Designing a Sustainable Temporary Grassland System by Monitoring Nitrogen Use Efficiency
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Set Up
2.3. Dry Matter Production, Protein Content, Plant N Uptake and Nitrogen Use Efficiency and Response (NUE and NRE)
- Nf—total nitrogen of fertilized crop
- Nc—total nitrogen of control variant (unfertilized)
- R—rate of N fertilizer applied
- Nuptake (after Hiremath and Ewel, 2001)—Plant N uptake (kg N ha−1year−1) = Ntotal (kg N kg−1) × DM (kg ha−1 year−1)
- Nsupply—rate of fertilizer;
- DM (kg ha−1 year−1)—dry matter yield.
2.4. Statistical Analyses
3. Results
3.1. Dry Matter Production
3.2. Crude Protein Content and Plant N Uptake
3.3. Nitrogen Response Efficiency (NRE)
3.4. Nitrogen Use Efficiency (NUE)
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture. Proc. Nat. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [Green Version]
- Alexandratos, N.; Bruinsma, J. Food and Agriculture Organization of the United Nations, ESA Working Paper, 2nd ed.; World Agriculture towards 2030/2050: The 2012 Revision; FAO Agricultural Development Economics Division: Paris, France, 2012; pp. 3–12. [Google Scholar]
- Oenema, O. Nitrogen budgets and losses in livestock systems. Int. Congr. Ser. 2006, 1293, 262–271. [Google Scholar] [CrossRef]
- Sutton, M.A.; Bleeker, A.; Howard, C.M.; Bekunda, M.; Grizzeetti, B.; de Vries, W.; van Grinsven, H.J.M.; Abrol, Y.P.; Adhya, T.K.; Billen, G.E.A. Our Nutrient World: The Challenge to Produce More Food and Energy with Less Pollution, 1st ed.; Centre for Ecology and Hydrology: Edinburgh, UK, 2013; pp. 17–25. [Google Scholar]
- Erisman, J.W.; Leach, A.; Bleeker, A.; Arwell, B.; Cattaneo, L.; Galloway, J. An integrated approach to a nitrogen use efficiency (NUE) indicator for the food production–consumption chain. Sustainability 2018, 10, 925. [Google Scholar] [CrossRef] [Green Version]
- Fixen, P.; Brentrup, F.; Bruulsema, T.; Garcia, F.; Norton, R.; Zingore, S. Nutrient/fertilizer use efficiency: Measurement, current situation and trends. In Managing Water and Fertilizer for Sustainable Agricultural Intensification, 1st ed.; Drechsel, P., Heffer, P., Magen, H., Mikkelsen, R., Wichelns, D., Eds.; International Fertilizer Industry Association (IFA): Paris, France; International Water Management Institute (IWMI): Paris, France; International Plant Nutrition Institute (IPNI): Paris, France; International Potash Institute (IPI): Paris, France, 2015; Volume 1, pp. 1–30. [Google Scholar]
- Goulding, K.; Jarvis, S.; Whitmore, A. Optimizing nutrient management for farm systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 667–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freibauer, A.; Kaltschmitt, M. Emission rates and emissions factors of greenhouse gas fluxes in arable and animal agriculture. In European Summary Report of the EU Concerted Action ‘‘Biogenic Emissions of Greenhouse Gases Caused by Arable and Animal Agriculture’’ (FAIR3-CT96-1877) Financed by EU DGVI Project Report Task 1; Institut furr Energiewirtschaft und Rationelle Energieanwendung (Universitat Stuttgart): Stuttgart, Germany, 2000; Available online: http://opus-ho.uni-stuttgart.de/hop/volltexte/2002/22/pdf/Freibauer_diss.pdf (accessed on 21 November 2019).
- Sobkowicz, P.; Tendziagolska, E.; Agnieszka, L. Performance of multi-component mixtures of spring cereals. Agricultura Part 2. Competitive hierarchy and yield advantage of mixtures. Acta Sci. Pol. Ser. Agric. 2016, 15, 37–48. [Google Scholar]
- Hiremath, A.J.; Ewel, J.J. Ecosystem nutrient use efficiency, productivity, and nutrient accrual in model tropical communities. Ecosystems 2001, 4, 669–682. [Google Scholar] [CrossRef]
- Hack-ten Broeke, M.J.D.; Schut, A.G.T.; Bouma, J. Effects on nitrate leaching and yield potential of implementing newly developed sustainable land use systems for dairy farming on sandy soils in The Netherlands. Geoderma 1999, 91, 217–235. [Google Scholar] [CrossRef]
- Pereira Serra, A.; Marchetti, M.E.; Dupas, E.; Candido Ensinas, S.; Reis Pinheiro Lourente, E.; Francisco da Silva, E.; Giolo de Almeida, R.; Eloize Carducci, C.; Tokura Alovisi, A.M. Best Management Practices (BMPs) for Nitrogen Fertilizer in Forage Grasses. In New Perspectives in Forage Crops, 1st ed.; Loiola Edvan, R., Bezerra, L., Eds.; IntechOpen: Rijeka, Croatia, 2018; pp. 131–146. [Google Scholar]
- Rotar, I.; Păcurar, F.; Vidican, R.; Deak, D.; Mălinaş, A. The behavior of Medicago sativa and Bromus inermis mixture subjected to different conditions of fertilization. Bull. UASMV Ser. Agric. 2013, 70, 25–29. [Google Scholar]
- Bridgham, S.D.; Pastor, J.; Mc Claugherty, C.A.; Richardson, C.J. Nutrient-use efficiency—A litter fall index, a model, and a test along a nutrient-availability gradient in North-Carolina peat lands. Am. Nat. 1995, 145, 1–21. [Google Scholar] [CrossRef]
- Mastalerczuk, G.; Borawska-Jarmułowicz, B.; Kalaji, H.M.; Dąbrowski, P.; Paderewski, J. Gas-exchange parameters and morphological features of festulolium (Festulolium braunii K. Richert A. Camus) in response to nitrogen dosage. Photosynthetica 2017, 55, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Dalton, S.J.; Bettany, A.J.E. Co-transformed, diploid Lolium perenne (perennial ryegrass), Lolium multiflorum (Italian ryegrass) and Lolium temulentum (darnel) plants produced by microprojectile bombardment. Plant Cell Rep. 1999, 18, 721–726. [Google Scholar] [CrossRef]
- Hejduk, S.; Kno, P. Effect of provenance and ploidity of red clover varieties on productivity, persistence and growth pattern in mixture with grasses. Plant Soil Environ. 2010, 56, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Kjeldahl, J. Neue Methods zur Bestimmung des Stickstoffs in Organischen Korpern. Fresenius’ J. Anal. Chem. 1983, 22, 366–382. [Google Scholar] [CrossRef] [Green Version]
- Raun, W.R.; Johnson, G.V. Improving nitrogen use efficiency for cereal production. Agron. J. 1999, 91, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Keeney, D.R. Nitrogen management for maximum efficiency and minimum pollution. Nitrogen Agric. Soils 1982, 22, 605–649. [Google Scholar]
- Pastor, J.; Bridgham, S.D. Nutrient efficiency along nutrient availability gradients. Oecologia 1999, 118, 50–58. [Google Scholar] [CrossRef]
- Dobermann, A. Nitrogen use efficiency—State of the art. Agron. Hortic. Fac. Publ. 2005, 1–16. [Google Scholar]
- Black, A.D.; Laidlaw, A.S.; Moot, D.J.; Kiely, P.O. Comparative growth and management of white and red clovers. Ir. J. Agric. Food Res. 2009, 48, 149–166. [Google Scholar]
- Dhamala, N.R.; Rasmussen, J.; Carlsson, G.; Søegaard, K.; Eriksen, J. N transfer in three-species grass-clover mixtures with chicory, ribwort plantain or caraway. Plant Soil 2017, 413, 217–230. [Google Scholar] [CrossRef] [Green Version]
- Wilsey, B.J.; Potvin, C. Biodiversity and ecosystem functioning: Importance of species evenness in an old field. Ecology 2000, 81, 887–892. [Google Scholar] [CrossRef]
- Trenbath, B.R. Biomass productivity of mixtures. Adv. Agron. 1974, 26, 177–210. [Google Scholar]
- Rotar, I. Studies Concerning Inter and Intraspecific Competition in Legume-Grass Forage Mixture. Ph.D. Thesis, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania, 1994. [Google Scholar]
- Daepp, M.; Suter, D.; Almeida, J.P.F.; Isopp, H.; Hartwig, U.A.; Frehner, M.; Blum, H.; Nösberger, J.; Lüscher, A. Yield response of Lolium perenne swards to free air CO2 enrichment increased over six years in a high N input system on fertile soil. Glob. Chang. Biol. 2000, 6, 805–816. [Google Scholar] [CrossRef]
- Luo, J.; Klein, C.A.M.; Ledgard, S.F.; Saggar, S. Management options to reduce nitrous oxide emissions from intensively grazed pastures: A review. Agric. Ecosyst. Environ. 2010, 136, 282–291. [Google Scholar] [CrossRef]
- Marschner, P.; Rengel, Z. Nutrient Cycling in Terrestrial Ecosystems; Springer: Berlin, Germany, 2007; p. 291. [Google Scholar]
- Andrade, C.M.S.; Garcia, R.; Couto, L.; Pereira, O.G.; Souza, A.L. Desempenho de Seis Gramíneas Solteiras ou Consorciadas com o Stylosanthes guianensis cv. Mineirão e Eucalipto em Sistema Silvipastoril. Bras. Zootec. 2003, 32, 1845–1850. [Google Scholar] [CrossRef] [Green Version]
- Olanite, J.A.; Tarawali, S.A.; Aken’ova, M.E. Biomass yield, quality and acceptability of selected grass-legume mixtures in the moist savannah of West Africa. Trop. Grassl. 2004, 38, 117–128. [Google Scholar]
- Bruulsema, T.; Lemunyon, J.; Herz, B. Know your fertilizer rights. Crops Soils 2009, 42, 13–18. [Google Scholar]
- Vidican, R.; Mihai, R.; Rotar, I.; Mărghitaş, M. Manualul Aplicarii Fertilizantilor, 1st ed.; Vidican, R., Ed.; Risoprint: Cluj, Romania, 2013; pp. 87–91. [Google Scholar]
- Xu, G.; Fan, X.; Miller, A.J. Plant nitrogen assimilation and use efficiency. Annu. Rev. Plant Biol. 2012, 63, 153–182. [Google Scholar] [CrossRef] [Green Version]
- Aerts, R. Nutrient use efficiency in evergreen and deciduous species from heathlands. Oecologia 1990, 84, 391–397. [Google Scholar] [CrossRef]
- Vitousek, P. Nutrient cycling and nutrient use efficiency. Am. Nat. 1982, 119, 553–572. [Google Scholar] [CrossRef]
Agrochemical Index | Value |
---|---|
pH in H2O | 8.10 |
Humus (%) | 3.11 |
CaCO3% | 5 |
Nitrogen index (IN; %) | 3.65 |
Total nitrogen (Nt; %) | 0.18 |
Mineral nitrogen (Nmin; ppm) | 34.96 |
Species | Experimental Plots | Sward Type |
---|---|---|
Trifolium pratense | Tp_mono1, Tp_mono2, Tp_mono3 | monoculture sown on 12,5 cm: unfertilized and fertilized with 50 kg N ha−1 year−1 and 100 kg N ha−1 year−1 |
Tp_mono4, Tp_mono5, Tp_mono6 | monoculture sown on 25 cm: unfertilized and fertilized with 50 kg N ha−1 year−1 and 100 kg N ha−1 year−1 | |
Lolium multiflorum | Lm_mono1, Lm_mono2, Lm_mono3 | monoculture sown on 12,5 cm: unfertilized and fertilized with 50 kg N ha−1 year−1 and 100 kg N ha−1 year−1 |
Lm_mono4, Lm_mono5, Lm_mono6 | monoculture sown on 25 cm: unfertilized and fertilized with 50 kg N ha−1 year−1 and 100 kg N ha−1 year−1 | |
Mixture of Tp and Lm | TpLm_mixt1, TpLm_mixt2, TpLm_mixt3 | mixture of Tp and Lm sown on 12,5 cm: unfertilized and fertilised with 50 kg N ha−1 year−1 and 100 kg N ha−1 year−1 |
TpLm_mixt4, TpLm_mixt5, TpLm_mixt6 | mixture of Tp and Lm sown on 25 cm: unfertilized and fertilised with 50 kg N ha−1 year−1 and 100 kg N ha−1 year−1 |
Factor | Factor Level | DM Yield in 2016 (kg ha−1 year−1) | DM Yield in 2017 (kg ha−1 year−1) | p-Value |
---|---|---|---|---|
Sward type | Tp_mono | 11,720.87 | 11,060.14 | *** |
Lm_mono | 8860.06 | 8500.00 | ||
TpLm_mixt | 13,810.55 | 13,670.66 | ||
N fertilization | 0 | 9240.14 | 8890.43 | *** |
50 | 11,920.09 | 1170.00 | ||
100 | 13,130.19 | 1266.13 | ||
Seeding density | 12.5 | 11,930.12 | 1145.19 | *** |
25 | 10,980.15 | 1072.98 | ||
Interaction Sward type × N fertilization | ** | |||
Interaction Sward type × Seeding density | *** | |||
Interaction N fertilization × Seeding density | ** |
Factor | Factor Level | CP Yield in 2016 (%) | CP Yield in 2017 (%) | p-Value |
---|---|---|---|---|
Sward type | Tp_mono | 16.44 | 16.29 | *** |
Lm_mono | 12.19 | 11.20 | ||
TpLm_mixt | 13.21 | 12.23 | ||
N fertilization | 0 | 13.53 | 12.86 | *** |
50 | 14.00 | 13.13 | ||
100 | 14.34 | 13.73 | ||
Seeding density | 12.5 | 14.24 | 13.42 | *** |
25 | 13.67 | 13.06 | ||
Interaction Sward type × N fertilization | * | |||
Interaction Sward type × Seeding density | * | |||
Interaction N fertilization × Seeding density | * |
Factor | Treatments | n | 2016 | 2017 | ||||
---|---|---|---|---|---|---|---|---|
NRE (kg biomass kg N supply−1) | SE | p | NRE (kg biomass kg N supply−1) | SE | P | |||
Sward type | Tp_mono | 12 | 224.66 | 18.53 | *** | 183.16 | 20.83 | *** |
Lm_mono | 12 | 139.24 | 8.81 | *** | 136.81 | 9.79 | *** | |
TpLm_mixt | 12 | 223.63 | 20.40 | *** | 295.04 | 20.63 | *** | |
N fertilization | 0 | 18 | 440.16 | 22.50 | *** | 461.23 | 22.71 | *** |
50 | 18 | 215.03 | 16.84 | *** | 250.08 | 16.82 | *** | |
100 | 18 | 148.87 | 16.43 | *** | 159.92 | 20.22 | *** | |
Seeding density | 12.5 | 18 | 193.10 | 16.64 | *** | 198.07 | 19.43 | *** |
25 | 18 | 198.58 | 16.48 | *** | 211.93 | 23.40 | *** |
Factor | Treatments | n | 2016 | 2017 | ||||
---|---|---|---|---|---|---|---|---|
NUE (%) | SE | p | NUE (%) | SE | p | |||
Sward type | Tp_mono | 18 | 47.81 | 1.28 | *** | 50.62 | 1.28 | *** |
Lm_mono | 18 | 86.28 | 7.76 | *** | 87.17 | 5.35 | *** | |
TpLm_mixt | 18 | 58.45 | 13.91 | *** | 40.68 | 1.75 | *** | |
N fertilization | 0 | 18 | 50.72 | 1.84 | *** | 55.73 | 1.98 | *** |
50 | 18 | 46.03 | 13.33 | *** | 47.83 | 2.03 | *** | |
100 | 18 | 41.02 | 0.97 | *** | 44.16 | 1.45 | *** | |
Seeding density | 12.5 | 18 | 71.62 | 1.56 | *** | 59.25 | 5.24 | *** |
25 | 18 | 56.74 | 4.55 | *** | 59.73 | 4.21 | *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mălinas, A.; Rotar, I.; Vidican, R.; Iuga, V.; Păcurar, F.; Mălinas, C.; Moldovan, C. Designing a Sustainable Temporary Grassland System by Monitoring Nitrogen Use Efficiency. Agronomy 2020, 10, 149. https://doi.org/10.3390/agronomy10010149
Mălinas A, Rotar I, Vidican R, Iuga V, Păcurar F, Mălinas C, Moldovan C. Designing a Sustainable Temporary Grassland System by Monitoring Nitrogen Use Efficiency. Agronomy. 2020; 10(1):149. https://doi.org/10.3390/agronomy10010149
Chicago/Turabian StyleMălinas, Anamaria, Ioan Rotar, Roxana Vidican, Vasile Iuga, Florin Păcurar, Cristian Mălinas, and Cristina Moldovan. 2020. "Designing a Sustainable Temporary Grassland System by Monitoring Nitrogen Use Efficiency" Agronomy 10, no. 1: 149. https://doi.org/10.3390/agronomy10010149
APA StyleMălinas, A., Rotar, I., Vidican, R., Iuga, V., Păcurar, F., Mălinas, C., & Moldovan, C. (2020). Designing a Sustainable Temporary Grassland System by Monitoring Nitrogen Use Efficiency. Agronomy, 10(1), 149. https://doi.org/10.3390/agronomy10010149