The In Vitro Enzymatic Degradation of Cross-Linked Poly(trimethylene carbonate) Networks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Measurements
2.3. Fabrication of PTMC-Ns Rods
2.4. In Vitro Enzymatic Degradation
3. Results and Discussion
3.1. Synthesis and Properties of PTMC-Ns
3.2. Mass Loss and Degradation Rate
3.3. SEM Observation
3.4. Form-Stability and Degradation Mechanism
3.5. The Role of Lipase on Degradation of PTMC-Ns
3.6. pH
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zhu, K.J.; Hendren, R.W.; Jensen, K.; Pitt, C.G. Synthesis, properties, and biodegradation of poly(1,3-trimethylene carbonate). Macromolecules 1991, 24, 1736–1740. [Google Scholar] [CrossRef]
- Zhang, Z.; Kuijer, R.; Bulstra, S.K.; Grijpma, D.W.; Feijen, J. The in vivo and in vitro degradation behavior of poly(trimethylene carbonate). Biomaterials 2006, 27, 1741–1748. [Google Scholar] [CrossRef] [PubMed]
- Pêgo, A.P.; Van Luyn, M.J.; Brouwer, L.A.; van Wachem, P.B.; Poot, A.A.; Grijpma, D.W.; Feijen, J. In vivo behavior of poly(1,3-trimethylene carbonate) and copolymers of 1,3-trimethylene carbonate with d,l-lactide or epsilon-caprolactone: Degradation and tissue response. J. Biomed. Mater. Res. Part A 2003, 67, 1044–1054. [Google Scholar] [CrossRef] [PubMed]
- Albertsson, A.C.; Eklund, M. Influence of molecular structure on the degradation mechanism of degradable polymers: In vitro degradation of poly(trimethylene carbonate), poly(trimethylene carbonate-co-caprolactone), and poly(adipic anhydride). J. Appl. Polym. Sci. 1995, 57, 87–103. [Google Scholar] [CrossRef]
- Athanasiou, K.A.; Niederauer, G.G.; Agrawal, C.M. Sterilization, toxicity, biocompatibility and clinical applications of polylactic acid/polyglycolic acid copolymers. Biomaterials 1996, 17, 93–102. [Google Scholar] [CrossRef]
- Sachlos, E.; Czernuszka, J.T. Making tissue engineering scaffolds work. Review: The application of solid freeform fabrication technology to the production of tissue engineering scaffolds. Eur. Cells Mater. 2003, 5, 39–40. [Google Scholar]
- Karp, J.M.; Shoichet, M.S.; Davies, J.E. Bone formation on two-dimensional poly(dl-lactide-co-glycolide) (plga) films and three-dimensional plga tissue engineering scaffolds in vitro. J. Biomed. Mater. Res. Part A 2003, 64, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Foks, M.A.; Grijpma, D.W.; Feijen, J. Ptmc and mpeg-ptmc microparticles for hydrophilic drug delivery. J. Control. Release 2005, 101, 392–394. [Google Scholar] [PubMed]
- Zhang, Y.; Zhuo, R.X. Synthesis and drug release behavior of poly (trimethylene carbonate)-poly (ethylene glycol)-poly (trimethylene carbonate) nanoparticles. Biomaterials 2005, 26, 2089–2094. [Google Scholar] [CrossRef] [PubMed]
- Gu, F.; Younes, H.M.; El-Kadi, A.O.; Neufeld, R.J.; Amsden, B.G. Sustained interferon-gamma delivery from a photocrosslinked biodegradable elastomer. J. Control. Release 2005, 102, 607–617. [Google Scholar] [CrossRef] [PubMed]
- Yoshii, T.; Hafeman, A.E.; Nyman, J.S.; Esparza, J.M.; Shinomiya, K.; Spengler, D.M.; Mundy, G.R.; Gutierrez, G.E.; Guelcher, S.A. A sustained release of lovastatin from biodegradable, elastomeric polyurethane scaffolds for enhanced bone regeneration. Tissue Eng. Part A 2010, 16, 2369–2379. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Stankus, J.J.; Wagner, W.R. Biodegradable elastomeric scaffolds with basic fibroblast growth factor release. J. Control. Release 2007, 120, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Pêgo, A.P.; Poot, A.A.; Grijpma, D.W.; Feijen, J. Copolymers of trimethylene carbonate and ε-caprolactone for porous nerve guides: Synthesis and properties. J. Biomater. Sci. Polym. Ed. 2001, 12, 35–53. [Google Scholar] [CrossRef] [PubMed]
- Schappacher, M.; Fabre, T.; Mingotaud, A.F.; Soum, A. Study of a (trimethylenecarbonate-co-ε-caprolactone) polymer—Part 1: Preparation of a new nerve guide through controlled random copolymerization using rare earth catalysts. Biomaterials 2001, 22, 2849–2855. [Google Scholar] [CrossRef]
- Fabre, T.; Schappacher, M.; Bareille, R.; Dupuy, B.; Soum, A.; Bertrandbarat, J.; Baquey, C. Study of a (trimethylenecarbonate-co-epsilon-caprolactone) polymer—Part 2: In vitro cytocompatibility analysis and in vivo ed1 cell response of a new nerve guide. Biomaterials 2001, 22, 2951–2958. [Google Scholar] [CrossRef]
- Song, Y.; Wennink, J.W.; Kamphuis, M.M.; Vermes, I.; Poot, A.A.; Feijen, J.; Grijpma, D.W. Effective seeding of smooth muscle cells into tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering. J. Biomed. Mater. Res. A 2010, 95, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Bat, E.; Kothman, B.H.; Higuera, G.A.; van Blitterswijk, C.A.; Feijen, J.; Grijpma, D.W. Ultraviolet light crosslinking of poly(trimethylene carbonate) for elastomeric tissue engineering scaffolds. Biomaterials 2010, 31, 8696–8705. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Wennink, J.W.; Kamphuis, M.M.; Sterk, L.M.; Vermes, I.; Poot, A.A.; Feijen, J.; Grijpma, D.W. Dynamic culturing of smooth muscle cells in tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering. Tissue Eng. Part A 2011, 17, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Papenburg, B.J.; Schuller-Ravoo, S.; Bolhuis-Versteeg, L.A.; Hartsuiker, L.; Grijpma, D.W.; Feijen, J.; Wessling, M.; Stamatialis, D. Designing porosity and topography of poly(1,3-trimethylene carbonate) scaffolds. Acta Biomater. 2009, 5, 3281–3294. [Google Scholar] [CrossRef] [PubMed]
- Gui, L.; Zhao, L.; Spencer, R.W.; Burghouwt, A.; Taylor, M.S.; Shalaby, S.W.; Niklason, L.E. Development of novel biodegradable polymer scaffolds for vascular tissue engineering. Tissue Eng. Part A 2011, 17, 1191–1200. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, J.; Zhang, W.; Jin, Y.; Zhang, J.; Liu, Y.; Yi, D.; Li, M.; Guo, J.; Gu, Z. The degradation of poly(trimethylene carbonate) implants: The role of molecular weight and enzymes. Polym. Degrad. Stab. 2015, 122, 77–87. [Google Scholar] [CrossRef]
- Helminen, A.; Korhonen, H.; Seppälä, J.V. Biodegradable crosslinked polymers based on triethoxysilane terminated polylactide oligomers. Polymer 2001, 42, 3345–3353. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, L.; Shi, R.; Zhang, L. Synthesis, preparation, in vitro degradation, and application of novel degradable bioelastomers—A review. Prog. Polym. Sci. 2012, 37, 715–765. [Google Scholar] [CrossRef]
- Yang, L.-Q.; He, B.; Meng, S.; Zhang, J.-Z.; Li, M.; Guo, J.; Guan, Y.-M.; Li, J.-X.; Gu, Z.-W. Biodegradable cross-linked poly(trimethylene carbonate) networks for implant applications: Synthesis and properties. Polymer 2013, 54, 2668–2675. [Google Scholar] [CrossRef]
- Yang, L.; Li, J.; Jin, Y.; Zhang, J.; Li, M.; Gu, Z. Highly efficient cross-linking of poly(trimethylene carbonate) via bis(trimethylene carbonate) or bis(ε-caprolactone). Polymer 2014, 55, 6686–6695. [Google Scholar] [CrossRef]
- Pêgo, A.P.; Grijpma, D.W.; Feijen, J. Enhanced mechanical properties of 1,3-trimethylene carbonate polymers and networks. Polymer 2003, 44, 6495–6504. [Google Scholar] [CrossRef]
- Bat, E.; Plantinga, J.A.; Harmsen, M.C.; van Luyn, M.J.; Zhang, Z.; Grijpma, D.W.; Feijen, J. Trimethylene carbonate and epsilon-caprolactone based (co) polymer networks: Mechanical properties and enzymatic degradation. Biomacromolecules 2008, 9, 3208–3215. [Google Scholar] [CrossRef] [PubMed]
- Bat, E.; Plantinga, J.A.; Harmsen, M.C.; van Luyn, M.J.; Grijpma, D.W.; Feijen, J. In vivo behavior of trimethylene carbonate and ε-caprolactone-based (co) polymer networks: Degradation and tissue response. J. Biomed. Mater. Res. Part A 2010, 95, 940–949. [Google Scholar] [CrossRef] [PubMed]
- Bat, E.; van Kooten, T.G.; Harmsen, M.C.; Plantinga, J.A.; van Luyn, M.J.; Feijen, J.; Grijpma, D.W. Physical Properties and Erosion Behavior of Poly (trimethylene carbonate-co-ε-caprolactone) Networks. Macromol. Biosci. 2013, 13, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, J.; Li, M.; Gu, Z. The in vitro and in vivo degradation of cross-linked poly(trimethylene carbonate)-based networks. Polymers 2016, 8, 151. [Google Scholar] [CrossRef]
- Yang, L.; Li, J.; Meng, S.; Jin, Y.; Zhang, J.; Li, M.; Guo, J.; Gu, Z. The in vitro and in vivo degradation behavior of poly (trimethylene carbonate-co-ε-caprolactone) implants. Polymer 2014, 55, 5111–5124. [Google Scholar] [CrossRef]
- Matsumura, S.; Harai, S.; Toshima, K. Lipase-catalyzed transformation of poly(trimethylene carbonate) into cyclic monomer, trimethylene carbonate: A new strategy for sustainable polymer recycling using an enzyme. Macromol. Rapid Commun. 2001, 22, 215–218. [Google Scholar] [CrossRef]
- Jeon, O.; Song, S.J.; Lee, K.J.; Park, M.H.; Lee, S.H.; Hahn, S.K.; Kim, S.; Kim, B.S. Mechanical properties and degradation behaviors of hyaluronic acid hydrogels cross-linked at various cross-linking densities. Carbohydr. Polym. 2007, 70, 251–257. [Google Scholar] [CrossRef]
- Marten, E.; Müller, R.-J.; Deckwer, W.-D. Studies on the enzymatic hydrolysis of polyesters I. Low molecular mass model esters and aliphatic polyesters. Polym. Degrad. Stab. 2003, 80, 485–501. [Google Scholar] [CrossRef]
- Li, S.M.; Garreau, H.; Vert, M. Structure-property relationships in the case of the degradation of massive aliphatic poly-(α-hydroxy acids) in aqueous media. J. Mater. Sci. Mater. Med. 1990, 1, 123–130. [Google Scholar] [CrossRef]
- Chen, B.; Yin, C.; Cheng, Y.; Li, W.; Cao, Z.-A.; Tan, T. Using silk woven fabric as support for lipase immobilization: The effect of surface hydrophilicity/hydrophobicity on enzymatic activity and stability. Biomass Bioenergy 2012, 39, 59–66. [Google Scholar] [CrossRef]
- Chen, G.J.; Kuo, C.H.; Chen, C.I.; Yu, C.C.; Shieh, C.J.; Liu, Y.C. Effect of membranes with various hydrophobic/hydrophilic properties on lipase immobilized activity and stability. J. Biosci. Bioeng. 2012, 113, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Bergsma, J.E.; de Bruijn, W.C.; Rozema, F.R.; Bos, R.R.; Boering, G. Late degradation tissue response to poly(l-lactide) bone plates and screws. Biomaterials 1995, 16, 25–31. [Google Scholar] [CrossRef]
PTMC-Ns | Initial Molecular Weight (kg/mol) | Cross-Linker Amount (mol %) | Cross-Linker Type | Gel Percentage (%) | Swelling Degree (%) | Tg a (°C) | Td b (°C) | E c (MPa) | σm d (MPa) | εm e (%) |
---|---|---|---|---|---|---|---|---|---|---|
PTMC256-0 | 256 | 0 | BTB | 0 | - | −14.3 | 258.9 | 3.1 ± 0.08 | 0.9 ± 0.1 | - |
PTMC256-0.05 | 256 | 0.05 | BTB | 80.9 ± 3.2 | 3943 ± 103 | −13.4 | 282.2 | 9.5 ± 0.5 | 5.1 ± 0.06 | 420 ± 170 |
PTMC256-0.1 | 256 | 0.1 | BTB | 91.6 ± 2.4 | 1453 ± 52 | −13.2 | 288.7 | 10.9 ± 0.8 | 6.2 ± 0.5 | 295 ± 72 |
PTMC256-0.5 | 256 | 0.5 | BTB | 97.9 ± 1.1 | 498 ± 16 | −12.6 | 290.5 | 11.4 ± 1.0 | 7.2 ± 1.9 | 137 ± 12 |
PTMC72-0.1 | 72 | 0.1 | BTB | 39.9 ± 2.0 | 9916 ± 270 | −13.7 | 267.0 | 6.3 ± 0.5 | 2.0 ± 0.07 | 507 ± 38 |
PTMC135-0.1 | 135 | 0.1 | BTB | 82.7 ± 0.5 | 2086 ± 11 | −13.4 | 279.1 | 7.3 ± 0.4 | 4.0 ± 0.6 | 303 ± 49 |
PTMC329-0.1 | 329 | 0.1 | BTB | 98.0 ± 1.3 | 567 ± 25 | −12.7 | 290.7 | 12.2 ± 0.3 | 8.0 ± 1.0 | 228 ± 32 |
PTMC256-0.1 | 256 | 0.1 | BCP | 89.7 ± 1.7 | 2203 ± 134 | −13.5 | 283.8 | 9.7 ± 0.3 | 5.4 ± 0.6 | - |
PTMC-Ns | Rate Constant k |
---|---|
%/w | |
PTMC256-0 | 3.8 |
PTMC256-0.05 | 2.8 |
PTMC256-0.1 | 2.5 |
PTMC256-0.5 | 2.5 |
PTMC-Ns | Rate Constant k |
---|---|
%/w | |
PTMC72-0.1 | 2.2 |
PTMC135-0.1 | 2.4 |
PTMC256-0.1 | 2.5 |
PTMC329-0.1 | 2.8 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Z.; Hu, J.; Li, J.; Zhang, W.; Li, M.; Guo, J.; Yang, L.; Chen, Z. The In Vitro Enzymatic Degradation of Cross-Linked Poly(trimethylene carbonate) Networks. Polymers 2017, 9, 605. https://doi.org/10.3390/polym9110605
Hou Z, Hu J, Li J, Zhang W, Li M, Guo J, Yang L, Chen Z. The In Vitro Enzymatic Degradation of Cross-Linked Poly(trimethylene carbonate) Networks. Polymers. 2017; 9(11):605. https://doi.org/10.3390/polym9110605
Chicago/Turabian StyleHou, Zhipeng, Jianshe Hu, Jianxin Li, Wei Zhang, Miao Li, Jing Guo, Liqun Yang, and Zhangpei Chen. 2017. "The In Vitro Enzymatic Degradation of Cross-Linked Poly(trimethylene carbonate) Networks" Polymers 9, no. 11: 605. https://doi.org/10.3390/polym9110605
APA StyleHou, Z., Hu, J., Li, J., Zhang, W., Li, M., Guo, J., Yang, L., & Chen, Z. (2017). The In Vitro Enzymatic Degradation of Cross-Linked Poly(trimethylene carbonate) Networks. Polymers, 9(11), 605. https://doi.org/10.3390/polym9110605