological quality. Soil Tillage Res. 2017, 167, 30–38. [Google Scholar] [CrossRef]
- Candemir, F.; Gülser, C. Effects of different agricultural wastes on some soil quality indexes at clay and loamy sand fields. Commun. Soil Sci. Plant Anal. 2011, 42, 13–28. [Google Scholar] [CrossRef]
- Liang, B.; Yang, X.Y.; He, X.H.; Murphy, D.V.; Zhou, J.B. Long-term combined application of manure and NPK fertilizers influenced nitrogen retention and stabilization of organic C in Loess soil. Plant Soil. 2012, 353, 249–260. [Google Scholar] [CrossRef]
- Sarwar, G.; Schmeisky, H.; Hussain, N.; Muhammad, S.; Ibrahim, M.; Safdar, M.E. Improvement of soil physical and chemical properties with compost application in rice-wheat cropping system. Pak. J. Bot. 2008, 40, 275–282. [Google Scholar]
- Abou Hussien, E.A.; Elbaalawy, A.M.; Hamad, M.M. Chemical properties of compost in relation to calcareous soil properties and its productivity of wheat. Egypt. J. Soil. Sci. 2019, 59, 85–97. [Google Scholar]
- Azeez, J.O.; Van Averbeke, W. Dynamics of soil pH and electrical conductivity with the application of three animal manures. Commun. Soil Sci. Plant Anal. 2012, 43, 865–874. [Google Scholar] [CrossRef]
- Herrera, F.; Castillo, J.; Chica, A.; Bellido, L.L. Use of municipal solid waste compost (MSWC) as a growing medium in the nursery production of tomato plants. Bioresour. Technol. 2008, 99, 287–296. [Google Scholar] [CrossRef]
- Kwiatkowska-Malina, J. Qualitative and quantitative soil organic matter estimation for sustainable soil management. J. Soils Sedim. 2018, 18, 2801–2812. [Google Scholar] [CrossRef] [Green Version]
- Craswell, E.T.; Lefroy, R.D.B. The role and function of organic matter in tropical soils. Nutr. Cycl. Agroecosyst. 2001, 61, 7–18. [Google Scholar] [CrossRef]
- Leszczyńska, D.; Kwiatkowska-Malina, J. Effect of organic matter from various sources on yield and quality of plants on soils contaminated with heavy metals. Ecol. Chem. Eng. 2011, 18, 501–507. [Google Scholar]
- Schmidt, M.W.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kogel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Dou, X.; He, P.; Zhu, P.; Zhou, W. Soil organic carbon dynamics under long-term fertilization in a black soil of China: Evidence from stable C isotopes. Sci. Rep. 2016, 6, 21488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozlu, E. Long-Term Impacts of Annual Cattle Manure and Fertilizer on Soil Quality Under Corn-Soybean Rotation in Eastern South Dakota; South Dakota State University: Brookings, SD, USA, 2016. [Google Scholar]
- McConnell, D.B.; Shiralipour, A.; Smith, W.H. Compost application improves soil properties. Biocycle 1993, 34, 61–63. [Google Scholar]
- Ozlu, E.; Kumar, S. Response of soil organic carbon, pH, electrical conductivity, and water stable aggregates to long term annual manure and inorganic fertilizer. Soil Sci. Soc. Am. J. 2018, 82, 1243–1251. [Google Scholar] [CrossRef]
- Tejada, M.; Gómez, I.; Fernández-Boy, E.; Díaz, M.-J. Effects of sewage sludge and Acacia dealbata composts on soil biochemical and chemical properties. Commun. Soil Sci. Plant Anal. 2014, 45, 570–580. [Google Scholar] [CrossRef]
- Antil, R.S.; Singh, M. Effects of organic manures and fertilizers on organic matter and nutrients status of the soil, Arch. Agron. Soil Sci. 2007, 53, 519–528. [Google Scholar] [CrossRef]
- Bouajila, K.; Sanaa, M. Effects of organic amendments on soil physicochemical and biological properties. J. Mater. Environ. Sci. 2011, 2, 485–490. [Google Scholar]
- Blanchet, G.; Gavazov, K.; Bragazza, L.; Sinaj, S. Responses of soil properties and crop yields to different inorganic and organic amendments in a Swiss conventional farming system. Agric. Ecosyst. Environ. 2016, 230, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Kashem, M. Effects of organic manures in changes of some soil properties at different incubation periods. Open J. Soil Sci. 2014, 4, 81–86. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.R.; Abedin, M.Z.; Rahman, M.Z.; Begum, A. Use of some selected wastes as sustainable agricultural inputs. Prog. Agric. 2009, 20, 201–206. [Google Scholar] [CrossRef] [Green Version]
- Barzegar, A.; Yousefi, A.; Daryashenas, A. The effect of addition of different amounts and types of organic materials on soil physical properties and yield of wheat. Plant Soil 2002, 247, 295–301. [Google Scholar] [CrossRef]
- Flavel, T.C.; Murphy, D.V. Carbon and nitrogen mineralization rates after application of organic amendments to soil. J. Environ. Qual. 2006, 35, 183–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lentz, R.D.; Ippolito, J.A. Biochar and manure affect calcareous soil and corn silage nutrient concentrations and uptake. J. Environ. Qual. 2012, 41, 1033–1043. [Google Scholar] [CrossRef] [PubMed]
- Kundu, S.; Bhattacharyya, R.; Prakash, V.; Gupta, H.; Pathak, H.; Ladha, J. Long-term yield trend and sustainability of rain fed soybean–wheat system through farmyard manure application in a sandy loam soil of the Indian Himalayas. Biol. Fertil. Soils 2007, 43, 271–280. [Google Scholar] [CrossRef] [Green Version]
- Sharma, U.; Subehia, S.K. Effect of long term integrated nutrient management on rice (Oryza sativa L.)-wheat (Triticum aestivum L.) productivity and soil properties in North-Western Himalaya. J. Indian Soc. Soil Sci. 2014, 62, 248–254. [Google Scholar]
- Kumari, R.; Kumar, S.; Kumar, R.; Das, A.; Kumari, R.; Choudhary, C.D.; Sharma, R.P. Effect of long-term integrated nutrient management on crop yield, nutrition and soil fertility under rice-wheat system. J. Appl. Nat. Sci. 2017, 9, 1801–1807. [Google Scholar] [CrossRef] [Green Version]
- Suntari, R.; Rurini, R.; Soemarno, M.M. Study on the release of N-available (NH4+ and NO3−) of Urea-umate. Int. J. Agric. For. 2013, 3, 209–219. [Google Scholar]
- Brown, S.; Cotton, M. Changes in soil properties and carbon content following compost application: Results of on-farm sampling. Compos. Sci. Util. 2011, 19, 87–96. [Google Scholar] [CrossRef]
- Dougherty, W.J.; Chan, K.Y. Soil properties and nutrient export of a duplex hard-setting soil amended with compost. Compos. Sci. Util. 2014, 22, 11–22. [Google Scholar] [CrossRef]
- Gülser, C.; Candemir, F. Effects of agricultural wastes on the hydraulic properties of a loamy sand cropland in Turkey. Soil Sci. Plant Nutr. 2015, 61, 384–391. [Google Scholar] [CrossRef] [Green Version]
- Yazdanpanah, N.; Mahmoodabadi, M.; Cerdà, A. The impact of organic amendments on soil hydrology, structure and microbial respiration in semiarid lands. Geoderma 2016, 266, 58–65. [Google Scholar] [CrossRef]
- Ramos, M.C. Effects of compost amendment on the available soil water and grape yield in vineyards planted after land levelling. Agric. Water Manag. 2017, 191, 67–76. [Google Scholar] [CrossRef]
- Tisdall, J.; Oades, J. Organic matter and water-stable aggregates in soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Brar, B.S.; Singh, J.; Singh, G.; Kaur, G. Effects of long term application of inorganic and organic fertilizers on soil organic carbon and physical properties in maize–wheat rotation. Agron. J. 2015, 5, 220–238. [Google Scholar]
- Bhattacharyya, R.; Chandra, S.; Singh, R.; Kundu, S.; Srivastva, A.; Gupta, H. Long-term farmyard manure application effects on properties of a silty clay loam soil under irrigated wheat-soybean rotation. Soil Till. Res. 2007, 94, 386–396. [Google Scholar] [CrossRef]
- Haynes, R.; Naidu, R. Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: A review. Nutr. Cycl. Agroecosyst. 1998, 51, 123–137. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, W.; Liang, G.; Wang, X.; Sun, J.; He, P.; Li, L. Effects of different organic manures on the biochemical and microbial characteristics of albic paddy soil in a short term experiment. PLoS ONE 2015, 10, e0124096. [Google Scholar] [CrossRef]
- Ginting, D.; Kessavalou, A.; Eghball, B.; Doran, J.W. Greenhouse gas emissions and soil indicators four years after manure and compost applications. Environ. Qual. 2003, 32, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, D.; Ansari, M.W.; Sahoo, R.K.; Tuteja, N. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb. Cell. Fact. 2014, 13, 66. [Google Scholar] [CrossRef] [Green Version]
- Ansari, R.A.; Mahmood, I. Optimization of organic and bio-organic fertilizers on soil properties and growth of pigeon pea. Sci. Hortic. 2017, 226, 1–9. [Google Scholar] [CrossRef]
- Ramesh, P.; Panwar, N.R.; Singh, A.B.; Ramana, S. Production potential, nutrient uptake, soil fertility and economic of soybean (Glycine max)-based cropping systems under organic, chemical and integrated nutrient management practices. Ind. J. Agron. 2009, 54, 278–283. [Google Scholar]
- Nagar, N.K.; Goud, V.V.; Kumar, R.; Kumar, R. Effect of organic manures and crop residue management on physical, chemical and biological properties of soil under pigeon pea based intercropping system. Int. J. Sci. 2016, 6, 101–113. [Google Scholar]
- Erana, F.G.; Tenkegna, T.A.; Asfaw, S.L. Effect of agro industrial wastes compost on soil health and onion yields improvements: Study at field condition. Int. J. Recycl. Org. Waste. Agric. 2019, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Angin, I.; Aksakal, E.L.; Oztas, T.; Hanay, A. Effects of municipal solid waste compost (MSWC) application on certain physical properties of soils subjected to freeze–thaw. Soil Till. Res. 2013, 130, 58–61. [Google Scholar] [CrossRef]
- Hossain, M.Z.; von fragstein, P.N.; Heß, J. Effect of different organic wastes on soil properties and plant growth and yield: A review. Sci. Agric. Bohem. 2017, 48, 224–237. [Google Scholar]
- Tejada, M.; Garcia, C.; Gonzalez, J.L.; Hernandez, M.T. Use of organic amendment as a strategy for saline soil remediation: Influence on the physical, chemical and biological properties of soil. Soil Biol. Biochem. 2006, 38, 1413–1421. [Google Scholar] [CrossRef]
- Liang, Q.; Chen, H.; Gong, Y.; Fan, M.; Yang, H.; Lal, R.; Kuzyakov, Y. Effects of 15 years of manure and inorganic fertilizers on soil organic carbon fractions in a wheat-maize system in the North China Plain. Nutr. Cycl. Agroecosyst. 2012, 92, 21–33. [Google Scholar] [CrossRef]
- Whalen, J.K.; Chang, C.; Clayton, G.W.; Carefoot, J.P. Cattle manure amendments can increase the pH of acid soils. Soil Sci. Soc. Am. J. 2000, 64, 962–966. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Li, C.; Zhu, S.; Xu, Y.; Li, H.; Zheng, X.; Shi, R. Combined application of organic and inorganic nitrogen fertilizers affects soil prokaryotic communities compositions. Agronomy 2020, 10, 132. [Google Scholar] [CrossRef] [Green Version]
Parameters | Cow Manure | Poultry Manure | Mixture of Sheep and Camel Manures |
---|---|---|---|
pH | 7.97 | 7.81 | 7.35 |
Electrical conductivity (EC), (dS m−1) | 5.95 | 7.36 | 7.19 |
Organic matter (%) | 29.20 | 50.10 | 36.40 |
Organic carbon (%) | 16.94 | 29.06 | 21.11 |
Total N (%) | 2.05 | 7.97 | 1.35 |
Total P (%) | 0.32 | 1.06 | 0.63 |
Total K (%) | 0.62 | 1.56 | 0.84 |
C/N ratio | 8.26 | 3.65 | 15.64 |
Palm leaves | Wheat straw | Household wastes | |
pH | 8.19 | 8.27 | 8.32 |
EC (dS m−1) | 0.93 | 1.23 | 0.86 |
Organic matter (%) | 89.9 | 94.19 | 81.45 |
Organic carbon (%) | 52.14 | 54.63 | 47.24 |
Total N (%) | 0.61 | 0.56 | 0.81 |
Total P (%) | 0.08 | 0.22 | 0.19 |
Total K (%) | 0.17 | 0.19 | 0.11 |
C/N ratio | 85.48 | 97.55 | 58.32 |
Organic compost based on cow activator | Organic compost based on poultry litter activator | Organic compost based on mixture of sheep and camel activator | |
pH | 7.27 | 7.11 | 7.32 |
EC (dS m−1) | 3.79 | 3.52 | 3.91 |
Organic matter (%) | 42.98 | 41.65 | 46.96 |
Organic carbon (%) | 26.90 | 24.16 | 27.24 |
Total N (%) | 1.39 | 1.54 | 1.46 |
Total P (%) | 0.568 | 0.695 | 0.708 |
Total K (%) | 0.472 | 0.535 | 0.518 |
Moisture (%) | 25.50 | 20.20 | 22.83 |
C/N ratio | 48.91 | 37.17 | 28.08 |
Amount of NPK (kg ha−1) and organic matter (ton ha−1)applied through sole application of three different types of organic compost at rate of 10 ton ha−1 | |||
Organic compost based on cow activator | Organic compost based on poultry litter activator | Organic compost based on mixture of sheep and camel activator | |
Total N (kg ha−1) | 103.7 | 122.9 | 112.7 |
Total P (kg ha−1) | 42.3 | 55.5 | 54.6 |
Total K (kg ha−1) | 35.2 | 42.7 | 40.0 |
Organic matter (ton ha−1) | 2.0 | 2.13 | 2.11 |
INM | Seed Inc. | pH | EC | Organic Matter (%) | Organic Carbon (%) | Total N (%) | Available Nutrients (kg ha−1) | |||
---|---|---|---|---|---|---|---|---|---|---|
N | P2O5 | K2O | S | |||||||
Initial values | 7.86 a | 3.88 a | 0.46 f | 0.34 d | 0.12 d | 105.26 f | 22.21d | 115.62 e | 5.32 d | |
T1 (Full recommended NPK) | - | 7.38 | 2.74 | 0.58 | 0.41 | 0.14 | 141.30 | 31.87 | 116.95 | 9.93 |
+ | 7.29 | 2.68 | 0.67 | 0.57 | 0.17 | 172.35 | 40.54 | 132.05 | 7.74 | |
Mean | 7.34 b | 2.71 b | 0.63 ef | 0.49 cd | 0.16cd | 156.83 e | 36.21 c | 124.50 d | 8.84 c | |
T2 (compost of cow manure at 5 t ha−1) | - | 7.34 | 2.60 | 0.68 | 0.54 | 0.15 | 160.50 | 35.60 | 120.80 | 8.15 |
+ | 7.20 | 2.54 | 0.74 | 0.64 | 0.17 | 166.60 | 37.07 | 125.80 | 8.58 | |
Mean | 7.27cd | 2.57cd | 0.71 ef | 0.59bcd | 0.16cd | 163.55e | 36.34c | 123.30d | 8.37c | |
T3 (compost of poultry manure at 5 t ha−1) | - | 7.32 | 2.58 | 0.98 | 0.78 | 0.22 | 225.95 | 46.54 | 169.65 | 14.41 |
+ | 7.25 | 2.65 | 1.08 | 0.79 | 0.24 | 228.64 | 49.14 | 169.65 | 14.87 | |
Mean | 7.29c | 2.62bc | 1.03cd | 0.79abc | 0.23ab | 227.30cd | 47.84b | 169.65c | 14.64a | |
T4 (compost of mixture of sheep and camel at 5 t ha−1) | - | 7.30 | 2.55 | 0.87 | 0.75 | 0.20 | 220.00 | 46.46 | 189.95 | 13.62 |
+ | 7.24 | 2.63 | 0.95 | 0.76 | 0.22 | 222.85 | 48.55 | 172.20 | 13.95 | |
Mean | 7.27cd | 2.59cd | 0.91de | 0.76abc | 0.21bc | 221.43d | 47.51b | 181.08bc | 13.79b | |
T5 (50% NPK + 5 t ha−1 mixture of three types of compost) | - | 7.28 | 2.54 | 1.16 | 0.80 | 0.24 | 236.55 | 50.28 | 176.22 | 14.45 |
+ | 7.22 | 2.66 | 1.22 | 0.86 | 0.26 | 244.59 | 58.99 | 195.64 | 14.65 | |
Mean | 7.25de | 2.60e | 1.19bcd | 0.83ab | 0.25ab | 240.57b | 54.64ab | 185.93b | 14.55a | |
T6 (50% NPK+10 t ha−1 mixture of three types of compost) | - | 7.24 | 2.62 | 1.18 | 0.88 | 0.27 | 248.22 | 56.72 | 189.97 | 14.85 |
+ | 7.20 | 2.56 | 1.28 | 0.95 | 0.27 | 256.60 | 60.44 | 198.97 | 14.99 | |
Mean | 7.22fg | 2.59cd | 1.23bc | 0.92a | 0.27a | 252.41a | 58.58a | 194.47a | 14.92a | |
T7 (mixture of three types of compost at 10 t ha−1) | - | 7.25 | 2.55 | 1.34 | 0.88 | 0.26 | 228.75 | 52.28 | 188.91 | 14.80 |
+ | 7.22 | 2.67 | 1.45 | 0.96 | 0.26 | 235.45 | 62.54 | 199.82 | 14.95 | |
Mean | 7.24ef | 2.61bc | 1.40ab | 0.92a | 0.26ab | 232.10bc | 57.41a | 194.37a | 14.88a | |
T8 (mixture of three types of compost at 15 t ha−1) | - | 7.22 | 2.54 | 1.52 | 0.88 | 0.25 | 231.22 | 53.33 | 190.27 | 14.90 |
+ | 7.20 | 2.50 | 1.64 | 0.92 | 0.27 | 236.31 | 63.22 | 199.68 | 14.96 | |
Mean | 7.21g | 2.52cd | 1.58a | 0.90a | 0.26ab | 233.77bc | 58.28a | 194.98a | 14.93a | |
T9 (mixture of three types of compost at 20 t ha−1) | - | 7.27 | 2.52 | 1.55 | 0.84 | 0.26 | 231.57 | 53.67 | 191.22 | 14.90 |
+ | 7.20 | 2.46 | 1.72 | 0.90 | 0.27 | 237.82 | 64.44 | 199.95 | 14.92 | |
Mean | 7.24ef | 2.49d | 1.64a | 0.87ab | 0.27a | 234.70bc | 59.06a | 195.59a | 14.91a | |
Mean of seed inoculation | - | 7.29a | 2.58a | 1.10b | 0.75b | 0.22a | 213.78b | 47.42b | 170.44b | 13.33a |
+ | 7.22b | 2.59a | 1.19a | 0.82a | 0.24a | 222.36a | 53.88a | 177.08a | 13.29a | |
LSD INM×seed inc. | 0.04 | 0.11 | 0.50 | 0.07 | 0.08 | 4.52 | 5.21 | 7.22 | 0.14 |
INM | Seed Inc. | Cap (%) | TP (%) | HC (ms−1 × 10−6) | WHC (%) | IR (ms−1 × 10−6) |
---|---|---|---|---|---|---|
Initial values | 25.30f | 40.29g | 3.25g | 30.25h | 1.98i | |
T1 (Full recommended NPK) | - | 37.55 | 56.00 | 4.22 | 44.50 | 2.19 |
+ | 36.32 | 54.32 | 4.11 | 46.31 | 2.20 | |
Mean | 36.94bc | 55.16c | 4.17c | 45.41f | 2.20gh | |
T2 (compost of cow manure at 5 t ha−1) | - | 32.20 | 45.38 | 3.49 | 40.11 | 2.00 |
+ | 34.22 | 48.92 | 3.70 | 41.50 | 2.11 | |
Mean | 33.21e | 47.15f | 3.60f | 40.81g | 2.06hi | |
T3 (compost of poultry litter manure at 5 t ha−1) | - | 34.20 | 49.74 | 3.92 | 45.05 | 2.11 |
+ | 37.52 | 52.60 | 4.12 | 46.21 | 2.44 | |
Mean | 35.86cd | 51.17de | 4.02de | 45.63ef | 2.28fg | |
T4 (compost of mixture of sheep and camel manure at 5 t ha−1) | - | 33.24 | 47.68 | 3.88 | 43.44 | 2.34 |
+ | 35.50 | 50.44 | 4.00 | 49.50 | 2.41 | |
Mean | 34.37de | 49.06ef | 3.94e | 46.47ef | 2.38f | |
T5 (50% NPK + 5 t ha−1 mixture of three types of compost) | - | 35.22 | 51.74 | 4.12 | 46.05 | 2.41 |
+ | 35.64 | 55.70 | 4.17 | 48.64 | 3.15 | |
Mean | 35.43cde | 53.72cd | 4.15cd | 47.35de | 2.78e | |
T6 (50% NPK + 10 t ha−1 mixture of three types of compost) | - | 38.42 | 58.23 | 4.14 | 48.12 | 3.16 |
+ | 38.27 | 59.08 | 4.31 | 49.25 | 3.54 | |
Mean | 38.35ab | 58.66b | 4.23c | 48.69cd | 3.35d | |
T7 (mixture of three types of compost at 10 t ha−1) | - | 39.61 | 59.75 | 4.39 | 49.26 | 3.33 |
+ | 40.00 | 61.95 | 4.66 | 50.28 | 3.85 | |
Mean | 39.81a | 60.85b | 4.53b | 49.77bc | 3.59c | |
T8 (mixture of three types of compost at 15 t ha−1) | - | 39.80 | 61.11 | 4.56 | 49.38 | 3.76 |
+ | 40.61 | 61.75 | 4.75 | 52.34 | 3.95 | |
Mean | 40.21a | 61.43b | 4.66b | 50.86b | 3.86b | |
T9 (mixture of three types of compost at 20 t ha−1) | - | 39.84 | 63.34 | 5.19 | 52.15 | 3.95 |
+ | 41.65 | 65.86 | 5.44 | 54.67 | 4.08 | |
Mean | 40.75a | 64.60a | 5.32a | 53.41a | 4.02a | |
Mean of seed inoculation | - | 36.68b | 54.77b | 4.21b | 46.45b | 2.81b |
+ | 37.75a | 56.74a | 4.36a | 48.74a | 3.08a | |
LSD INM×seed inc. | 0.98 | 2.44 | 0.49 | 1.42 | 0.12 |
INM | Seed Inc. | Microbial Biomass C (mg kg−1 soil) | Microbial Biomass N (mg kg−1 soil) | Microbial Biomass P (mg kg−1 soil) |
---|---|---|---|---|
Initial values | 189.25 h | 16.59 g | 5.56 g | |
T1 (Full recommended NPK) | - | 266.78 | 38.66 | 9.12 |
+ | 291.08 | 37.58 | 9.51 | |
Mean | 278.93f | 38.12e | 9.32ef | |
T2 (compost of cow manure at 5 t ha−1) | - | 218.62 | 22.55 | 8.68 |
+ | 254.26 | 26.36 | 7.99 | |
Mean | 236.44g | 24.46f | 8.34f | |
T3 (compost of poultry litter manure at 5 t ha−1) | - | 287.00 | 37.19 | 9.04 |
+ | 312.40 | 44.20 | 9.85 | |
Mean | 299.70e | 40.70d | 9.45def | |
T4 (compost of mixture of sheep and camel manure at 5 t ha−1) | - | 283.74 | 40.10 | 9.50 |
+ | 300.21 | 42.16 | 9.60 | |
Mean | 291.98e | 41.13d | 9.55def | |
T5 (50% NPK + 5 t ha−1 mixture of three types of compost) | - | 309.06 | 44.19 | 10.22 |
+ | 336.40 | 47.28 | 12.18 | |
Mean | 322.73d | 45.74ab | 11.20bc | |
T6 (50% NPK + 10 t ha−1 mixture of three types of compost) | - | 317.02 | 45.69 | 11.47 |
+ | 358.77 | 47.89 | 12.45 | |
Mean | 337.90c | 46.79a | 11.96ab | |
T7 (mixture of three types of compost at 10 t ha−1) | - | 342.54 | 43.29 | 10.43 |
+ | 343.20 | 44.16 | 11.14 | |
Mean | 342.87bc | 43.73c | 10.79bcd | |
T8 (mixture of three types of compost at 15 t ha−1) | - | 343.15 | 44.22 | 10.25 |
+ | 344.32 | 45.43 | 9.92 | |
Mean | 343.74b | 44.83bc | 10.09cde | |
T9 (mixture of three types of compost at 20 t ha−1) | - | 348.16 | 46.12 | 11.66 |
+ | 373.02 | 49.14 | 13.82 | |
Mean | 360.59a | 47.63a | 12.74a | |
Mean of seed inoculation | - | 301.79b | 40.22b | 10.04a |
+ | 323.74a | 42.69a | 10.72a | |
LSD INM×seed inc. | 8.24 | 1.12 | 1.57 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Suhaibani, N.; Selim, M.; Alderfasi, A.; El-Hendawy, S. Comparative Performance of Integrated Nutrient Management between Composted Agricultural Wastes, Chemical Fertilizers, and Biofertilizers in Improving Soil Quantitative and Qualitative Properties and Crop Yields under Arid Conditions. Agronomy 2020, 10, 1503. https://doi.org/10.3390/agronomy10101503
Al-Suhaibani N, Selim M, Alderfasi A, El-Hendawy S. Comparative Performance of Integrated Nutrient Management between Composted Agricultural Wastes, Chemical Fertilizers, and Biofertilizers in Improving Soil Quantitative and Qualitative Properties and Crop Yields under Arid Conditions. Agronomy. 2020; 10(10):1503. https://doi.org/10.3390/agronomy10101503
Chicago/Turabian StyleAl-Suhaibani, Nasser, Mostafa Selim, Ali Alderfasi, and Salah El-Hendawy. 2020. "Comparative Performance of Integrated Nutrient Management between Composted Agricultural Wastes, Chemical Fertilizers, and Biofertilizers in Improving Soil Quantitative and Qualitative Properties and Crop Yields under Arid Conditions" Agronomy 10, no. 10: 1503. https://doi.org/10.3390/agronomy10101503
APA StyleAl-Suhaibani, N., Selim, M., Alderfasi, A., & El-Hendawy, S. (2020). Comparative Performance of Integrated Nutrient Management between Composted Agricultural Wastes, Chemical Fertilizers, and Biofertilizers in Improving Soil Quantitative and Qualitative Properties and Crop Yields under Arid Conditions. Agronomy, 10(10), 1503. https://doi.org/10.3390/agronomy10101503