Molecular Marker Technology for Crop Improvement
Abstract
:1. Introduction
2. Overview of the Special Issue
3. Concluding Remarks
Funding
Conflicts of Interest
References
- Hou, H.; Atlihan, N.; Lu, Z.X. New biotechnology enhances the application of cisgenesis in plant breeding. Front. Plant Sci. 2014, 5, 389. [Google Scholar] [CrossRef] [Green Version]
- Phougat, D.; Panwar, I.; Puina, M.; Sethi, S. Microsatellite markers based characterization in advance breeding lines and cultivars of bread wheat. J. Environ. Biol. 2018, 39, 339–346. [Google Scholar] [CrossRef]
- Shimelis, H.; Laing, M. Timelines in conventional crop improvement: Pre-breeding and breeding procedures. Aust. J. Crop Sci. 2012, 6, 1542–1549. [Google Scholar]
- Goutam, U.; Kukreja, S.; Tiwari, R.; Chaudhury, A.; Gupta, R.K.; Dholakia, B.B.; Yadav, R. Biotechnological approaches for grain quality improvement in wheat: Present status and future possibilities. Aust. J. Crop Sci. 2013, 7, 469–483. [Google Scholar]
- Talukder, S.K.; Saha, M.C. Toward Genomics-Based Breeding in C3 Cool-Season Perennial Grasses. Front. Plant Sci. 2017, 8, 1317. [Google Scholar] [CrossRef]
- Yu, X.; Zhang, M.; Yu, Z.; Yang, D.; Li, J.; Wu, G.; Li, J. An SNP-Based High-Density Genetic Linkage Map for Tetraploid Potato Using Specific Length Amplified Fragment Sequencing (SLAF-Seq) Technology. Agronomy 2020, 10, 114. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhu, Y.J.; Zhu, A.D.; Fan, Y.Y.; Huang, T.X.; Zhang, J.F.; Xie, H.A.; Zhuang, J.Y. Identification and Verification of Quantitative Trait Loci Affecting Milling Yield of Rice. Agronomy 2020, 10, 75. [Google Scholar] [CrossRef] [Green Version]
- Badu-Apraku, B.; Adewale, S.; Paterne, A.; Gedil, M.; Asiedu, R. Identification of QTLs Controlling Resistance/Tolerance to Striga hermonthica in an Extra-Early Maturing Yellow Maize Population. Agronomy 2020, 10, 1168. [Google Scholar] [CrossRef]
- Genievskaya, Y.; Abugalieva, S.; Rsaliyev, A.; Yskakova, G.; Turuspekov, Y. QTL Mapping for Seedling and Adult Plant Resistance to Leaf and Stem Rusts in Pamyati Azieva × Paragon Mapping Population of Bread Wheat. Agronomy 2020, 10, 1285. [Google Scholar] [CrossRef]
- Roselló, M.; Royo, C.; Sanchez-Garcia, M.; Soriano, J.M. Genetic Dissection of the Seminal Root System Architecture in Mediterranean Durum Wheat Landraces by Genome-Wide Association Study. Agronomy 2019, 9, 364. [Google Scholar] [CrossRef] [Green Version]
- Rufo, R.; Salvi, S.; Royo, C.; Soriano, J.M. Exploring the Genetic Architecture of Root-Related Traits in Mediterranean Bread Wheat Landraces by Genome-Wide Association Analysis. Agronomy 2020, 10, 613. [Google Scholar]
- Mérida-García, R.; Bentley, A.R.; Gálvez, S.; Dorado, G.; Solís, I.; Ammar, K.; Hernandez, P. Mapping Agronomic and Quality Traits in Elite Durum Wheat Lines under Differing Water Regimes. Agronomy 2020, 10, 144. [Google Scholar]
- Maldonado, C.; Mora, F.; Bertagna, F.A.B.; Kuki, M.C.; Scapim, C.A. SNP- and Haplotype-Based GWAS of Flowering-Related Traits in Maize with Network-Assisted Gene Prioritization. Agronomy 2019, 9, 725. [Google Scholar]
- Mérida-García, R.; Gálvez, S.; Paux, E.; Dorado, G.; Pascual, L.; Giraldo, P.; Hernandez, P. High Resolution Melting and Insertion Site-Based Polymorphism Markers for Wheat Variability Analysis and Candidate Genes Selection at Drought and Heat MQTL Loci. Agronomy 2020, 10, 1294. [Google Scholar]
- Ge, Y.; Zang, X.; Tan, L.; Wang, J.; Liu, Y.; Li, Y.; Wang, N.; Chen, D.; Zhan, R.; Ma, W. Single-Molecule Long-Read Sequencing of Avocado Generates Microsatellite Markers for Analyzing the Genetic Diversity in Avocado Germplasm. Agronomy 2019, 9, 512. [Google Scholar]
- Lebedev, V.G.; Subbotina, N.M.; Maluchenko, O.P.; Krutovsky, K.V.; Shestibratov, K.A. Assessment of Genetic Diversity in Differently Colored Raspberry Cultivars Using SSR Markers Located in Flavonoid Biosynthesis Genes. Agronomy 2019, 9, 518. [Google Scholar]
- Tautz, D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 1989, 17, 6463–6471. [Google Scholar]
- Wu, J.; Wang, Q.; Xie, J.; Pan, Y.-B.; Zhou, F.; Guo, Y.; Chang, H.; Xu, H.; Zhang, W.; Zhang, C.; et al. SSR Marker-Assisted Management of Parental Germplasm in Sugarcane (Saccharum spp. hybrids) Breeding Programs. Agronomy 2019, 9, 449. [Google Scholar]
- Thanasilungura, K.; Kranto, S.; Monkham, T.; Chankaew, S.; Sanitchon, J. Improvement of a RD6 Rice Variety for Blast Resistance and Salt Tolerance through Marker-Assisted Backcrossing. Agronomy 2020, 10, 1118. [Google Scholar]
- Blasco, M.; Gil-Muñoz, F.; Naval, M.M.; Badenes, M.L. Molecular Assisted Selection for Pollination-Constant and Non-Astringent Type without Male Flowers in Spanish Germplasm for Persimmon Breeding. Agronomy 2020, 10, 1172. [Google Scholar]
- Polo-Oltra, Á.; Romero, C.; López, I.; Badenes, M.L.; Zuriaga, E. Cost-Effective and Time-Efficient Molecular Assisted Selection for Ppv Resistance in Apricot Based on ParPMC2 Allele-Specific PCR. Agronomy 2020, 10, 1292. [Google Scholar] [CrossRef]
- Sapkota, S.; Boatwright, J.L.; Jordan, K.; Boyles, R.; Kresovich, S. Multi-Trait Regressor Stacking Increased Genomic Prediction Accuracy of Sorghum Grain Composition. Agronomy 2020, 10, 1221. [Google Scholar] [CrossRef]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soriano, J.M. Molecular Marker Technology for Crop Improvement. Agronomy 2020, 10, 1462. https://doi.org/10.3390/agronomy10101462
Soriano JM. Molecular Marker Technology for Crop Improvement. Agronomy. 2020; 10(10):1462. https://doi.org/10.3390/agronomy10101462
Chicago/Turabian StyleSoriano, Jose Miguel. 2020. "Molecular Marker Technology for Crop Improvement" Agronomy 10, no. 10: 1462. https://doi.org/10.3390/agronomy10101462