Development of Artocarpin-Loaded Chitosan Particles for Controlled Release and Inflammatory Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Artocarpin Extraction and Purification
2.3. Artocarpin Characterization
2.4. Fabrication of Artocarpin Loaded Chitosan Microparticles
2.5. Determination of Particle Size, Polydispersity Index (PDI) and Zeta Potential and Stability Study
2.6. Encapsulation Efficiency (EE)
2.7. Cumulative Release
2.8. Accelerated Stability Studies
2.9. CSPs/AE Characterization
2.10. Cytotoxicity Activity
2.11. Nitric Oxide (NO) Quantification Assay
2.12. Data Analysis
3. Results and Discussion
3.1. Artocarpin Characterization
3.2. Fabrication of Artocarpin Loaded Chitosan Microparticles
3.3. Encapsulation Efficiency
3.4. Cumulative Release
3.5. Zeta Potential
3.6. Accelerated Stability Studies
3.7. Characterization of Particles
3.7.1. FTIR Analysis
3.7.2. XRD Analysis
3.7.3. SEM Analysis
3.7.4. TEM Analysis
3.8. Cytotoxicity Activity
3.9. NO Production Assays
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chan, E.W.C.; Wong, S.K.; Tangah, J.; Chan, H.T. Chemistry and Pharmacology of Artocarpin: An Isoprenyl Flavone from Artocarpus Species. Syst. Rev. Pharm. 2018, 9, 58–63. [Google Scholar] [CrossRef]
- Bazmi, R.R.; Asif, M.; Yaseen, H.S.; Panichayupakaranant, P. Comparison of Anti-Inflammatory and Analgesic Effects of Artocarpin-Rich Artocarpus heterophyllus Extract and Artocarpin. J. Angiother. 2022, 6, 601–611. [Google Scholar]
- Lee, C.-W.; Ko, H.-H.; Lin, C.-C.; Chai, C.-Y.; Chen, W.-T.; Yen, F.-L. Artocarpin Inhibits UVB-Induced Inflammation and Oxidative Stress in Keratinocytes and Mouse Skin via MAPK and Akt Signaling Pathways. Food Chem. Toxicol. 2013, 60, 123–131. [Google Scholar] [CrossRef]
- Yeh, C.J.; Chen, C.C.; Leu, Y.L.; Lin, M.W.; Chiu, M.M.; Wang, S.H. The Effects of Artocarpin on Wound Healing: In Vitro and in Vivo Studies. Sci. Rep. 2017, 7, 15599. [Google Scholar] [CrossRef]
- Morrison, I.J.; Zhang, J.; Lin, J.; Liu, J.; Borok, Z.; Shan, J.; Fishbein, M.C.; Wu, H. Potential Chemopreventive, Anticancer and Anti-Inflammatory Properties of a Refined Artocarpin-Rich Wood Extract of Artocarpus heterophyllus Lam. Sci. Rep. 2021, 11, 6854. [Google Scholar] [CrossRef] [PubMed]
- Luangpraditkun, K.; Tissot, M.; Joompang, A.; Charoensit, P.; Grandmottet, F.; Viyoch, J.; Viennet, C. Prevention by the Natural Artocarpin of Morphological and Biochemical Alterations on UVB-Induced HaCaT Cells. Oxid. Med. Cell. Longev. 2021, 2021, 5067957. [Google Scholar] [CrossRef]
- Alemu, D.; Getachew, E.; Mondal, A.K. Study on the Physicochemical Properties of Chitosan and Their Applications in the Biomedical Sector. Int. J. Polym. Sci. 2023, 13, 5025341. [Google Scholar] [CrossRef]
- Chicea, D.; Nicolae-Maranciuc, A. A Review of Chitosan-Based Materials for Biomedical, Food, and Water Treatment Applications. Materials 2024, 17, 5770. [Google Scholar] [CrossRef]
- Pramanik, S.; Aggarwal, A.; Kadi, A.; Alhomrani, M.; Alamri, A.S.; Alsanie, W.F.; Koul, K.; Deepak, A.; Bellucci, S. Chitosan Alchemy: Transforming Tissue Engineering and Wound Healing. Carbohydr. Polym. 2024, 320, 121230. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, X.; Zhang, Y.; Yang, H. Controlled Drug Release from Chitosan Hydrogel Scaffolds. Int. J. Pharm. 2020, 567, 118529. [Google Scholar]
- Singh, V.; Arora, N.; Verma, A.; Thakur, S. Chitosan Scaffolds for Tissue Regeneration: Extracellular Matrix Mimicking Structures. J. Biomed. Mater. Res. Part. A 2021, 109, 694–710. [Google Scholar]
- Kim, S.; Park, J.; Lee, J.; Choi, E.; Lim, Y. Preferential Uptake of Chitosan-Coated Nanoparticles by Antigen Presenting Compartments. J. Control. Release 2019, 301, 71–83. [Google Scholar]
- Li, X.; Wang, Y.; Zhao, R.; Zhang, T. Stimuli Responsive Chitosan Hydrogels for Targeted Release. Front. Bioeng. Biotechnol. 2022, 10, 1126774. [Google Scholar]
- Daud, N.N.N.N.M.; Nik, N.N.; Septama, A.W.; Simbak, N.; Rahmi, E.P. The Phytochemical and Pharmacological Properties of Artocarpin from Artocarpus heterophyllus. Asian Pac. J. Trop. Med. 2019, 13, 1–7. [Google Scholar]
- Lu, Y.; Cheng, D.; Niu, B.; Wang, X.; Wu, X.; Wang, A. Properties of Poly(lactic-co-glycolic acid) and Progress of PLGA-Based Biodegradable Materials in Biomedical Research. Pharmaceuticals 2023, 16, 454. [Google Scholar] [CrossRef] [PubMed]
- Younus, M.; Abdallaha, B.; Abdulla, N.; Jaleel, I. Synthesis, Characterization and Anticancer Activity of Chitosan Schiff Base/PEG Blend Doped with Gold and Silver Nanoparticles in Treatment of Breast Cancer Cell Line MCF-7. Iraqi J. Pharm. Sci. 2024, 33, 101–111. [Google Scholar]
- Tiraravesit, N.; Yakaew, S.; Rukchay, R.; Luangbudnark, W.; Viennet, C.; Humbert, P.; Viyoch, J. Artocarpus altilis heartwood extract protects skin against UVB in vitro and in vivo. J. Ethnopharmacol. 2015, 175, 153–162. [Google Scholar] [CrossRef]
- Mulia, K.; Singarimbun, A.C.; Krisanti, E.A. Optimization of Chitosan-Alginate Microparticles for Delivery of Mangostins to the Colon Area Using Box-Behnken Experimental Design. Int. J. Mol. Sci. 2020, 21, 873. [Google Scholar] [CrossRef]
- Amini, Y.; Jamehdar, S.A.; Sadri, K.; Zare, S. Different Methods to Determine the Encapsulation Efficiency of Protein in PLGA Nanoparticles. Biomed. Mater. Eng. 2017, 28, 613–620. [Google Scholar] [CrossRef]
- Keawchaoon, L.; Yoksan, R. Preparation, Characterization and in Vitro Release Study of Carvacrol-Loaded Chitosan Nanoparticles. Colloids Surf. B 2011, 84, 163–171. [Google Scholar] [CrossRef]
- Kowalczyk, M.; Owczarek, M.; Synowiec, E.; Sliwinski, T.; Merecz-Sadowska, A.; Picotf, L.; Sitarek, P. Biological Effect of Natural Chitosan Nanoparticles with Transformed Roots Extract of Leonotis nepetifolia (L.) R.Br. in an in Vitro Model. Ind. Crops Prod. 2023, 203, 117135. [Google Scholar] [CrossRef]
- Calvo, C.P.; Vila-Jato, J.L.; Alonso, M.J. Novel Hydrophilic Chitosan-Polyethylene Oxide Nanoparticles as Protein Carriers. J. Appl. Polym. Sci. 1997, 63, 125–132. [Google Scholar] [CrossRef]
- Gan, Q.; Wang, T.; Cochrane, C.; McCarron, P. Modulation of Surface Charge, Particle Size and Morphological Properties of Chitosan–TPP Nanoparticles Intended for Gene Delivery. Colloids Surf. B 2005, 44, 65–73. [Google Scholar] [CrossRef]
- Sreekumar, S.; Goycoolea, F.M.; Moerschbacher, B.M.; Rivera Rodriguez, G.R. Parameters Influencing the Size of Chitosan TPP Nano- and Microparticles. Sci. Rep. 2018, 8, 4695. [Google Scholar] [CrossRef] [PubMed]
- Fonte, P.; Araújo, F.; Reis, S.; Sarmento, B. Oral Insulin Delivery: How Far Are We? J. Diabetes Sci. Technol. 2013, 7, 520–531. [Google Scholar] [CrossRef] [PubMed]
- Ban, C.; Jo, M.; Park, Y.H.; Kim, J.H.; Han, J.Y.; Lee, K.; Kweon, D.; Choi, Y.J. Enhancing the oral bioavailability of curcumin using solid lipid nanoparticles. Food Chem. 2019, 302, 125328. [Google Scholar] [CrossRef]
- Kwankaew, J.; Phimnuan, P.; Wanauppathamkul, S.; Viyoch, J. Formulation of Chitosan Patch Incorporating Artocarpus altilis Heartwood Extract for Improving Hyperpigmentation. J. Cosmet. Sci. 2017, 68, 257–269. [Google Scholar] [PubMed]
- Fahmy, M.A.; El-Din, A.N.; Salem, H.F.; El-Garhy, O.H. Optimize the Parameters for the Synthesis by the Ionic Gelation Method of Chitosan Nanoparticles Intended for Gene Delivery. J. Biol. Eng. 2024, 18, 14. [Google Scholar]
- Bouzouita, A.; Halouani, A.; Essghaier, B.; Nasri, M. Green Synthesis of Chitosan Nanoparticles: Optimization and Evaluation. Sci. Rep. 2022, 12, 20340. [Google Scholar]
- Ding, S.; Serra, C.A.; Vandamme, T.F.; Yu, W. Microfluidics for the Preparation of Nanoparticle Drug Delivery Systems: Advances and Future Perspectives. Expert. Opin. Drug Deliv. 2019, 16, 301–318. [Google Scholar]
- Bhumkar, D.R.; Pokharkar, V.B. Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: A technical note. AAPS PharmSciTech 2006, 7, E50. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gu, F.X.; Wang, A.Z.; Langer, R.S.; Farokhzad, O.C. Nanoparticles in Medicine: Therapeutic Applications and Developments. Clin. Pharmacol. Ther. 2018, 83, 761–769. [Google Scholar] [CrossRef]
- Pitaksuteepong, T.; Somsiri, A.; Waranuch, N. Targeted transfollicular delivery of artocarpin extract from Artocarpus incisus by means of microparticles. Eur. J. Pharm. Biopharm. 2007, 67, 639–645. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Zhao, Q.; Huang, Y. Size-Controlled Chitosan Nanoparticles Prepared Using Ionotropic Gelation. ScienceAsia 2020, 46, 457–466. [Google Scholar] [CrossRef]
- Budi, S.W.; Kesuma, D.M.; Nugraheni, N. Self-Assembled Chitosan-Derived Microparticles Inhibit Tumor Angiogenesis and Induce Apoptosis in Ehrlich-Ascites Tumor-Bearing Mice. Carbohydr. Polym. 2020, 278, 118941. [Google Scholar]
- Luo, C.; Wu, S.; Li, J.; Li, X.; Yang, P.; Li, G. Chitosan/Calcium Phosphate Flower-Like Microparticles as Carriers for Drug Delivery Platforms. Int. J. Biol. Macromol. 2020, 149, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Bashir, S.M.; Rather, G.A.; Patrício, A.; Haq, Z.; Sheikh, A.A.; Shah, M.Z.U.H.; Singh, H.; Khan, A.A.; Imtiyaz, S.; Ahmad, S.B.; et al. Chitosan Nanoparticles: A Versatile Platform for Biomedical Applications. Materials 2022, 15, 6521. [Google Scholar] [CrossRef] [PubMed]
- Palmieri, E.M.; Gonzalez-Cotto, M.; Baseler, W.A.; Davies, L.C.; Ghesquière, B.; Maio, N.; Rice, C.M.; Rouault, T.A.; Cassel, T.; Higashi, R.M.; et al. Nitric oxide orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 and pyruvate dehydrogenase. Nat. Commun. 2020, 11, 698. [Google Scholar] [CrossRef]
- Ivanova, D.G.; Yaneva, Z.L. Antioxidant Properties and Redox-Modulating Activity of Chitosan and Its Derivatives: Biomaterials with Application in Cancer Therapy. Biores Open Access 2020, 9, 64–72. [Google Scholar] [CrossRef]
- Fang, S.C.; Hsu, C.L.; Yen, G.C. Anti-inflammatory effects of phenolic compounds isolated from the fruits of Artocarpus heterophyllus. J. Agric. Food Chem. 2008, 56, 4463–4468. [Google Scholar] [CrossRef]











| Formulations | z-Avarage ± S.D. (d. nm) | Zeta Potential (mV) | PdI |
|---|---|---|---|
| CSPs | 2733.33 ± 81.03 | 1.51 | 0.69 ± 0.15 |
| CSPs/AE | 3361 ± 151.99 | 12.8 | 0.79 ± 0.18 |
| Time (Days) | z-Avarage ± S.D. (d. nm) | Zeta Potential (mV) | PdI | |||
|---|---|---|---|---|---|---|
| CSPs | CSPs/AE | CSPs | CSPs/AE | CSPs | CSPs/AE | |
| 0 | 2189.33 ± 84.18 | 3527 ± 78.35 | 1.48 | 12.50 | 0.40 ± 0.84 | 0.58 ± 0.08 |
| 6 | 2616.67 ± 53.79 | 3769 ± 84.45 | 1.53 | 13.40 | 0.58 ± 0.85 | 0.57 ± 0.13 |
| 30 | 3787.33 ± 69.31 | 3856.33 ± 77.78 | 1.89 | 14.40 | 0.61 ± 0.11 | 0.79 ± 0.10 |
| 90 | 4032.67 ± 156.25 | 4535.33 ± 189.03 | 2.17 | 17.20 | 0.97 ± 0.04 | 0.92 ± 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Manklinniam, P.; Reuk-ngam, P.; Boontha, S.; Luangpraditkun, K.; Ross, S.; Viyoch, J.; Yosboonruang, A. Development of Artocarpin-Loaded Chitosan Particles for Controlled Release and Inflammatory Application. Polymers 2026, 18, 8. https://doi.org/10.3390/polym18010008
Manklinniam P, Reuk-ngam P, Boontha S, Luangpraditkun K, Ross S, Viyoch J, Yosboonruang A. Development of Artocarpin-Loaded Chitosan Particles for Controlled Release and Inflammatory Application. Polymers. 2026; 18(1):8. https://doi.org/10.3390/polym18010008
Chicago/Turabian StyleManklinniam, Piyapan, Phonchanok Reuk-ngam, Supavadee Boontha, Kunlathida Luangpraditkun, Sukunya Ross, Jarupa Viyoch, and Atchariya Yosboonruang. 2026. "Development of Artocarpin-Loaded Chitosan Particles for Controlled Release and Inflammatory Application" Polymers 18, no. 1: 8. https://doi.org/10.3390/polym18010008
APA StyleManklinniam, P., Reuk-ngam, P., Boontha, S., Luangpraditkun, K., Ross, S., Viyoch, J., & Yosboonruang, A. (2026). Development of Artocarpin-Loaded Chitosan Particles for Controlled Release and Inflammatory Application. Polymers, 18(1), 8. https://doi.org/10.3390/polym18010008

