Allylthioketone Mediated Free Radical Polymerization of Methacrylates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterizations
2.3. Synthesis of 1,3,3-Triphenylprop-2-ene-1-thione (TPPT)
2.4. Reaction of TPPT with AIBN
2.5. Polymerization of MMA in the Presence of TPPT
2.6. Chain Extension of the PMMA with GMA
2.7. Polymerization Kinetics Study
3. Results and Discussion
3.1. Polymerization Kinetics
3.2. EPR Studies
3.3. MALDI-TOF MS Studies
3.4. Polymerization of Methacrylates
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zetterlund, P.B.; Thickett, S.C.; Perrier, S.; Bourgeat-Lami, E.; Lansalot, M. Controlled/Living Radical Polymerization in Dispersed Systems: An Update. Chem. Rev. 2015, 115, 9745–9800. [Google Scholar] [CrossRef] [PubMed]
- Moad, G.; Rizzardo, E.; Thang, S.H. Living Radical Polymerization by the RAFT Process. Aust. J. Chem. 2005, 58, 379–410. [Google Scholar] [CrossRef]
- Nicolas, J.; Guillaneuf, Y.; Lefay, C.; Bertin, D.; Gigmes, D.; Charleux, B. Nitroxide-mediated polymerization. Prog. Polym. Sci. 2013, 38, 63–235. [Google Scholar] [CrossRef]
- Kamigaito, M.; Ando, T.; Sawamoto, M. Metal-Catalyzed Living Radical Polymerization. Chem. Rev. 2001, 101, 3689–3745. [Google Scholar] [CrossRef] [PubMed]
- Chaffey-Millar, H.; Izgorodina, E.I.; Barner-Kowollik, C.; Coote, M.L. Radical Addition to Thioketones: Computer-Aided Design of Spin Traps for Controlling Free-Radical Polymerization. J. Chem. Theory Comput. 2006, 2, 1632–1645. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-S.; Matyjaszewski, K. Controlled/“Living” Radical Polymerization. Atom Transfer Radical Polymerization in the Presence of Transition-Metal Complexes. J. Am. Chem. Soc. 1995, 117, 5614–5615. [Google Scholar] [CrossRef]
- Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T. Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris(triphenylphosphine)ruthedum(II)/Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living Radical Polymerization. Macromolecules 1995, 28, 1721–1723. [Google Scholar] [CrossRef]
- Angot, S.; Murthy, K.S.; Taton, D.; Gnanou, Y. Scope of the Copper Halide/Bipyridyl System Associated with Calixarene-Based Multihalides for the Synthesis of Well-Defined Polystyrene and Poly(meth)acrylate Stars. Macromolecules 2000, 33, 7261–7274. [Google Scholar] [CrossRef]
- Matyjaszewski, K.; Xia, J. Atom Transfer Radical Polymerization. Chem. Rev. 2001, 191, 2921–2990. [Google Scholar] [CrossRef]
- Matyjaszewski, K. Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules 2012, 45, 4015–4039. [Google Scholar] [CrossRef]
- Van Steenberge, P.H.M.; D’hooge, D.R.; Wang, Y.; Zhong, M.J.; Reyniers, M.F.; Konkolewicz, D.; Matyjaszewski, K.; Marin, G.B. Linear Gradient Quality of ATRP Copolymers. Macromolecules 2012, 45, 8519–8531. [Google Scholar] [CrossRef]
- George, M.K.; Veregin, R.P.N.; Kazmaier, P.M.; Hamer, G.K. Narrow molecular weight resins by a free-radical polymerization process. Macromolecules 1993, 26, 2987–2988. [Google Scholar] [CrossRef]
- Hawker, C.J.; Bosman, A.W.; Harth, E. New Polymer Synthesis by Nitroxide Mediated Living Radical Polymerizations. Chem. Rev. 2001, 101, 3661–3688. [Google Scholar] [CrossRef] [PubMed]
- Kaim, A.; Szydłowska, J.; Pietrasik, K. The Effect of the Spacer Length on Binitroxide Mediated Radical Polymerization of Styrene. Macromol. Res. 2011, 19, 1041–1047. [Google Scholar] [CrossRef]
- Wang, L.; Broadbelt, L.J. Kinetics of Segment Formation in Nitroxide-Mediated Controlled Radical Polymerization: Comparison with Classic Theory. Macromolecules 2010, 43, 2228–2235. [Google Scholar] [CrossRef]
- Van Steenberge, P.H.M.; D’hooge, D.R.; Reyniers, M.F.; Marin, G.B.; Cunningham, M.F. 4-Dimensional Modeling Strategy for an Improved Understanding of Miniemulsion NMP of Acrylates Initiated by SG1-Macroinitiator. Macromolecules 2014, 47, 7732–7741. [Google Scholar] [CrossRef]
- Bentein, L.; D’hooge, D.R.; Reyniers, M.F.; Marin, G.B. Kinetic modeling of miniemulsion nitroxide mediated polymerization of styrene: Effect of particle diameter and nitroxide partitioning up to high conversion. Polymer 2012, 53, 681–693. [Google Scholar] [CrossRef]
- Chiefari, J.; Chong, Y.K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T.P.T.; Mayadunne, R.T.A.; Meijs, G.F.; Moad, C.L.; Moad, G.; et al. Living Free-Radical Polymerization by Reversible Addition−Fragmentation Chain Transfer: The RAFT Process. Macromolecules 1998, 31, 5559–5562. [Google Scholar] [CrossRef]
- Destarac, M.; Charmot, D.; Franck, X.; Zard, S.Z. Dithiocarbamates as Universal Reversible Addition-Fragmentation Chain Transfer Agents. Macromol. Rapid Commun. 2000, 21, 1035–1039. [Google Scholar] [CrossRef]
- Perrier, S.; Takolpuckdee, P. Macromolecular Design via Reversible Addition-Fragmentation Chain Transfer (RAFT)/Xanthates (MADIX) Polymerization. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 5347–5393. [Google Scholar] [CrossRef]
- Barner-Kowollik, C.; Buback, M.; Charleux, B.; Coote, M.L.; Drache, M.; Fukuda, T.; Goto, A.; Klumperman, B.; Lowe, A.B.; Mcleary, J.B.; et al. Mechanism and Kinetics of Dithiobenzoate-mediated RAFT polymerization. I. The Current Situation. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 5809–5831. [Google Scholar] [CrossRef]
- Wieland, P.C.; Raether, B.; Nuyken, O. A New Additive for Controlled Radical Polymerization. Macromol. Rapid Commun. 2001, 22, 700–703. [Google Scholar] [CrossRef]
- Raether, B.; Nuyken, O.; Wieland, P.; Bremser, W. Free-Radical Synthesis of Block Copolymers on an Industrial Scale. Macromol. Symp. 2002, 177, 25–41. [Google Scholar] [CrossRef]
- Kos, T.; Strissel, C.; Yagci, Y.; Nugay, T.; Nuyken, O. The Use of the DPE Radical Polymerization Method for the Synthesis of Chromophore-labelled Polymers and Block Copolymers. Eur. Polym. J. 2005, 41, 1265–1271. [Google Scholar] [CrossRef]
- Zhao, M.; Chen, D.; Shi, Y.; Yang, W.; Fu, Z. Polymerization Mechanism of MMA in the Presence of 1,1-Diphenylethylene. Macromol. Chem. Phys. 2013, 214, 1688–1698. [Google Scholar] [CrossRef]
- Zhao, M.; Fu, Z.; Shi, Y.; Yang, W. Polymerization Mechanism in the Presence of 1,1-Diphenylethylene Part 2: Synthesis and Characterization of PMA and PSt. Macromol. Chem. Phys. 2015, 216, 2202–2210. [Google Scholar] [CrossRef]
- Junkers, T.; Stenzel, M.H.; Davis, T.P.; Barner-Kowollik, C. Thioketone-Mediated Polymerization of Butyl Acrylate: Controlling Free-Radical Polymerization via a Dormant Radical Species. Macromol. Rapid Commun. 2007, 28, 746–753. [Google Scholar] [CrossRef]
- Chaffey-Millar, H.; Davis, T.P.; Stenzel, M.H.; Izgorodina, E.I.; Coote, M.L.; Barner-Kowollik, C. Thioketone Spin Traps as Mediating Agents for Free Radical Polymerization Processes. Chem. Commun. 2006, 8, 835–837. [Google Scholar]
- Gunzler, F.; Junkers, T.; Barner-Kowollik, C. Studying the Mechanism of Thioketone-Mediated Polymerization via Electrospray Ionization Mass Spectrometry. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 1864–1876. [Google Scholar] [CrossRef]
- Junkers, T.; Delaittre, G.; Chapman, R.; Günzler, F.; Chernikova, E.; Barner-Kowollik, C. Thioketone-Mediated Polymerization with Dithiobenzoates: Proof for the Existence of Stable Radical Intermediates in RAFT Polymerization. Macromol. Rapid Commun. 2012, 33, 984–990. [Google Scholar] [CrossRef] [PubMed]
- Krusic, P.J.; Meakin, P.; Smart, B.E. An Electron Spin Resonance Study of the Steric Rigidity in the Allyl and 1,l-Disubstituted Allyl Radicals. J. Am. Chem. Soc. 1974, 96, 6211–6213. [Google Scholar] [CrossRef]
- Gobbi, A.; Frenking, G. Resonance Stabilization in Allyl Cation, Radical, and Anion. J. Am. Chem. Soc. 1994, 116, 9275–9286. [Google Scholar] [CrossRef]
- Odian, G. Principle of Polymerization, 3rd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 1991; p. 266. [Google Scholar]
- Henry, D.J.; Coote, M.L.; Gómez-Balderas, R.; Radom, L. Comparison of the Kinetics and Thermodynamics for Methyl Radical Addition to C=C, C=O, and C=S Double Bonds. J. Am. Chem. Soc. 2004, 126, 1732–1740. [Google Scholar] [CrossRef] [PubMed]
- Coote, M.L. The Kinetics of Addition and Fragmentation in Reversible Addition Fragmentation Chain Transfer Polymerization: An ab Initio Study. J. Phys. Chem. A 2005, 109, 1230–1239. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, Y.; Matyjaszewski, K. Synthesis of Well-Defined Allyl End-Functionalized Polystyrene by Atom Transfer Radical Polymerization with an Allyl Halide initiator. Polym. J. 1998, 30, 138–141. [Google Scholar] [CrossRef]
- Barner-Kowollik, C.; Quinn, J.F.; Nguyen, T.L.U.; Heuts, J.P.A.; Davis, T.P. Kinetic Investigations of Reversible Addition Fragmentation Chain Transfer Polymerizations: Cumyl Phenyldithioacetate Mediated Homopolymerizations of Styrene and Methyl Methacrylate. Macromolecules 2001, 34, 7849–7857. [Google Scholar] [CrossRef]
- Kajiwara, A.; Nanda, A.K.; Matyjaszewski, K. Electron Spin Resonance Study of Monomeric, Dimeric, and Polymeric Acrylate Radicals Prepared Using the Atom Transfer Radical Polymerization Technique—Direct Detection of Penultimate-Unit Effects. Macromolecules 2004, 37, 1378–1385. [Google Scholar] [CrossRef]
- Kamachi, M.; Kajiwara, A. ESR Study on Radical Polymerizations of Diene Compounds. Determination of Propagation Rate Constants. Macromolecules 1996, 29, 2378–2382. [Google Scholar] [CrossRef]
- Barner-Kowollik, C.; Davis, T.P.; Stenzel, M.H. Probing Mechanistic Features of Conventional, Catalytic and Living Free Radical Polymerizations using Soft Ionization Mass Spectrometric Techniques. Polymer 2004, 45, 7791–7805. [Google Scholar] [CrossRef]
No | Monomer b | Feed molar ratio of M/TPPT/AIBN | Conversion (%) c | Mn(NMR) d (g/mol) | Mn(GPC) e (g/mol) | Mw/Mn e | ||
---|---|---|---|---|---|---|---|---|
M | AIBME | TPPT | ||||||
1 | MMA | 100/2/1 | 39.9 | 82.9 | 44.5 | − | 11,400 | 1.16 |
2 | BzMA | 100/2/1 | 57.9 | 79.0 | 35.2 | 23,460 | 20,500 | 1.26 |
3 | BMA | 100/2/1 | 39.9 | 85.6 | 50.3 | 14,090 | 15,600 | 1.25 |
4 | DMAEMA | 100/2/1 | 37.2 | 81.8 | 40.0 | 12,050 | 14,500 | 1.32 |
5 | t-BAEMA | 100/2/1 | 51.5 | 72.0 | 50.6 | 25,380 | 31,000 | 1.26 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, F.; Qiu, L.; Hong, C.-Y.; Pan, C.-Y. Allylthioketone Mediated Free Radical Polymerization of Methacrylates. Polymers 2017, 9, 608. https://doi.org/10.3390/polym9110608
Zhong F, Qiu L, Hong C-Y, Pan C-Y. Allylthioketone Mediated Free Radical Polymerization of Methacrylates. Polymers. 2017; 9(11):608. https://doi.org/10.3390/polym9110608
Chicago/Turabian StyleZhong, Feng, Liang Qiu, Chun-Yan Hong, and Cai-Yuan Pan. 2017. "Allylthioketone Mediated Free Radical Polymerization of Methacrylates" Polymers 9, no. 11: 608. https://doi.org/10.3390/polym9110608
APA StyleZhong, F., Qiu, L., Hong, C.-Y., & Pan, C.-Y. (2017). Allylthioketone Mediated Free Radical Polymerization of Methacrylates. Polymers, 9(11), 608. https://doi.org/10.3390/polym9110608