Hygrothermal Durability and Damage Evolution of Bio-Epoxy-Based Composites Reinforced with Different Fibre Types
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Specimen Preparation
2.3. Hygrothermal Conditioning
2.4. Mechanical Characterization
2.5. Chemical Characterization and Microscopic Observations
3. Results and Discussion
3.1. Effect of Hygrothermal Conditioning on Tensile Behaviour of Fibres
3.1.1. Tensile Strength
3.1.2. Fracture Behaviour
3.1.3. Fibre Damage Mechanisms
3.2. Effect of Hygrothermal Agaeing on IFSS
3.3. Statistical Evaluation of Influence of Fibre Types on Durability (ANOVA)
4. Conclusions
- The tensile strength of fibre yarns alone was adversely affected after hygrothermal exposure. The reduction was more prominent in synthetic fibres (34% in carbon; 37% in glass; 39% in basalt) because of the chemical degradation of the sizing layer, as evidenced by SEM and EDS. Flax retained higher tensile strength (83%) than synthetic fibres, as there was no chemical degradation and damage occurred only due to swelling and micro-cracks.
- The failure behaviour of fibre yarns was altered after hygrothermal exposure. The loss of adhesion between fibres within the yarn because of the damage of sizing in the synthetic fibres resulted in a progressive failure at reduced peak loads after exposure, unlike an abrupt failure at higher loads before exposure. The failure behaviour was not affected for flax fibres, which was a bundle-dominated failure facilitated by the swelling and cracking of fibres after moisture absorption.
- Despite ageing, interfacial shear strength was largely preserved in bio-epoxy composites, with the highest retention of up to 96% for carbon because of the better compatibility of epoxy sizing with resin, resulting in stronger adhesion and better interfacial bond. Glass and basalt exhibited a retention of 92% and 93%, respectively, whereas flax composites showed the lowest retention of 90%, attributed to moisture-induced swelling and weaker fibre–matrix adhesion.
- The matrix failure was the dominant fracture mechanism in bio-epoxy composites with carbon, while fibre/resin debonding was dominant for glass and basalt composites. This can be due to the better adhesion between carbon and bio-epoxy, but in glass and basalt composites, the excessive debonding was caused by the hydrolysis of the interface. In the case of flax, the fracture was dominated by fibre breakage and pull-out. These fracture mechanisms were visualized and confirmed through SEM.
- SEM and EDS analyses confirmed that hygrothermal exposure caused fibre-specific damage mechanisms resulting in reductions in tensile and interfacial shear strength. In synthetic fibres, the hydrolysis and leaching of the sizing layers were mainly responsible for degradation. Flax fibres exhibited only physical swelling and microcracking, with no evidence of chemical change.
- Two-way ANOVA confirmed significant effects of both fibre type and exposure duration on property retention, with larger effect sizes for fibre type. Tensile properties of fibre yarns were more sensitive than IFSS because in composites, fibres were protected by resin.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benmokrane, B.; Ali, A.H.; Mohamed, H.M.; ElSafty, A.; Manalo, A. Laboratory Assessment and Durability Performance of Vinyl-Ester, Polyester, and Epoxy Glass-FRP Bars for Concrete Structures. Compos. B Eng. 2017, 114, 163–174. [Google Scholar] [CrossRef]
- Mahato, K.K.; Dutta, K.; Ray, B.C. Static and Dynamic Behavior of Fibrous Polymeric Composite Materials at Different Environmental Conditions. J. Polym. Environ. 2018, 26, 1024–1050. [Google Scholar] [CrossRef]
- Reddy, S.S.P.; Suresh, R.; Hanamantraygouda, M.B.; Shivakumar, B.P. Use of Composite Materials and Hybrid Composites in Wind Turbine Blades. Mater. Today Proc. 2021, 46, 2827–2830. [Google Scholar] [CrossRef]
- Syamsir, A.; Nadhirah, A.; Mohamad, D.; Beddu, S.; Muhammad Asyraf, M.A.R.; Itam, Z.; Anggraini, V. Performance Analysis of Full Assembly Glass Fiber-Reinforced Polymer Composite Cross-Arm in Transmission Tower. Polymers 2022, 14, 1563. [Google Scholar] [CrossRef]
- Manalo, A.C.; Alajarmeh, O.; Cooper, D.; Sorbello, C.D.; Weerakoon, S.Z.; Benmokrane, B. Manufacturing and Structural Performance of Glass-Fiber-Reinforced Precast-Concrete Boat Ramp Planks. Structures 2020, 28, 37–56. [Google Scholar] [CrossRef]
- Senselova, Z.; Manalo, A.; Alajarmeh, O.; Sakuraba, H.; Iftikhar, A.; Benmokrane, B. Durability of GFRP Bars under Compression with Different Length-to-Diameter Ratios Exposed to a Simulated Concrete Environment. J. Compos. Constr. 2026, 30, 04025053. [Google Scholar] [CrossRef]
- Thomason, J.; Xypolias, G. Hydrothermal Ageing of Glass Fibre Reinforced Vinyl Ester Composites: A Review. Polymers 2023, 15, 835. [Google Scholar] [CrossRef]
- Birleanu, C.; Udroiu, R.; Cioaza, M.; Bere, P.; Pustan, M. Basalt vs. Glass Fiber-Reinforced Polymers: A Statistical Comparison of Tribological Performance Under Dry Sliding Conditions. J. Compos. Sci. 2025, 9, 444. [Google Scholar] [CrossRef]
- Jagadeesh, P.; Rangappa, S.M.; Siengchin, S. Basalt Fibers: An Environmentally Acceptable and Sustainable Green Material for Polymer Composites. Constr. Build. Mater. 2024, 436, 136834. [Google Scholar] [CrossRef]
- Oun, A.; Alajarmeh, O.; Manalo, A.; Abousnina, R.; Gerdes, A. Durability of Hybrid Flax Fibre-Reinforced Epoxy Composites with Graphene in Hygrothermal Environment. Constr. Build. Mater. 2024, 420, 135584. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, H.; Yang, L.; Du, J. Research on Mechanical Properties and Durability of Flax/Glass Fiber Bio-Hybrid FRP Composites Laminates. Compos. Struct. 2022, 290, 115566. [Google Scholar] [CrossRef]
- Stejskal, M.; Sedlacek, F.; Spacek, O.; Bednarova, N.; Krystek, J. Towards Sustainable Composite Structures: Experimental Characterisation and Damage Modelling of Unidirectional Flax Fibre-Reinforced Polymers. Polymers 2025, 17, 2985. [Google Scholar] [CrossRef] [PubMed]
- Das, S.C.; Srivastava, C.; Goutianos, S.; La Rosa, A.D.; Grammatikos, S. On the Response to Hygrothermal Ageing of Fully Recyclable Flax and Glass Fibre Reinforced Polymer Composites. Materials 2023, 16, 5848. [Google Scholar] [CrossRef]
- Kumar, S.; Krishnan, S.; Mohanty, S.; Nayak, S.K. Synthesis and Characterization of Petroleum and Biobased Epoxy Resins: A Review. Polym. Int. 2018, 67, 815–839. [Google Scholar] [CrossRef]
- Ares-Elejoste, P.; Seoane-Rivero, R.; Gandarias, I.; Iturmendi, A.; Gondra, K. Sustainable Alternatives for the Development of Thermoset Composites with Low Environmental Impact. Polymers 2023, 15, 2939. [Google Scholar] [CrossRef]
- Khotbehsara, M.M.; Manalo, A.; Aravinthan, T.; Reddy, K.R.; Ferdous, W.; Wong, H.; Nazari, A. Effect of Elevated In-Service Temperature on the Mechanical Properties and Microstructure of Particulate-Filled Epoxy Polymers. Polym. Degrad. Stab. 2019, 170, 108994. [Google Scholar] [CrossRef]
- Gupta, A.; Kumar, N.; Sachdeva, A. Factors Affecting the Ageing of Polymer Composite: A State of Art. Polym. Degrad. Stab. 2024, 221, 110670. [Google Scholar] [CrossRef]
- Williams, A.; Hamerton, I.; Allegri, G. Environmental Effects of Moisture and Elevated Temperatures on the Mode I and Mode II Interlaminar Fracture Toughness of a Toughened Epoxy Carbon Fibre Reinforced Polymer. Polymers 2025, 17, 1503. [Google Scholar] [CrossRef]
- Guo, R.; Xian, G.; Li, C.; Hong, B.; Huang, X.; Xin, M.; Huang, S. Water Uptake and Interfacial Shear Strength of Carbon/Glass Fiber Hybrid Composite Rods under Hygrothermal Environments: Effects of Hybrid Modes. Polym. Degrad. Stab. 2021, 193, 109723. [Google Scholar] [CrossRef]
- Chowdhury, I.R.; O’Dowd, N.P.; Comer, A.J. Experimental Study of Hygrothermal Ageing Effects on Failure Modes of Non-Crimp Basalt Fibre-Reinforced Epoxy Composite. Compos. Struct. 2021, 275, 114415. [Google Scholar] [CrossRef]
- Lu, Z.; Xian, G.; Li, H. Effects of Elevated Temperatures on the Mechanical Properties of Basalt Fibers and BFRP Plates. Constr. Build. Mater. 2016, 127, 1029–1036. [Google Scholar] [CrossRef]
- Jarrah, M.; Najafabadi, E.P.; Khaneghahi, M.H.; Oskouei, A.V. The Effect of Elevated Temperatures on the Tensile Performance of GFRP and CFRP Sheets. Constr. Build. Mater. 2018, 190, 38–52. [Google Scholar] [CrossRef]
- Ashrafi, H.; Bazli, M.; Najafabadi, E.P.; Vatani Oskouei, A. The Effect of Mechanical and Thermal Properties of FRP Bars on Their Tensile Performance under Elevated Temperatures. Constr. Build. Mater. 2017, 157, 1001–1010. [Google Scholar] [CrossRef]
- Sirimanna, C.S.; Islam, M.M.; Aravinthan, T. Temperature Effects on Full Scale FRP Bridge Using Innovative Composite Components. In Proceedings of the Advances in FRP Composites in Civil Engineering; Ye, L., Feng, P., Yue, Q., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 376–380. [Google Scholar]
- Elarbi, A.M.; Wu, H.C. Flexural Behavior of Epoxy under Accelerated Hygrothermal Conditions. Fibers 2017, 5, 25. [Google Scholar] [CrossRef]
- Davies, P.; Verbouwe, W. Evaluation of Basalt Fibre Composites for Marine Applications. Appl. Compos. Mater. 2018, 25, 299–308. [Google Scholar] [CrossRef]
- Ma, G.; Yan, L.; Shen, W.; Zhu, D.; Huang, L.; Kasal, B. Effects of Water, Alkali Solution and Temperature Ageing on Water Absorption, Morphology and Mechanical Properties of Natural FRP Composites: Plant-Based Jute vs. Mineral-Based Basalt. Compos. B Eng. 2018, 153, 398–412. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Park, J.-M.; Yoon, S.-W.; Lee, J.-W.; Jung, M.-K.; Murakami, R.-I. The Effect of Moisture Absorption and Gel-Coating Process on the Mechanical Properties of the Basalt Fiber Reinforced Composite. Int. J. Ocean Syst. Eng. 2011, 1, 148–154. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, X.-L.; Xian, G.; Wu, G.; Singh Raman, R.K.; Al-Saadi, S. Durability Study on Interlaminar Shear Behaviour of Basalt-, Glass- and Carbon-Fibre Reinforced Polymer (B/G/CFRP) Bars in Seawater Sea Sand Concrete Environment. Constr. Build. Mater. 2017, 156, 985–1004. [Google Scholar] [CrossRef]
- Scida, D.; Assarar, M.; Poilâne, C.; Ayad, R. Influence of Hygrothermal Ageing on the Damage Mechanisms of Flax-Fibre Reinforced Epoxy Composite. Compos. B Eng. 2013, 48, 51–58. [Google Scholar] [CrossRef]
- Nikforooz, M.; Daelemans, L.; De Clerck, K.; Van Paepegem, W. The Effect of Hydrothermal Ageing on the Interfacial Bonding of E-Glass Fibre/Epoxy in Quasi-Static and Fatigue Loading. Compos. B Eng. 2025, 304, 112649. [Google Scholar] [CrossRef]
- Zhong, Y.; Cheng, M.; Zhang, X.; Hu, H.; Cao, D.; Li, S. Hygrothermal Durability of Glass and Carbon Fiber Reinforced Composites—A Comparative Study. Compos. Struct. 2019, 211, 134–143. [Google Scholar] [CrossRef]
- Krauklis, A.E.; Starkova, O.; Gibhardt, D.; Kalinka, G.; Aouissi, H.A.; Burlakovs, J.; Sabalina, A.; Fiedler, B. Reversible and Irreversible Effects on the Epoxy GFRP Fiber-Matrix Interphase Due to Hydrothermal Aging. Compos. Part C Open Access 2023, 12, 100395. [Google Scholar] [CrossRef]
- Thomason, J.L. Glass Fibre Sizing: A Review. Compos. Part A Appl. Sci. Manuf. 2019, 127, 105619. [Google Scholar] [CrossRef]
- Iftikhar, A.; Manalo, A.; Senselova, Z.; Ferdous, W.; Peerzada, M.; Seligmann, H.; Nguyen, K.; Benmokrane, B. Effects of Resin Types on the Durability of Single Yarn Polymer Composites Exposed to Hygrothermal Environment. Compos. Part C Open Access 2025, 18, 100676. [Google Scholar] [CrossRef]
- ASTM C1557-20; Standard Test Method for Tensile Strength and Young’s Modulus of Fibers. ASTM: West Conshohocken, PA, USA, 2020.
- Thomason, J.L.; Nagel, U.; Yang, L.; Bryce, D. A Study of the Thermal Degradation of Glass Fibre Sizings at Composite Processing Temperatures. Compos. Part A Appl. Sci. Manuf. 2019, 121, 56–63. [Google Scholar] [CrossRef]
- Feih, S.; Boiocchi, E.; Mathys, G.; Mathys, Z.; Gibson, A.G.; Mouritz, A.P. Mechanical Properties of Thermally-Treated and Recycled Glass Fibres. Compos. B Eng. 2011, 42, 350–358. [Google Scholar] [CrossRef]
- Thomason, J.L.; Yang, L.; Meier, R. The Properties of Glass Fibres after Conditioning at Composite Recycling Temperatures. Compos. Part A Appl. Sci. Manuf. 2014, 61, 201–208. [Google Scholar] [CrossRef]
- Otogo Be, S.A.; Belec, L.; Fahs, A.; Martin, I.; Louarn, G.; Chailan, J.F. Impact of the Sizing Reactivity of Glass Fibers on Composites Hydrothermal Aging. Polym. Degrad. Stab. 2023, 215, 110426. [Google Scholar] [CrossRef]
- Le Gué, L.; Davies, P.; Arhant, M.; Vincent, B.; Verbouwe, W. Basalt Fibre Degradation in Seawater and Consequences for Long Term Composite Reinforcement. Compos. Part A Appl. Sci. Manuf. 2024, 179, 108027. [Google Scholar] [CrossRef]
- Lu, M.M.; Fuentes, C.A.; Van Vuure, A.W. Moisture Sorption and Swelling of Flax Fibre and Flax Fibre Composites. Compos. B Eng. 2022, 231, 109538. [Google Scholar] [CrossRef]
- Hussnain, S.M.; Shah, S.Z.H.; Megat-Yusoff, P.S.M.; Hussain, M.Z. Degradation and Mechanical Performance of Fibre-Reinforced Polymer Composites under Marine Environments: A Review of Recent Advancements. Polym. Degrad. Stab. 2023, 215, 110452. [Google Scholar] [CrossRef]
- Wang, W.-J.; Dong, Y.; Wei, Z.-M.; Long, S.-R.; Yang, J.; Yang, J.-C.; Wang, X.-J. Hydrothermal Aging of Short Glass Fiber Reinforced Polyphenylene Sulfide Composites and Property Prediction. Polym. Degrad. Stab. 2023, 217, 110503. [Google Scholar] [CrossRef]
- Jean-Fulcrand, A.; Léger, E.; Dau, F.; Dubé, M.; Tabiai, I. Degradation Mechanisms of CF/PPS, CF/PEI, and CF/PEEK under Combined UV Radiation and Condensation. Compos. Part A Appl. Sci. Manuf. 2025, 198, 109131. [Google Scholar] [CrossRef]
- Oun, A.; Manalo, A.; Alajarmeh, O.; Abousnina, R.; Gerdes, A. Long-Term Water Absorption of Hybrid Flax Fibre-Reinforced Epoxy Composites with Graphene and Its Influence on Mechanical Properties. Polymers 2022, 14, 3679. [Google Scholar] [CrossRef]
- Khan, Z.; Yousif, B.F.; Islam, M. Fracture Behaviour of Bamboo Fiber Reinforced Epoxy Composites. Compos. B Eng. 2017, 116, 186–199. [Google Scholar] [CrossRef]
- Chowdhury, I.R.; Rao, P.S.; O’Dowd, N.P.; Comer, A.J. Hygrothermal Ageing Effects on Failure Behaviour of Fibre-Reinforced Polymer Composite Materials under in-Situ SEM Testing. Compos. B Eng. 2025, 294, 112148. [Google Scholar] [CrossRef]
- Zhuang, X.; Ma, J.; Dan, Y.; Jiang, L.; Huang, Y. Hydrothermal Aging of Carbon Fiber Reinforced Epoxy Composites with Different Interface Structures. Polym. Degrad. Stab. 2023, 212, 110352. [Google Scholar] [CrossRef]
- Dhakal, H.N.; Sain, M. Enhancement of Mechanical Properties of Flax-Epoxy Composite with Carbon Fibre Hybridisation for Lightweight Applications. Materials 2020, 13, 109. [Google Scholar] [CrossRef]
- Benmokrane, B.; Hassan, M.; Robert, M.; Vijay, P.V.; Manalo, A. Effect of Different Constituent Fiber, Resin, and Sizing Combinations on Alkaline Resistance of Basalt, Carbon, and Glass FRP Bars. J. Compos. Constr. 2020, 24, 1–18. [Google Scholar] [CrossRef]
- Sakuraba, H.; Manalo, A.; Alajarmeh, O.; Benmokrane, B. Durability Assessment of GFRP Bars in Concrete Exposed to Field Environment Based on Interlaminar Shear Strength. Case Stud. Constr. Mater. 2025, 22, e04599. [Google Scholar] [CrossRef]












| Physical Properties | Carbon Fibre Yarn | Glass Fibre Yarn | Basalt Fibre Yarn | Flax Fibre Yarn |
|---|---|---|---|---|
| Density [g/cm3] | 1.78 | 2.54 | 2.70 | 1.54 |
| Tex [gm/km] | 68 | 68 | 70 | 36 |
| Diameter [µm] | 216.9 | 189.7 | 179.9 | 147.1 |
| Properties | Exposure Duration | % Retention After 3000 h | |||
|---|---|---|---|---|---|
| 0 h | 1000 h | 2000 h | 3000 h | ||
| Water Absorption (%) | 0% | 8.4% | 9.3% | 9.5% | --- |
| Degree of cure (%) | 99.9% | 99.9% | 99.9% | 99.9% | --- |
| Glass transition temperature (°C) | 44.4 °C | 44.2 °C | 47.5 °C | 46.6 °C | 105% |
| Tensile strength (MPa) | 52.3 | 50.1 | 49.6 | 47.2 | 90.2% |
| Modulus (MPa) | 2972 | 2688 | 2589 | 2569 | 86.4% |
| Strain at failure (%) | 3.84 | 4.24 | 3.95 | 4.46 | 116.1% |
| Properties | Number of Samples | |||
|---|---|---|---|---|
| 0 h | 1000 h | 2000 h | 3000 h | |
| Tensile Strength of Fibre Yarns (ASTM C1557-20 [36]) | ||||
| Carbon fibre | 5 | 5 | 5 | 5 |
| Glass fibre | 5 | 5 | 5 | 5 |
| Basalt fibre | 5 | 5 | 5 | 5 |
| Flax fibre | 5 | 5 | 5 | 5 |
| Interfacial Shear Strength (IFSS) | ||||
| Bio-epoxy carbon composites | 5 | 5 | 5 | 5 |
| Bio-epoxy glass composites | 5 | 5 | 5 | 5 |
| Bio-epoxy basalt composites | 5 | 5 | 5 | 5 |
| Bio-epoxy flax composites | 5 | 5 | 5 | 5 |
| Chemical Analysis (EDS) | ||||
| Fibre yarns (each) | 3 | 3 | 3 | 3 |
| Microstructural Properties (SEM) | ||||
| Fibre yarns (each) | 3 | 3 | 3 | 3 |
| Single yarn composites (each) | 3 | 3 | 3 | 3 |
| Fibre Type | Parameter | Exposure Time | Retention After 3000 h | |||
|---|---|---|---|---|---|---|
| 0 h | 1000 h | 2000 h | 3000 h | |||
| Carbon | Tensile Strength (MPa) | 1971 | 1337 | 1326 | 1308 | 66% |
| CoV (%) | 3.50 | 4.98 | 4.11 | 3.38 | ||
| Glass | Tensile Strength (MPa) | 1602 | 1314 | 1032 | 1004 | 63% |
| CoV (%) | 2.97 | 3.39 | 4.45 | 3.01 | ||
| Basalt | Tensile Strength (MPa) | 1518 | 1091 | 1003 | 928 | 61% |
| CoV (%) | 4.42 | 3.69 | 4.93 | 2.76 | ||
| Flax | Tensile Strength (MPa) | 741 | 626 | 613 | 596 | 80% |
| CoV (%) | 4.88 | 3.27 | 4.43 | 4.25 | ||
| Fibre Type | Unexposed | Exposed | ||||
|---|---|---|---|---|---|---|
| C% | O% | O/C | C% | O% | O/C | |
| Carbon | 95.52 | 4.48 | 0.04 | 76.09 | 15.44 | 0.20 |
| Glass | 23.78 | 41.51 | 1.74 | 23.08 | 43.28 | 1.87 |
| Basalt | 23.43 | 43.68 | 1.86 | 25.37 | 47.32 | 1.86 |
| Flax | 62.14 | 36.86 | 0.59 | 61.35 | 36.35 | 0.59 |
| Fibre Type | Dominant Failure Mechanism |
|---|---|
| Carbon Fibres | Hydrolytic/oxidative removal of epoxy sizing. |
| Glass Fibres | Si–O–Si bond hydrolysis at the silane interface, washing out of silane sizing. |
| Basalt Fibres | Leaching-dominated loss of silica with minimal hydrolysis. |
| Flax Fibres | Moisture-driven swelling and microcracking. |
| Fibre Type | Parameter | Exposure Time | Retention After 3000 h | |||
|---|---|---|---|---|---|---|
| 0 h | 1000 h | 2000 h | 3000 h | |||
| Carbon | IFSS (MPa) | 36.89 | 36.47 | 35.97 | 35.25 | 96% |
| CoV (%) | 4.00 | 2.43 | 3.36 | 1.93 | ||
| Glass | IFSS (MPa) | 45.08 | 43.26 | 42.50 | 41.88 | 92% |
| CoV (%) | 1.22 | 4.21 | 2.77 | 2.91 | ||
| Basalt | IFSS (MPa) | 42.14 | 42.04 | 39.62 | 39.50 | 93% |
| CoV (%) | 4.00 | 3.23 | 4.35 | 4.11 | ||
| Flax | IFSS (MPa) | 53.29 | 50.11 | 48.90 | 47.98 | 90% |
| CoV (%) | 3.00 | 1.53 | 3.02 | 3.51 | ||
| Dependent Variable | Independent Variable | p-Value | R2 |
|---|---|---|---|
| Retention of tensile strength | Fibre Type | <0.001 | 0.69 |
| Ageing Time | <0.001 | 0.33 | |
| Retention of IFSS | Fibre Type | <0.001 | 0.66 |
| Ageing Time | <0.003 | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Iftikhar, A.; Manalo, A.; Senselova, Z.; Ferdous, W.; Peerzada, M.; Seligmann, H.; Nguyen, K.; Benmokrane, B. Hygrothermal Durability and Damage Evolution of Bio-Epoxy-Based Composites Reinforced with Different Fibre Types. Polymers 2026, 18, 58. https://doi.org/10.3390/polym18010058
Iftikhar A, Manalo A, Senselova Z, Ferdous W, Peerzada M, Seligmann H, Nguyen K, Benmokrane B. Hygrothermal Durability and Damage Evolution of Bio-Epoxy-Based Composites Reinforced with Different Fibre Types. Polymers. 2026; 18(1):58. https://doi.org/10.3390/polym18010058
Chicago/Turabian StyleIftikhar, Abdullah, Allan Manalo, Zaneta Senselova, Wahid Ferdous, Mazhar Peerzada, Hannah Seligmann, Kate Nguyen, and Brahim Benmokrane. 2026. "Hygrothermal Durability and Damage Evolution of Bio-Epoxy-Based Composites Reinforced with Different Fibre Types" Polymers 18, no. 1: 58. https://doi.org/10.3390/polym18010058
APA StyleIftikhar, A., Manalo, A., Senselova, Z., Ferdous, W., Peerzada, M., Seligmann, H., Nguyen, K., & Benmokrane, B. (2026). Hygrothermal Durability and Damage Evolution of Bio-Epoxy-Based Composites Reinforced with Different Fibre Types. Polymers, 18(1), 58. https://doi.org/10.3390/polym18010058

