Material Properties, Characterization, and Application of Microcellular Injection-Molded Polypropylene Reinforced with Oyster Shells for Pb(II) Adsorption Kinetics from Aqueous Solutions
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Foamed Injection Molding Machine and Mold
3. Kinetic and Equilibrium Sorption Studies
Characterization Method
4. Results and Discussion
4.1. Fourier Transformation InfraRed (FTIR)
4.2. Physical Properties: P-V-T Diagram
4.3. XRD
4.4. Thermal Properties
4.5. SEM Micrographs
4.6. Effect of Initial Concentration, pH, Dosage, and Time
4.7. Pb(II) Adsorption Mechanism
4.8. Adsorption Isotherm
4.8.1. Langmuir Isotherm
4.8.2. Freundlich Isotherm
4.8.3. Temkin Isotherm
4.9. Kinetic Models
4.10. Desorption Studies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| OSP | Oyster shell powder |
| PP | Polypropylene |
| WPC | Wood plastic composite |
References
- Chen, X.; Zhang, X.; Wang, Y.; Zhang, X.; Jiao, C. Synergistic safety improvement between oyster shell powder and ammonium polyphosphate in TPU composites. Polym. Adv. Technol. 2019, 30, 1564–1575. [Google Scholar] [CrossRef]
- Yang, D.; Shi, H.; Li, L.; Li, J.; Jabeen, K.; Kolandhasamy, P. Microplastic Pollution in Table Salts from China. Environ. Sci. Technol. 2015, 49, 13622–13627. [Google Scholar] [CrossRef]
- Liebezeit, G.; Liebezeit, E. Origin of Synthetic Particles in Honeys. Pol. J. Food Nutr. Sci. 2015, 65, 143–147. [Google Scholar] [CrossRef]
- Singh, V.; Chakraborty, S. Microplastic Pollution in Freshwater Systems: A Potential Environmental Threat. In River Health and Ecology in South Asia: Pollution, Restoration, and Conservation; Springer International Publishing: Cham, Switzerland, 2021; pp. 341–356. [Google Scholar] [CrossRef]
- Rafa, N.; Ahmed, B.; Zohora, F.; Bakya, J.; Ahmed, S.; Ahmed, S.F.; Mofijur, M.; Chowdhury, A.A.; Almomani, F. Microplastics as Carriers of Toxic Pollutants: Source, Transport, and Toxicological Effects. Environ. Pollut. 2024, 343, 123190. [Google Scholar] [CrossRef]
- Rasheed, T.; Bilal, M.; Nabeel, F.; Adeel, M.; Iqbal, H.M.N. Environmentally-Related Contaminants of High Concern: Potential Sources and Analytical Modalities for Detection, Quantification, and Treatment. Environ. Int. 2019, 122, 52–66. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Wang, S.; Yu, X.; Vogt, R.D.; Feng, J.; Zhai, L.; Ma, W.; Zhu, L.; Lu, X. Kinetics and Size Effects on Adsorption of Cu(II), Cr(III), and Pb(II) Onto Polyethylene, Polypropylene, and Polyethylene Terephthalate Microplastic Particles. Front. Mar. Sci. 2021, 8, 785146. [Google Scholar] [CrossRef]
- Anderson, J.C.; Park, B.J.; Palace, V.P. Microplastics in Aquatic Environments: Implications for Canadian Ecosystems. Environ. Pollut. 2016, 218, 269–280. [Google Scholar] [CrossRef]
- Shi, M.; Xie, Q.; Li, Z.L.; Pan, Y.F.; Yuan, Z.; Lin, L.; Xu, X.R.; Li, H.X. Adsorption of Heavy Metals on Biodegradable and Conventional Microplastics in the Pearl River Estuary, China. Environ. Pollut. 2023, 322, 121158. [Google Scholar] [CrossRef]
- Lai, S.; Fan, C.; Yang, P.; Fang, Y.; Zhang, L.; Jian, M.; Dai, G.; Liu, J.; Yang, H.; Shen, L. Effects of Different Microplastics on the Physicochemical Properties and Microbial Diversity of Rice Rhizosphere Soil. Front. Microbiol. 2024, 15, 1513890. [Google Scholar] [CrossRef]
- Liu, S.; Huang, J.H.; Zhang, W.; Shi, L.X.; Yi, K.X.; Zhang, C.Y.; Pang, H.L.; Li, J.N.; Li, S.Z. Investigation of the Adsorption Behavior of Pb(II) onto Natural-Aged Microplastics as Affected by Salt Ions. J. Hazard. Mater. 2022, 431, 128643. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Yang, X.; Zhang, T.; Qin, Y.; Cao, C.; Shi, H.; Zhao, Y. Adsorption Mechanisms of Metal Ions (Pb, Cd, Cu) onto Polyamide 6 Microplastics: New Insight into Environmental Risks in Comparison with Natural Media in Different Water Matrices. Gondwana Res. 2022, 110, 214–225. [Google Scholar] [CrossRef]
- Li, S.; Cao, L.; Liu, Q.; Sui, S.; Bian, J.; Zhao, X.; Gao, Y. Enhancing Pb Adsorption on Crushed Microplastics: Insights into the Environmental Remediation. Water 2024, 16, 3541. [Google Scholar] [CrossRef]
- Hossain, M.T.; Shahid, M.A.; Mahmud, N.; Habib, A.; Rana, M.M.; Khan, S.A.; Hossain, M.D. Research and Application of Polypropylene: A Review. Discov. Nano 2024, 19, 2. [Google Scholar] [CrossRef] [PubMed]
- Dziuba, R.; Kucharska, M.; Madej-Kiełbik, L.; Sulak, K.; Wiśniewska-Wrona, M. Biopolymers and Biomaterials for Special Applications within the Context of the Circular Economy. Materials 2021, 14, 7704. [Google Scholar] [CrossRef] [PubMed]
- Muteeb, G.; Rehman, M.T.; Shahwan, M.; Aatif, M. Origin of Antibiotics and Antibiotic Resistance, and Their Impacts on Drug Development: A Narrative Review. Pharmaceuticals 2023, 16, 1615. [Google Scholar] [CrossRef]
- Rani, S.; Mathew, B.T.; Kumar, D.; Nandan, B.; Srivastava, R.K. Upcycling Polypropylene Waste into Antimicrobial Porous Composite—A Sustainable Approach for Circular Economy. Surf. Interfaces 2025, 62, 106300. [Google Scholar] [CrossRef]
- Tsou, C.H.; Wu, C.S.; Hung, W.S.; De Guzman, M.R.; Gao, C.; Wang, R.Y.; Chen, J.; Wan, N.; Peng, Y.J.; Suen, M.C. Rendering Polypropylene Biocomposites Antibacterial through Modification with Oyster Shell Powder. Polymer 2019, 160, 265–271. [Google Scholar] [CrossRef]
- Bikiaris, D.N.; Vassiliou, A.; Pavlidou, E.; Karayannidis, G.P. Compatibilisation Effect of PP-g-MA Copolymer on IPP/SiO2 Nanocomposites Prepared by Melt Mixing. Eur. Polym. J. 2005, 41, 1965–1978. [Google Scholar] [CrossRef]
- Chan, C.-M.; Wu, J.; Li, J.-X.; Cheung, Y.-K. Polypropylene/Calcium Carbonate Nanocomposites. Polymer 2002, 43, 2981–2992. [Google Scholar] [CrossRef]
- Mirjalili, F.; Chuah, L.; Salahi, E. Mechanical and Morphological Properties of Polypropylene/Nano α-Al2O3 Composites. Sci. World J. 2014, 2014, 718765. [Google Scholar] [CrossRef]
- Moja, T.N.; Bunekar, N.; Mojaki, S.; Mishra, S.B.; Tsai, T.Y.; Hwang, S.S.; Mishra, A.K. Polypropylene–Polypropylene-Grafted-Maleic Anhydride–Montmorillonite Clay Nanocomposites for Pb(II) Removal. J. Inorg. Organomet. Polym. Mater. 2018, 28, 2799–2811. [Google Scholar] [CrossRef]
- Karwadiya, J.; Lützenkirchen, J.; Darbha, G.K. Retention of ZnO Nanoparticles onto Polypropylene and Polystyrene Microplastics: Aging-Associated Interactions and the Role of Aqueous Chemistry. Environ. Pollut. 2024, 352, 124097. [Google Scholar] [CrossRef]
- Singh, V.; Yadav, S.S.; Chauhan, V.; Shukla, S.; Vishnolia, K.K. Applications of Nanoparticles in Various Fields. In Diagnostic Applications of Health Intelligence and Surveillance Systems; IGI Global: Hershey, PA, USA, 2021; pp. 221–236. [Google Scholar] [CrossRef]
- Joudeh, N.; Linke, D. Nanoparticle Classification, Physicochemical Properties, Characterization, and Applications: A Comprehensive Review for Biologists. J. Nanobiotechnol. 2022, 20, 262. [Google Scholar] [CrossRef]
- Oliani, W.L.; Parra, D.F.; Komatsu, L.G.H.; Lincopan, N.; Rangari, V.K.; Lugao, A.B. Fabrication of Polypropylene/Silver Nanocomposites for Biocidal Applications. Mater. Sci. Eng. C 2017, 75, 845–853. [Google Scholar] [CrossRef]
- Shah, A.R.; Prabhakar, M.N.; Lee, D.-W.; Kim, B.-S.; Song, J.I. Development and Characterization of Oyster Shell Powder Filled Polypropylene Composite. Compos. Res. 2014, 27, 201–206. [Google Scholar] [CrossRef]
- Haba, B.; Djellali, S.; Abdelouahed, Y.; Boudjelida, S.; Faleschini, F.; Carraro, M. Transforming Plastic Waste into Value: A Review of Management Strategies and Innovative Applications in Sustainable Construction. Polymers 2025, 17, 881. [Google Scholar] [CrossRef]
- Hsu, T.C. Experimental Assessment of Adsorption of Cu2+ and Ni2+ from Aqueous Solution by Oyster Shell Powder. J. Hazard. Mater. 2009, 171, 995–1000. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Chen, M.; Zhao, Y.; Zhao, S.; Rui, C.; Li, W.; Yang, F. Oyster Shell Powder/PCL Composite Scaffolds Loaded with Psoralen Nanospheres Promote Large Bone Defect Repair. ACS Omega 2025, 10, 2231–2242. [Google Scholar] [CrossRef]
- Hussain, F.; Kim, L.H.; Oh, S.E.; Kim, S. Neutralization of PH and Removal of Heavy Metals from Acid Mine Water by Using Low-Cost Biosorbents in Batch and Column Studies. Groundw. Sustain. Dev. 2025, 31, 101506. [Google Scholar] [CrossRef]
- Romario, Y.S.; Octavia, T.; Saputra, T.H.; Suryadi, F.X. Sustainable composite fabrication using waste oyster shells through additive manufacturing technology. J. Chin. Soc. Mech. Eng. 2024, 45, 501–507. [Google Scholar]
- Xu, X.; Liu, X.; Oh, M.; Park, J. Oyster Shell as a Low-Cost Adsorbent for Removing Heavy Metal Ions from Wastewater. Pol. J. Environ. Stud. 2019, 28, 2949–2959. [Google Scholar] [CrossRef]
- Topić Popović, N.; Lorencin, V.; Strunjak-Perović, I.; Čož-Rakovac, R. Shell Waste Management and Utilization: Mitigating Organic Pollution and Enhancing Sustainability. Appl. Sci. 2023, 13, 623. [Google Scholar] [CrossRef]
- Bellei, P.; Torres, I.; Solstad, R.; Flores-Colen, I. Potential Use of Oyster Shell Waste in the Composition of Construction Composites: A Review. Buildings 2023, 13, 1546. [Google Scholar] [CrossRef]
- Mouni, L.; Merabet, D.; Robert, D.; Bouzaza, A. Batch Studies for the Investigation of the Sorption of the Heavy Metals Pb2+ and Zn2+ onto Amizour Soil (Algeria). Geoderma 2009, 154, 30–35. [Google Scholar] [CrossRef]
- Torad, N.L.; El-Nasr, A.A.; Doustkhah, E.; Abu Haija, M.; Lyu, W.; Khalifa, A.; Salahuddin, N.A.; Assadi, M.H.N.; Ayad, M.M. Chemically Surface-Engineered Mesoporous Silica for the Toxic Metal Ions Uptake: Insights from Experiment and Density Functional Calculations. Langmuir 2025, 41, 9194–9203. [Google Scholar] [CrossRef] [PubMed]
- Aslam, A.; Kanwal, F.; Javied, S.; Nisar, N.; Torriero, A.A.J. Microbial Biosorption: A Sustainable Approach for Metal Removal and Environmental Remediation. Int. J. Environ. Sci. Technol. 2025, 22, 13245–13276. [Google Scholar] [CrossRef]
- Phiri, Z.; Moja, N.T.; Nkambule, T.T.I.; de Kock, L.A. Utilization of Biochar for Remediation of Heavy Metals in Aqueous Environments: A Review and Bibliometric Analysis. Heliyon 2024, 10, e25785. [Google Scholar] [CrossRef] [PubMed]
- Fleet, M.E. Infrared Spectra of Carbonate Apatites: Ν2-Region Bands. Biomaterials 2009, 30, 1473–1481. [Google Scholar] [CrossRef]
- He, R.; Zhou, J.L.; Huang, P.M.; Guan, B.W.; Sheng, Y.P. Effects of Mineral Admixtures on Microstructure-Linked Strength Properties of Macro-Synthetic Fiber Reinforced Concrete. Int. J. Pavement Res. Technol. 2015, 8, 94–102. [Google Scholar] [CrossRef]
- Kościuszko, A.; Marciniak, D.; Sykutera, D. Post-processing time dependence of shrinkage and mechanical properties of injection-molded polypropylene. Materials 2020, 14, 22. [Google Scholar] [CrossRef] [PubMed]
- Golzar, M.; Sadeghian, N. Measurement of PVT properties of wood-plastic composites. In Proceedings of the 16th International Conference on Composites Materials ISME-2007, Kyoto, Japan, 8–13 July 2007. [Google Scholar] [CrossRef]
- Tongwanichniyom, S.; Thanit Pattamapitoon, T.; Sangvichien, N.; Phornphisutthimas, S. Production of calcium oxide from waste oyster shells for a value-added application of antibacterial. Ecol. Environ. Conserv. 2021, 27, 539–547. [Google Scholar]
- Li, L.; Zeng, Z.; Wang, Z.; Peng, Z.; She, X.; Li, S.; Zhong, J. Effect of Oyster Shell Powder Loading on the Mechanical and Thermal Properties of Natural Rubber/Oyster Shell Composites. Polym. Polym. Compos. 2017, 25, 17–22. [Google Scholar] [CrossRef]
- Neskoromnaya, E.A.; Khamizov, R.K.; Melezhyk, A.V.; Memetova, A.E.; Mkrtchan, E.S.; Babkin, A.V. Adsorption of Lead Ions (Pb2+) from Wastewater Using Effective Nanocomposite GO/CMC/FeNPs: Kinetic, Isotherm, and Desorption Studies. Colloids Surf. A Physicochem. Eng. Asp. 2022, 655, 130224. [Google Scholar] [CrossRef]
- Musah, M.; Azeh, Y.; Mathew, J.; Umar, M.; Abdulhamid, Z.; Muhammad, A. Adsorption Kinetics and Isotherm Models: A Review. Caliphate J. Sci. Technol. 2022, 4, 20–26. [Google Scholar] [CrossRef]
- Kostoglou, M.; Karapantsios, T.D. Why Is the Linearized Form of Pseudo-Second Order Adsorption Kinetic Model So Successful in Fitting Batch Adsorption Experimental Data? Colloids Interfaces 2022, 6, 55. [Google Scholar] [CrossRef]
- Çiçekçi, A.; Sevim, F.; Sevim, M.; Kavcı, E. Adsorption Capacity, Reaction Kinetics and Thermodynamic Studies on Ni(II) Removal with GO@Fe3O4@Pluronic-F68 Nanocomposite. Polymers 2025, 17, 2141. [Google Scholar] [CrossRef]
- Chien, M.; Chen, S.; Huang, K.; Moja, T.N.; Hwang, S. Cell Morphology, Material Property and Ni(II) Adsorption of Microcellular Injection-Molded Polystyrene Reinforced with Graphene Nanoparticles. Polymers 2025, 17, 189. [Google Scholar] [CrossRef]
- Oladimeji, T.E.; Oyedemi, M.; Emetere, M.E.; Agboola, O.; Adeoye, J.B.; Odunlami, O.A. Review on the Impact of Heavy Metals from Industrial Wastewater Effluent and Removal Technologies. Heliyon 2024, 10, e40370. [Google Scholar] [CrossRef]
- Chen, S.; Xu, R.; Huang, H.; Yi, F.; Zhou, X.; Zeng, H. Reduction-Adsorption Behavior of Platinum Ions on Activated Carbon Fibers. J. Mater. Sci. 2007, 42, 9572–9581. [Google Scholar] [CrossRef]
- Yadav, V.; Tiwari, D.P.; Bhagat, M. Isotherm, Kinetics, and Thermodynamic Parameters Study of Arsenic (III) and Copper (II) Adsorption onto Limonia Acidissima Shell Carbon. Desalin. Water Treat. 2020, 184, 214–224. [Google Scholar] [CrossRef]
- Zhang, H.; Gibb, S.W.; James, N.A. Removal of Copper and Lead Ions from Water Using Dopamine-Modified Waste Marine Plastic. Environ. Process. 2025, 12, 64. [Google Scholar] [CrossRef]
- Moja, T.N.; Bunekar, N.; Mishra, S.B.; Tsai, T.Y.; Hwang, S.S.; Mishra, A.K. Melt processing of polypropylene-grafted-maleic anhydride/Chitosan polymer blend functionalized with montmorillonite for the removal of lead ions from aqueous solutions. Sci. Rep. 2010, 10, 217. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.; Huang, W.; Du, Y.; Wang, D.; Liang, R.; Feng, C.; Zhang, H.; Wang, X.; Wei, J. Design of filled polypropylene fibers for adsorptive removal of specified heavy metal ions. Mater. Chem. Phys. 2025, 339, 130758. [Google Scholar] [CrossRef]
- Liu, X.; Dong, X.; Chang, S. Remediation of lead-contaminated groundwater by oyster shell powder–peanut shell biochar mixture. Environ. Geochem. Health 2023, 45, 9599–9619. [Google Scholar] [CrossRef]
- Tran, Q.T.P.; Nguyen, T.T.; Dao, O.N.S. Manganese-coated granular oyster shells: A novel approach for heavy metal removal from urban stormwater runoff. Appl. Water Sci. 2025, 15, 213. [Google Scholar] [CrossRef]
- An, W.; Liu, Y.; Chen, H.; Sun, X.; Wang, Q.; Hu, X.; Di, J. Adsorption properties of Pb(II) and Cd(II) in acid mine drainage by oyster shell-loaded lignite composite in different morphologies. Sci. Rep. 2024, 14, 11627. [Google Scholar] [CrossRef]












| Process Parameters | Foamed PP/OSP Composites |
|---|---|
| Shot size (cm3) | 21 |
| Melt temperature (°C) | 210 |
| Mold temperature (°C) | 40 |
| Injection speed (cm3/s) | 100 |
| Injection pressure (Bar) | 1000 |
| Back pressure (Bar) | 95 |
| SCF content (wt%) | 1 |
| SCF flow rate (kg/h) | 0.131 |
| Weight reduction ratio | 10% |
| OSP (g) | PP (g) | Total Weight (g) | |
|---|---|---|---|
| Neat PP | 0 | 600 | 600 |
| 2 wt% | 12 | 588 | 600 |
| 5 wt% | 30 | 570 | 600 |
| 7 wt% | 42 | 558 | 600 |
| 12 wt% | 72 | 528 | 600 |
| Langmuir Isotherm | Freundlich Isotherm | Temkin Isotherm | ||||||||
| Metal Ions | RL | K | R2 | Qmax (mg/g) | Kf | n | R2 | At | Bt | R2 |
| Pb(II) | 0.997 | 0.001 | 0.38 | 13.89 | 50.98 | 1.73 | 0.94 | 23.55 | 1.385 | 0.975 |
| Adsorbent | Adsorbate/ Pollutant | Adsorption Capacity (mg/g) | Isotherm Model | Kinetic Model | pH | Regeneration | Reference |
|---|---|---|---|---|---|---|---|
| Dopamine-Modified Waste Marine Plastic | Cu(II) and Pb(II) | 317.1 µg/g for Cu2+ and 535.6 µg/g for Pb2+ | Langmuir & Freundlich | PSO | 5.8 ± 0.2 | 5 cycles 2% HNO3 | [54] |
| PP + PP-g-MA//CL120DT-CS 2.0 phr | Pb(II) | 73.8 | Langmuir | PSO | 8.3 | 5 cycles, 1.0 M NaNO3 | [55] |
| Polypropylene fibers | Pb(III) | 114.03 | Langmuir | PSO | 4 | 5 cycles 0.2 mol/L EDTA | [56] |
| Oyster shell powder–peanut shell biochar | Pb(II) | 27 mg/g | Langmuir | PSO | 5 | Not provided | [57] |
| Manganese-coated granular oyster shells | Pb(II) | 16.44 | Freundlich | PSO | 6.5 | Not provided | [58] |
| Oyster shell-loaded Lignite | Pb(II) and Cd(II) | 332.62 and 318.98 | Freundlich | PSO | 7 | 3 and 5 cycles, 0.1 M NaOH | [59] |
| This study (PP/OSP) | Pb(II) | 13.89 | Langmuir | PSO | 6 | 8 cycles 0.1M NaOH | This study |
| Adsorbent | Metal Ion | Initial Conc. (mg/L) | Pseudo-First-Order | Pseudo-Second-Order | |||
|---|---|---|---|---|---|---|---|
| Calc. Equil. Uptake qe (mg/g) | K1 (min−1) | R2 | K2 (min−1) | R2 | |||
| PP/OSP 5 wt% | Pb(II) | 0.75 mg/L | 13.89 mg/g | 5.7 × 10−5 | 0.971 | 1.19 × 10−4 | 0.102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Chien, M.; Bunekar, N.; Donga, C.; Mbule, P.; Moja, T.N.; Hwang, S. Material Properties, Characterization, and Application of Microcellular Injection-Molded Polypropylene Reinforced with Oyster Shells for Pb(II) Adsorption Kinetics from Aqueous Solutions. Polymers 2026, 18, 110. https://doi.org/10.3390/polym18010110
Chien M, Bunekar N, Donga C, Mbule P, Moja TN, Hwang S. Material Properties, Characterization, and Application of Microcellular Injection-Molded Polypropylene Reinforced with Oyster Shells for Pb(II) Adsorption Kinetics from Aqueous Solutions. Polymers. 2026; 18(1):110. https://doi.org/10.3390/polym18010110
Chicago/Turabian StyleChien, Minyuan, Naveen Bunekar, Cabangani Donga, Pontsho Mbule, Tlou Nathaniel Moja, and Shyhshin Hwang. 2026. "Material Properties, Characterization, and Application of Microcellular Injection-Molded Polypropylene Reinforced with Oyster Shells for Pb(II) Adsorption Kinetics from Aqueous Solutions" Polymers 18, no. 1: 110. https://doi.org/10.3390/polym18010110
APA StyleChien, M., Bunekar, N., Donga, C., Mbule, P., Moja, T. N., & Hwang, S. (2026). Material Properties, Characterization, and Application of Microcellular Injection-Molded Polypropylene Reinforced with Oyster Shells for Pb(II) Adsorption Kinetics from Aqueous Solutions. Polymers, 18(1), 110. https://doi.org/10.3390/polym18010110

