Effect of E-Beam Irradiation on Solutions of Fullerene C60 Conjugate with Polyvinylpyrrolidone and Folic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. E-Beam Irradiation
2.2.2. Capillary Viscometry
2.2.3. Dynamic Light Scattering and Zeta Potential Measurements
2.2.4. Atomic Force Microscopy
2.2.5. IR-Fourier Spectrometry
2.2.6. UV-Vis Spectrometry
3. Results and Discussion
3.1. Intrinsic Viscosity
3.2. Hydrodynamic Radius and Zeta Potential
3.3. PVP and FA-PVP-C60 Functionalization Under Irradiation
3.4. FA-PVP-C60 Surface Morphology
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stielow, M.; Witczyńska, A.; Kubryń, N.; Fijałkowski, Ł.; Nowaczyk, J.; Nowaczyk, A. The Bioavailability of Drugs—The Current State of Knowledge. Molecules 2023, 28, 8038. [Google Scholar] [CrossRef] [PubMed]
- Bhalani, D.V.; Nutan, B.; Kumar, A.; Singh Chandel, A.K. Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics. Biomedicines 2022, 10, 2055. [Google Scholar] [CrossRef] [PubMed]
- Franco, P.; De Marco, I. The Use of Poly(N-Vinyl Pyrrolidone) in the Delivery of Drugs: A Review. Polymers 2020, 12, 1114. [Google Scholar] [CrossRef] [PubMed]
- Koczkur, K.M.; Mourdikoudis, S.; Polavarapu, L.; Skrabalak, S.E. Polyvinylpyrrolidone (PVP) in Nanoparticle Synthesis. Dalton Trans. 2015, 44, 17883–17905. [Google Scholar] [CrossRef]
- Malmir, M.; Shemirani, F. Gold Nanoparticles Coated with PVP as a Novel Colorimetric Sensor for Sensitive and Selective Determination of Atenolol. Heliyon 2023, 9, e22675. [Google Scholar] [CrossRef]
- Oriana, S.; Aroua, S.; Söllner, J.O.B.; Ma, X.J.; Iwamoto, Y.; Yamakoshi, Y. Water-Soluble C60- and C70-PVP Polymers for Biomaterials with Efficient 1O2 Generation. Chem. Commun. 2013, 49, 9302–9304. [Google Scholar] [CrossRef]
- Ratnikova, O.V.; Melenevskaya, E.Y.; Mokeev, M.V.; Zgonnik, V.N. Complexation in Water-Soluble Systems Poly-N-Vinylpyrrolidone-Fullerene C60. Russ. J. Appl. Chem. 2003, 76, 1620–1625. [Google Scholar] [CrossRef]
- Vinogradova, L.V.; Melenevskaya, E.Y.; Khachaturov, A.S.; Kever, E.E.; Litvinova, L.S.; Novokreshchenova, A.V.; Sushko, M.A.; Klenin, S.I.; Zgonnik, V.N. Water-Soluble Complexes of C60 Fullerene with Poly(N-Vinylpyrrolidone). J. Xi’an Highw. Transp. Univ. 1998, 18, 1152–1159. [Google Scholar]
- Yamashita, K.; Yoshioka, Y.; Pan, H.; Taira, M.; Ogura, T.; Nagano, T.; Aoyama, M.; Nagano, K.; Abe, Y.; Kamada, H.; et al. Biochemical and Hematologic Effects of Polyvinylpyrrolidone-Wrapped Fullerene C60 after Oral Administration. Pharm. Int. J. Pharm. Sci. 2013, 68, 54–57. [Google Scholar] [CrossRef]
- Saitoh, Y.; Tanaka, A.; Hyodo, S. Protective Effects of Polyvinylpyrrolidone-Wrapped Fullerene Against Nitric Oxide/Peroxynitrite-Induced Cellular Injury in Human Skin Keratinocytes. J. Nanosci. Nanotechnol. 2021, 21, 4579–4585. [Google Scholar] [CrossRef]
- Saitoh, Y.; Ohta, H.; Hyodo, S. Protective Effects of Polyvinylpyrrolidone-Wrapped Fullerene against Intermittent Ultraviolet-A Irradiation-Induced Cell Injury in HaCaT Cells. J. Photochem. Photobiol. B 2016, 163, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Borisenkova, A.A.; Bolshakova, O.I.; Titova, A.V.; Ryabokon, I.S.; Markova, M.A.; Lyutova, Z.B.; Sedov, V.P.; Varfolomeeva, E.Y.; Bakhmetyev, V.V.; Arutyunyan, A.V.; et al. Fullerene C60 Conjugate with Folic Acid and Polyvinylpyrrolidone for Targeted Delivery to Tumor Cells. Int. J. Mol. Sci. 2024, 25, 5350. [Google Scholar] [CrossRef] [PubMed]
- Kadlubowski, S.; Ulanski, P.; Rosiak, J.M. Synthesis of Tailored Nanogels by Means of Two-Stage Irradiation. Polymer 2012, 53, 1985–1991. [Google Scholar] [CrossRef]
- Ashfaq, A.; An, J.C.; Ulański, P.; Al-Sheikhly, M. On the Mechanism and Kinetics of Synthesizing Polymer Nanogels by Ionizing Radiation-Induced Intramolecular Crosslinking of Macromolecules. Pharmaceutics 2021, 13, 1765. [Google Scholar] [CrossRef]
- Ditta, L.A.; Dahlgren, B.; Sabatino, M.A.; Dispenza, C.; Jonsson, M. The Role of Molecular Oxygen in the Formation of Radiation-Engineered Multifunctional Nanogels. Eur. Polym. J. 2019, 114, 164–175. [Google Scholar] [CrossRef]
- Balogh, T.S.; Bonturim, E.; Vieira, L.D.; Lugão, A.B.; Kadlubowski, S. Synthesis of Poly(N-Vinyl Pyrrolidone) (PVP) Nanogels by Gamma Irradiation Using Different Saturation Atmospheres. Radiat. Phys. Chem. 2022, 198, 110238. [Google Scholar] [CrossRef]
- An, J.C.; Weaver, A.; Kim, B.; Barkatt, A.; Poster, D.; Vreeland, W.N.; Silverman, J.; Al-Sheikhly, M. Radiation-Induced Synthesis of Poly(Vinylpyrrolidone) Nanogel. Polymer 2011, 52, 5746–5755. [Google Scholar] [CrossRef]
- Matusiak, M.; Kadlubowski, S.; Rosiak, J.M. Nanogels Synthesized by Radiation-Induced Intramolecular Crosslinking of Water-Soluble Polymers. Radiat. Phys. Chem. 2020, 169, 108099. [Google Scholar] [CrossRef]
- Kadlubowski, S. Radiation-Induced Synthesis of Nanogels Based on Poly(N-Vinyl-2-Pyrrolidone)-A Review. Radiat. Phys. Chem. 2014, 102, 29–39. [Google Scholar] [CrossRef]
- Naranjo, A.A.G.; Cobas, H.; Rogdriguez, D.F.; Paneque, M.R.; Corrales, Y.A. Radiation-Induced Synthesis of Polyvinylpyrrolidone (PVP) Nanogels. J. Phys. Sci. Appl. 2016, 6, 21–26. [Google Scholar] [CrossRef]
- Dispenza, C.; Grimaldi, N.; Sabatino, M.A.; Todaro, S.; Bulone, D.; Giacomazza, D.; Przybytniak, G.; Alessi, S.; Spadaro, G. Studies of Network Organization and Dynamics of E-Beam Crosslinked PVPs: From Macro to Nano. Radiat. Phys. Chem. 2012, 81, 1349–1353. [Google Scholar] [CrossRef]
- Dispenza, C.; Adamo, G.; Sabatino, M.A.; Grimaldi, N.; Bulone, D.; Bondì, M.L.; Rigogliuso, S.; Ghersi, G. Oligonucleotides-Decorated-Poly(N-Vinyl Pyrrolidone) Nanogels for Gene Delivery. J. Appl. Polym. Sci. 2014, 131, 39774. [Google Scholar] [CrossRef]
- Ghaffarlou, M.; Sütekin, S.D.; Güven, O. Preparation of Nanogels by Radiation-Induced Cross-Linking of Interpolymer Complexes of Poly (Acrylic Acid) with Poly (Vinyl Pyrrolidone) in Aqueous Medium. Radiat. Phys. Chem. 2018, 142, 130–136. [Google Scholar] [CrossRef]
- Rashed, E.R.; Abd El-Rehim, H.A.; El-Ghazaly, M.A. Potential Efficacy of Dopamine Loaded-PVP/PAA Nanogel in Experimental Models of Parkinsonism: Possible Disease Modifying Activity. J. Biomed. Mater. Res. A 2015, 103, 1713–1720. [Google Scholar] [CrossRef]
- Adamo, G.; Grimaldi, N.; Campora, S.; Bulone, D.; Bondì, M.L.; Al-Sheikhly, M.; Sabatino, M.A.; Dispenza, C.; Ghersi, G. Multi-Functional Nanogels for Tumor Targeting and Redox-Sensitive Drug and SiRNA Delivery. Molecules 2016, 21, 1594. [Google Scholar] [CrossRef]
- Adamo, G.; Grimaldi, N.; Campora, S.; Sabatino, M.A.; Dispenza, C.; Ghersi, G. Glutathione-Sensitive Nanogels for Drug Release. Chem. Eng. Trans. 2014, 38, 457–462. [Google Scholar] [CrossRef]
- Dispenza, C.; Sabatino, M.A.; Ajovalasit, A.; Ditta, L.A.; Ragusa, M.; Purrello, M.; Costa, V.; Conigliaro, A.; Alessandro, R. Nanogel-AntimiR-31 Conjugates Affect Colon Cancer Cells Behaviour. RSC Adv. 2017, 7, 52039–52047. [Google Scholar] [CrossRef]
- Picone, P.; Sabatino, M.A.; Ditta, L.A.; Amato, A.; San Biagio, P.L.; Mulè, F.; Giacomazza, D.; Dispenza, C.; Di Carlo, M. Nose-to-Brain Delivery of Insulin Enhanced by a Nanogel Carrier. J. Control. Release 2018, 270, 23–36. [Google Scholar] [CrossRef]
- Picone, P.; Ditta, L.A.; Sabatino, M.A.; Militello, V.; San Biagio, P.L.; Di Giacinto, M.L.; Cristaldi, L.; Nuzzo, D.; Dispenza, C.; Giacomazza, D.; et al. Ionizing Radiation-Engineered Nanogels as Insulin Nanocarriers for the Development of a New Strategy for the Treatment of Alzheimer’s Disease. Biomaterials 2016, 80, 179–194. [Google Scholar] [CrossRef]
- Jacobs, G.P. Irradiation of Pharmaceuticals: A Literature Review. Radiat. Phys. Chem. 2022, 190, 109795. [Google Scholar] [CrossRef]
- Hansen, J.M.; Fidopiastis, N.; Bryans, T.; Luebke, M.; Rymer, T. Radiation Sterilization: Dose Is Dose. Biomed. Instrum. Technol. 2020, 54, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Obodovskiy, I. Radiation Sterilization. In Radiation; Elsevier: Amsterdam, The Netherlands, 2019; pp. 373–378. [Google Scholar] [CrossRef]
- Sakar, F.; Özer, A.Y.; Erdogan, S.; Ekizoglu, M.; Kart, D.; Özalp, M.; Colak, S.; Zencir, Y. Nano Drug Delivery Systems and Gamma Radiation Sterilization. Pharm. Dev. Technol. 2017, 22, 775–784. [Google Scholar] [CrossRef]
- Araújo, M.M.; Marchioni, E.; Villavicencio, A.L.C.H.; Zhao, M.; di Pascoli, T.; Kuntz, F.; Bergaentzle, M. Mechanism of Folic Acid Radiolysis in Aqueous Solution. LWT Food Sci. Technol. 2015, 63, 599–603. [Google Scholar] [CrossRef]
- Araújo, M.M.; Marchioni, E.; Zhao, M.; Kuntz, F.; Di Pascoli, T.; Villavicencio, A.L.C.H.; Bergaentzle, M. LC/MS/MS Identification of Some Folic Acid Degradation Products after E-Beam Irradiation. Radiat. Phys. Chem. 2012, 81, 1166–1169. [Google Scholar] [CrossRef]
- Raja, A.; Wilfert, P.K.; Picken, S.J. Charge Mediated Changes to the Intrinsic Viscosity of Biopolymer Systems. Polymers 2024, 16, 2894. [Google Scholar] [CrossRef]
- Watt, R.P.; Khatri, H.; Dibble, A.R.G. Injectability as a Function of Viscosity and Dosing Materials for Subcutaneous Administration. Int. J. Pharm. 2019, 554, 376–386. [Google Scholar] [CrossRef]
- El Aferni, A.; Guettari, M.; Kamli, M.; Tajouri, T.; Ponton, A. A Structural Study of a Polymer-Surfactant System in Dilute and Entangled Regime: Effect of High Concentrations of Surfactant and Polymer Molecular Weight. J. Mol. Struct. 2020, 1199, 127052. [Google Scholar] [CrossRef]
- Venkatesh, R.; Zheng, Y.; Liu, A.L.; Zhao, H.; Silva, C.; Takacs, C.J.; Grover, M.A.; Meredith, J.C.; Reichmanis, E. Overlap Concentration Generates Optimum Device Performance for DPP-Based Conjugated Polymers. Org. Electron. 2023, 117, 106779. [Google Scholar] [CrossRef]
- Masuelli, M.A. Intrinsic Viscosity Determination of High Molecular Weight Biopolymers by Different Plot Methods. Chia Gum Case. J. Polym. Biopolym. Phys. Chem. 2018, 6, 13–25. [Google Scholar] [CrossRef]
- Pavlov, G.M.; Gosteva, A.A. Current Analysis of Huggins and Kraemer Plots for Determining the Intrinsic Viscosity of Macromolecules and the Corresponding Dimensionless Parameters. Polym. Sci. Ser. A 2022, 64, 586–590. [Google Scholar] [CrossRef]
- Bühler, V. Pharma Solutions. Welcome to More Opportunities. Kollidon ® Polyvinylpyrrolidone Excipients for the Pharmaceutical Industry 9th Revised Edition Volker Bühler Kollidon ®-Polyvinylpyrrolidone Excipients for the Pharmaceutical Industry MEP070802e-00; BASF-The Chemical Company: Ludwigshafen, Germany, 2008. [Google Scholar]
- Dispenza, C.; Giacomazza, D.; Jonsson, M. Micro-to Nanoscale Bio-Hybrid Hydrogels Engineered by Ionizing Radiation. Biomolecules 2021, 11, 47. [Google Scholar] [CrossRef] [PubMed]
- Dhand, C.; Prabhakaran, M.P.; Beuerman, R.W.; Lakshminarayanan, R.; Dwivedi, N.; Ramakrishna, S. Role of Size of Drug Delivery Carriers for Pulmonary and Intravenous Administration with Emphasis on Cancer Therapeutics and Lung-Targeted Drug Delivery. RSC Adv. 2014, 4, 32673–32689. [Google Scholar] [CrossRef]
- Foroozandeh, P.; Aziz, A.A. Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Res. Lett. 2018, 13, 339. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.H.; Lee, C.W.; Chiou, A.; Wei, P.K. Size-Dependent Endocytosis of Gold Nanoparticles Studied by Three-Dimensional Mapping of Plasmonic Scattering Images. J. Nanobiotechnol. 2010, 8, 33. [Google Scholar] [CrossRef]
- Hoshyar, N.; Gray, S.; Han, H.; Bao, G. The Effect of Nanoparticle Size on in Vivo Pharmacokinetics and Cellular Interaction. Nanomedicine 2016, 11, 673–692. [Google Scholar] [CrossRef]
- Sabatino, M.A.; Bulone, D.; Veres, M.; Spinella, A.; Spadaro, G.; Dispenza, C. Structure of E-Beam Sculptured Poly(N-Vinylpyrrolidone) Networks across Different Length-Scales, from Macro to Nano. Polymer 2013, 54, 54–64. [Google Scholar] [CrossRef]
- Tsyupka, D.V.; Mordovina, E.A.; Sindeeva, O.A.; Sapelkin, A.V.; Sukhorukov, G.B.; Goryacheva, I.Y. High-Fluorescent Product of Folic Acid Photodegradation: Optical Properties and Cell Effect. J. Photochem. Photobiol. A Chem. 2021, 407, 113045. [Google Scholar] [CrossRef]
- Chall, S.; Saha, A.; Biswas, S.K.; Datta, A.; Bhattacharya, S.C. Single Step Aqueous Synthesis of Pure Rare Earth Nanoparticles in Biocompatible Polymer Matrices. J. Mater. Chem. 2012, 22, 12538–12546. [Google Scholar] [CrossRef]
- Dispenza, C.; Ricca, M.; Lopresti, C.; Battaglia, G.; La Valle, M.; Giacomazza, D.; Bulone, D. E-Beam Irradiation and UV Photocrosslinking of Microemulsion-Laden Poly(N-Vinyl-2-Pyrrolidone) Hydrogels for “in Situ” Encapsulation of Volatile Hydrophobic Compounds. Polym. Chem. 2011, 2, 192–202. [Google Scholar] [CrossRef]
- Duygu Sütekin, S.; Güven, O. Application of Radiation for the Synthesis of Poly(n-Vinyl Pyrrolidone) Nanogels with Controlled Sizes from Aqueous Solutions. Appl. Radiat. Isot. 2019, 145, 161–169. [Google Scholar] [CrossRef]
- Tinkler, J.D.; Scacchi, A.; Argaiz, M.; Tomovska, R.; Archer, A.J.; Willcock, H.; Martín-Fabiani, I. Effect of Particle Interactions on the Assembly of Drying Colloidal Mixtures. Langmuir 2022, 38, 5361–5371. [Google Scholar] [CrossRef] [PubMed]
- Tinkler, J.D.; Scacchi, A.; Kothari, H.R.; Tulliver, H.; Argaiz, M.; Archer, A.J.; Martín-Fabiani, I. Evaporation-Driven Self-Assembly of Binary and Ternary Colloidal Polymer Nanocomposites for Abrasion Resistant Applications. J. Colloid Interface Sci. 2021, 581, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Deegan, R.D.; Bakajin, O.; Dupont, T.F.; Huber, G.; Nagel, S.R.; Witten, T.A. Capillary Flow as the Cause of Ring Stains from Dried Liquid Drops. Nature 1997, 389, 827–829. [Google Scholar] [CrossRef]
Sample | Irradiation Atmosphere | Dose, kGy | []*, dL/g | *, kDa |
---|---|---|---|---|
FA-PVP-C60 | Unirradiated | 0.254 ± 0.015 | - | |
Air | 3 | 0.180 ± 0.017 | ||
8 | 0.313 ± 0.016 | |||
Xenon | 3 | 0.244 ± 0.008 | ||
8 | 0.202 ± 0.005 | |||
PVP | Unirradiated | 0.190 ± 0.008 | 47 ± 2 | |
Air | 3 | 0.171 ± 0.005 | 32 ± 2 | |
8 | 0.332 ± 0.044 | 108 ± 14 | ||
Xenon | 3 | 0.249 ± 0.038 | - | |
8 | 0.233 ± 0.008 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Titova, A.V.; Lyutova, Z.B.; Arutyunyan, A.V.; Aglikov, A.S.; Zhukov, M.V.; Necheukhina, L.V.; Zvyagina, D.V.; Sedov, V.P.; Markova, M.A.; Popugaev, A.V.; et al. Effect of E-Beam Irradiation on Solutions of Fullerene C60 Conjugate with Polyvinylpyrrolidone and Folic Acid. Polymers 2025, 17, 1259. https://doi.org/10.3390/polym17091259
Titova AV, Lyutova ZB, Arutyunyan AV, Aglikov AS, Zhukov MV, Necheukhina LV, Zvyagina DV, Sedov VP, Markova MA, Popugaev AV, et al. Effect of E-Beam Irradiation on Solutions of Fullerene C60 Conjugate with Polyvinylpyrrolidone and Folic Acid. Polymers. 2025; 17(9):1259. https://doi.org/10.3390/polym17091259
Chicago/Turabian StyleTitova, Anna V., Zhanna B. Lyutova, Alexandr V. Arutyunyan, Aleksandr S. Aglikov, Mikhail V. Zhukov, Lyudmila V. Necheukhina, Darya V. Zvyagina, Victor P. Sedov, Maria A. Markova, Anton V. Popugaev, and et al. 2025. "Effect of E-Beam Irradiation on Solutions of Fullerene C60 Conjugate with Polyvinylpyrrolidone and Folic Acid" Polymers 17, no. 9: 1259. https://doi.org/10.3390/polym17091259
APA StyleTitova, A. V., Lyutova, Z. B., Arutyunyan, A. V., Aglikov, A. S., Zhukov, M. V., Necheukhina, L. V., Zvyagina, D. V., Sedov, V. P., Markova, M. A., Popugaev, A. V., & Borisenkova, A. A. (2025). Effect of E-Beam Irradiation on Solutions of Fullerene C60 Conjugate with Polyvinylpyrrolidone and Folic Acid. Polymers, 17(9), 1259. https://doi.org/10.3390/polym17091259