# Role of Bending Energy and Knot Chirality in Knot Distribution and Their Effective Interaction along Stretched Semiflexible Polymers

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### Model and Simulation Methodology

## 3. Results

#### 3.1. Knots Sizes

#### 3.2. Knots Free Energy

#### 3.3. Relative Orientation of the Knots

## 4. Discussion

- When the knots along the chain are clearly separated and sufficiently far from the hard walls, the free energy is dominated by an entropic interaction between the knots, dependent on the absolute linear distance between them as well as the length of the knots.
- As the knots get closer to one another, but can still be considered as two simple separate knots, a repulsive interaction starts to dominate the free energy, stemming primarily from the steric hindrance of the proximal loops of the knots.
- Finally, as the knots become intertwined at yet smaller effective separations, the absolute magnitude of the free energy—And consequently, the stability of the knotted chain configuration—Is dependent both on the bending stiffness of the polymer chain as well as on the relative chirality of the two knots.

#### 4.1. Elastic Energy Model for the Size of Two Separate, Non-Interacting Knots

#### 4.2. Elastic Energy Model for Chirality Effects in Knot–Knot Interaction

## 5. Conclusions

## Acknowledgments

## Author Contributions

## Conflicts of Interest

## References

- Phillips, R.B.; Kondev, J.; Theriot, J. Physical Biology of the Cell, 2nd ed.; Garland Science: New York, NY, USA, 2012. [Google Scholar]
- Marko, J.; Cocco, S. The micromechanics of DNA. Phys. World
**2003**, 16, 37–41. [Google Scholar] [CrossRef] - Brown, P.O.; Cozzarelli, N.R. A sign inversion mechanism for enzymatic supercoiling of DNA. Science
**1979**, 206, 1081–1083. [Google Scholar] [CrossRef] [PubMed] - Meluzzi, D.; Smith, D.; Arya, G. Biophysics of knotting. Annu. Rev. Biophys.
**2010**, 39, 349–366. [Google Scholar] [CrossRef] [PubMed] - Olavarrieta, L.; Martínez-Robles, M.L.; Hernández, P.; Krimer, D.B.; Schvartzman, J.B. Knotting dynamics during DNA replication. Mol. Microbiol.
**2002**, 46, 699–707. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Bates, A.; Maxwell, A. DNA Topology; Oxford Bioscience: Boston, MA, USA, 2005. [Google Scholar]
- Arsuaga, J.; Vazquez, M.; Trigueros, S.; Sumners, D.W.; Roca, J. Knotting probability of DNA molecules confined in restricted volumes: DNA knotting in phage capsids. Proc. Natl. Acad. Sci. USA
**2002**, 99, 5373–5377. [Google Scholar] [CrossRef] [PubMed] - Arsuaga, J.; Vazquez, M.; McGuirk, P.; Trigueros, S.; Sumners, D.W.; Roca, J. DNA knots reveal a chiral organization of DNA in phage capsids. Proc. Natl. Acad. Sci. USA
**2005**, 102, 9165–9169. [Google Scholar] [CrossRef] [PubMed] - Marenduzzo, D.; Orlandini, E.; Stasiak, A.; Sumners, D.W.; Tubiana, L.; Micheletti, C. DNA–DNA interactions in bacteriophage capsids are responsible for the observed DNA knotting. Proc. Natl. Acad. Sci. USA
**2009**, 106, 22269–22274. [Google Scholar] [CrossRef] [PubMed] - Marenduzzo, D.; Micheletti, C.; Orlandini, E.; Sumners, D.W. Topological friction strongly affects viral DNA ejection. Proc. Natl. Acad. Sci. USA
**2013**, 110, 20081–20086. [Google Scholar] [CrossRef] [PubMed] - Delbrück, M. Knotting problems in biology. In Mathematical Problems in Biological Sciences; Bellman, R.E., Ed.; SIAM: Philadelphia, PA, USA, 1962; Volume 14, p. 55. [Google Scholar]
- Frisch, H.L.; Wasserman, E. Chemical Topology 1. J. Am. Chem. Soc.
**1961**, 83, 3789–3795. [Google Scholar] [CrossRef] - Arai, Y.; Yasuda, R.; Akashi, K.; Harada, Y.; Miyata, H.; Kinosita, T.; Itoh, H. Tying a molecular knot with optical tweezers. Nature
**1999**, 399, 446–448. [Google Scholar] [PubMed] - Bao, X.; Lee, H.; Quake, S. Behavior of complex knots in single DNA molecules. Phys. Rev. Lett.
**2003**, 91, 265506. [Google Scholar] [CrossRef] [PubMed] - Ben-Naim, E.; Daya, Z.A.; Vorobieff, P.; Ecke, R.E. Knots and Random Walks in Vibrated Granular Chains. Phys. Rev. Lett.
**2001**, 86, 1414–1417. [Google Scholar] [CrossRef] [PubMed] - Farago, O.; Kantor, Y.; Kardar, M. Pulling knotted polymers. Europhys. Lett.
**2002**, 60, 53–59. [Google Scholar] [CrossRef] - Virnau, P.; Kantor, Y.; Kardar, M. Knots in Globule and Coil Phases of a Model Polyethylene. J. Am. Chem. Soc.
**2005**, 127, 15102–15106. [Google Scholar] [CrossRef] [PubMed] - Vologodskii, A. Brownian Dynamics Simulation of Knot Diffusion along a Stretched DNA Molecule. Biophys. J.
**2006**, 90, 1594. [Google Scholar] [CrossRef] [PubMed] - Huang, L.; Makarov, D.E. Langevin Dynamics Simulations of the Diffusion of Molecular Knots in Tensioned Polymer Chains. J. Phys. Chem. A
**2007**, 111, 10338–10344. [Google Scholar] [CrossRef] [PubMed] - Matthews, R.; Louis, A.; Yeomans, J. Effect of topology on dynamics of knots in polymers under tension. Europhys. Lett.
**2010**, 89, 20001. [Google Scholar] [CrossRef] - Tubiana, L.; Rosa, A.; Fragiacomo, F.; Micheletti, C. Spontaneous Knotting and Unknotting of Flexible Linear Polymers: Equilibrium and Kinetic Aspects. Macromolecules
**2013**, 46, 3669–3678. [Google Scholar] [CrossRef] - Poier, P.; Likos, C.N.; Matthews, R. Influence of Rigidity and Knot Complexity on the Knotting of Confined Polymers. Macromolecules
**2014**, 47, 3394–3400. [Google Scholar] [CrossRef] [PubMed] - Grosberg, A.Y.; Rabin, Y. Metastable Tight Knots in a Wormlike Polymer. Phys. Rev. Lett.
**2007**, 99, 217801. [Google Scholar] [CrossRef] [PubMed] - Dai, L.; Renner, C.B.; Doyle, P.S. Metastable Tight Knots in Semiflexible Chains. Macromolecules
**2014**, 47, 6135–6140. [Google Scholar] [CrossRef] - Dai, L.; Renner, C.B.; Doyle, P.S. Origin of Metastable Knots in Single Flexible Chains. Phys. Rev. Lett.
**2015**, 114, 037801. [Google Scholar] [CrossRef] [PubMed] - Caraglio, M.; Micheletti, C.; Orlandini, E. Stretching Response of Knotted and Unknotted Polymer Chains. Phys. Rev. Lett.
**2015**, 115, 188301. [Google Scholar] [CrossRef] [PubMed] - Sumners, D.; Whittington, S. Knots in self-avoiding walks. J. Phys. A Math. Gen.
**1988**, 21, 1689. [Google Scholar] [CrossRef] - Ercolini, E.; Valle, F.; Adamcik, J.; Witz, G.; Metzler, R.; De Los Rios, P.; Roca, J.; Dietler, G. Fractal Dimension and Localization of DNA Knots. Phys. Rev. Lett.
**2007**, 98, 058102. [Google Scholar] [CrossRef] [PubMed] - Baiesi, M.; Orlandini, E.; Stella, A.L. The entropic cost to tie a knot. J. Stat. Mech. Theory Exp.
**2010**, 2010, P06012. [Google Scholar] [CrossRef] - Tsurusaki, K.; Deguchi, T. Fractions of Particular Knots in Gaussian Random Polygons. J. Phys. Soc. Jpn.
**1995**, 64, 1506. [Google Scholar] [CrossRef] - Tubiana, L. Computational study on the progressive factorization of composite polymer knots into separated prime components. Phys. Rev. E
**2014**, 89, 052602. [Google Scholar] [CrossRef] [PubMed] - Trefz, B.; Siebert, J.; Virnau, P. How molecular knots can pass through each other. Proc. Natl. Acad. Sci. USA
**2014**, 111, 7948–7951. [Google Scholar] [CrossRef] [PubMed] - Dommersnes, P.G.; Kantor, Y.; Kardar, M. Knots in charged polymers. Phys. Rev. E
**2002**, 66, 031802. [Google Scholar] [CrossRef] [PubMed] - Najafi, S.; Tubiana, L.; Podgornik, R.; Potestio, R. Chirality modifies the interaction between knots. Europhys. Lett.
**2016**, 114, 50007. [Google Scholar] [CrossRef] - Bustamante, C.; Smith, S.B.; Liphardt, J.; Smith, D. Single-molecule studies of DNA mechanics. Curr. Opin. Struct. Biol.
**2000**, 10, 279–285. [Google Scholar] [CrossRef] - Grest, G.S.; Kremer, K. Molecular dynamics simulation for polymers in the presence of a heat bath. Phys. Rev. A
**1986**, 33, 3628–3631. [Google Scholar] [CrossRef] - Kremer, K.; Grest, G.S. Dynamics of entangled linear polymer melts: A molecular dynamics simulation. J. Chem. Phys.
**1990**, 92, 5057. [Google Scholar] [CrossRef] - Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys.
**1995**, 117, 1–19. [Google Scholar] [CrossRef] - Micheletti, C.; Marenduzzo, D.; Orlandini, E. Polymers with spatial or topological constraints: Theoretical and computational results. Phys. Rep.
**2011**, 504, 1–73. [Google Scholar] [CrossRef] - Kauffman, L.H. An invariant of regular isotopy. Trans. Am. Math. Soc.
**1990**, 318, 417–471. [Google Scholar] [CrossRef] - Tubiana, L.; Orlandini, E.; Micheletti, C. Probing the Entanglement and Locating Knots in Ring Polymers: A Comparative Study of Different Arc Closure Schemes. Prog. Theor. Phys. Suppl.
**2011**, 191, 192–204. [Google Scholar] [CrossRef] - Audoly, B.; Clauvelin, N.; Neukirch, S. Elastic knots. Phys. Rev. Lett.
**2007**, 99, 164301. [Google Scholar] [CrossRef] [PubMed] - Jawed, M.; Dieleman, P.; Audoly, B.; Reis, P. Untangling the Mechanics and Topology in the Frictional Response of Long Overhand Elastic Knots. Phys. Rev. Lett.
**2015**, 115, 118302. [Google Scholar] [CrossRef] [PubMed] - Dean, D.; Hammant, T.; Horgan, R.; Naji, A.; Podgornik, R. Wrapping transition and wrapping-mediated interactions for discrete binding along an elastic filament: An exact solution. J. Chem. Phys.
**2012**, 137, 144904. [Google Scholar] [CrossRef] [PubMed] - Zandi, R.; Kantor, Y.; Kardar, M. Entropic competition between knots and slip-links. ARI Bull. ITU
**2003**, 53, 6–15. [Google Scholar]

**Figure 1.**(

**a**) An example of a configuration for the ($++$) system, with both knots intertwined. In this configuration, only one prime component(marked in yellow) is identified as “isolated” by our knot identification scheme based on the Minimally Interfering Closure [41]; (

**b**) A small portion of an MD trajectory for the ($++$) system. Yellow shaded regions indicate the portions of the chain occupied by the isolated prime knots, and red and blue lines indicate their first and last bead, respectively. The portion of the chain taken up by the whole composite knot is reported as a gray shaded area. When the knots are intertwined, our algorithm identifies only one isolated knot, which can be seen in the trajectory as a single yellow region surrounded by gray boundaries. Note that the intertwined composite knot can still travel from one side of the chain to the other.

**Figure 2.**(

**a**) Size of separated trefoil knots, plotted as a function of ${\kappa}_{b}$; (

**b**) Size of a nested trefoil knot (circles) as well as of the composite knot (squares) when the two trefoils are intertwined, plotted as a function of ${\kappa}_{b}$.

**Figure 3.**Schematics of the collective order parameter $\left|D\right|$ measuring the linear distance between two prime knots. (

**a**) When both prime components are isolated , the order parameter is given by $\left|D\right|=|{d}_{1,2}|=|{c}_{1}-{c}_{2}|$, where ${c}_{i}=({e}_{i}+{s}_{i})/2$ is the center of knot i on the chain. Here ${e}_{i}$ and ${s}_{i}$ stand for the last and the first bead of the i-th isolated prime knot; (

**b**) When the two knots are intertwined, the center of the hosting knot is taken to coincide with the center of the composite knot ${c}_{1,2}$.

**Figure 4.**Free energy F as a function of the collective order parameter $\left|D\right|$, i.e., the absolute linear distance between the centers of the two knots. $F\left(\right|D\left|\right)$ for different values of the chain bending rigidity ${\kappa}_{b}$ is reported for (

**a**) two trefoil knots with the same relative chirality and (

**b**) two trefoil knots with opposite relative chiralities. In (

**c**,

**d**) we show the same free energies, but with subtracted entropic contribution $-TS\left(\right|D\left|\right)$, as defined in Equation (8).

**Figure 5.**(

**a**) Graphical representation of three quantities discussed in the text: the height of the barrier, ${\u03f5}_{b}$, the depth of the minimum, ${\u03f5}_{d}$, and the interaction distance, ${D}_{\mathrm{int}}$; (

**b**) Dependence of the height of the barrier and the depth of the free energy minimum on the polymer bending rigidity, ${\kappa}_{b}$.

**Figure 6.**(

**a**) Interaction distances of separated knots as a function of ${\kappa}_{b}$. For comparison, we also report the knot size averaged between the ($++$) and ($+-$) systems, $\langle {l}_{k}\rangle $. Note that the interaction distance is always larger than $\langle {l}_{k}\rangle $; (

**b**) Two different rescaling of ${D}_{\mathrm{int}}$: ${D}_{\mathrm{int}}/\langle {l}_{k}\rangle $ and $({D}_{\mathrm{int}}-\langle {l}_{k}\rangle )/{L}_{p}$, with ${L}_{p}$ being the persistence length of the chain.

**Figure 7.**Left-handed ${3}_{1}$ knot configuration obtained by minimizing the energy viewed from the side (

**a**) and from the top (

**b**); (

**c**) Right-handed ${3}_{1}$ knot viewed from above. X indicates the pulling direction. In (

**a**), the direction of the arc length s is indicated by an arrow, and in all panels by the coloring of the knots, from green to blue for increasing s. In panels (

**b**,

**c**), we reported the direction of the vector ${\mathbf{U}}_{k}$ defined in Equation (9). Note that ${\mathbf{U}}_{k}\xb7x$ changes sign with the handedness of the knot; (

**d**) A ($+-$) intertwined composite knot, with the nested knot highlighted by a red shading. Note that when the loop of the nested knot lies inside the loop of the outer knot, both orientation directors point out of the page. On the other hand, when the loop of the two knots form an eight, the two directors point in opposite directions.

**Figure 8.**Free energy of two separated trefoil knots projected along (

**a**) θ and (

**b**) ${\theta}_{\perp}$ for four different values of polymer bending rigidity.

**Figure 9.**Free energy of two intertwined trefoil knots with the same handedness (red curves) and opposite handedness (blue curves) as a function of θ (

**a**,

**c**,

**e**,

**g**) and ${\theta}^{\perp}$ (

**b**,

**d**,

**f**,

**h**), for four different values of polymer bending rigidity: ${\kappa}_{b}=5$, ${\kappa}_{b}=10$, ${\kappa}_{b}=15$, and ${\kappa}_{b}=20{k}_{B}T$. The free energies have been shifted so that their maximum values correspond to zero.

**Figure 10.**(

**a**) A trefoil knot can be decomposed into two loops and a braid. The two enantiomers are defined by the braid. The circles indicate the orthogonal components of the bending force vector. Following the usual conventions, crossed circles indicate chain directors going into the page, while dotted circles indicate chain directors coming out of the page; (

**b**,

**c**): Composing the intertwined knots of equal and/or different chiralities. In an intertwined ($+-$) knot (

**b**), the director joins the junction between the braid and the loop in the same sense, while in an intertwined ($++$) knot (

**c**), it points in opposite sense at the two junctions; (

**b**,

**c**) bottom: Schematic representation of the axial projection (in the direction of the braid axes, assumed to coincide) for the ($+-$) and ($++$) composite knots, respectively.

© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Najafi, S.; Podgornik, R.; Potestio, R.; Tubiana, L.
Role of Bending Energy and Knot Chirality in Knot Distribution and Their Effective Interaction along Stretched Semiflexible Polymers. *Polymers* **2016**, *8*, 347.
https://doi.org/10.3390/polym8100347

**AMA Style**

Najafi S, Podgornik R, Potestio R, Tubiana L.
Role of Bending Energy and Knot Chirality in Knot Distribution and Their Effective Interaction along Stretched Semiflexible Polymers. *Polymers*. 2016; 8(10):347.
https://doi.org/10.3390/polym8100347

**Chicago/Turabian Style**

Najafi, Saeed, Rudolf Podgornik, Raffaello Potestio, and Luca Tubiana.
2016. "Role of Bending Energy and Knot Chirality in Knot Distribution and Their Effective Interaction along Stretched Semiflexible Polymers" *Polymers* 8, no. 10: 347.
https://doi.org/10.3390/polym8100347