Functionalized Biopolymer for Enhanced Pt(IV) Recovery from Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of the Chi–Ser Material
2.2. Adsorbents Testing for Pt(IV) Recovery
2.3. Pt(IV) Recovery Studies Batch Adsorption Experiments
2.4. Studies on the Recovery of Pt(IV) by Adsorption in Dynamic Regime
2.5. Desorption and Reusability Studies
3. Results and Discussion
3.1. Characterization of the Chi–Ser Material
3.2. Pt(IV) Recovery Studies: Batch Adsorption Experiments
3.3. Pt(IV) Recovery Through Fixed-Bed Column Studies
3.4. Optimization of Adsorption Conditions in Batch System
3.5. Desorption and Reusability Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lo, S.Y.; Dianbudiyanto, W.; Liu, S.H. Selective recovery of platinum from spent autocatalyst solution by thiourea modified magnetic biocarbons. Sci. Rep. 2021, 11, 19281. [Google Scholar] [CrossRef]
- Pianowska, K.; Kluczka, J.; Benke, G.; Goc, K.; Malarz, J.; Ochmanski, M.; Leszczynska-Sejda, K. Solvent extraction as a method of recovery and separation of platinum group metals. Materials 2023, 16, 4681. [Google Scholar] [CrossRef]
- Matsumoto, K. Selective and preferential separation of rhodium (III) from palladium (II) and platinum (IV) using a m-phenylene diamine-containing precipitant. Sci. Rep. 2019, 9, 12414. [Google Scholar] [CrossRef]
- Xun, D.Y.; Hao, H.; Sun, X.; Liu, Z.W.; Zhao, F.Q. End-of-life recycling rates of platinum group metals in the automotive industry: Insight into regional disparities. J. Clean. Prod. 2020, 266, 121942. [Google Scholar] [CrossRef]
- Ding, Y.J.; Zhang, X.Y.; Wu, B.Y.; Liu, B.; Zhang, S.G. Highly porous ceramics production using slags from smelting of spent automotive catalysts. Resour. Conserv. Recycl. 2021, 166, 105373. [Google Scholar] [CrossRef]
- Mosai, A.K.; Johnson, R.H.; Tutu, H. Recovery of platinum group elements (PGEs) from wastewater: A case for the development of predictive adsorption numerical methods. Miner. Eng. 2024, 217, 108915. [Google Scholar] [CrossRef]
- Mendez, A.; Nogueira, C.A.; Paiva, A.P. Recovery of platinum from a spent automotive catalyst through chloride leaching and solvent extraction. Recycling 2021, 6, 27. [Google Scholar] [CrossRef]
- Birich, A.; Stopic, S.; Friedrich, B. Kinetic investigation and dissolution behavior of cyanide alternative gold leaching reagents. Sci. Rep. 2019, 9, 7191. [Google Scholar] [CrossRef]
- Adams, M.D.; Liddell, K.S.; Smith, L.A. Cyanide-free recovery of metals from polymetallic and refractory gold concentrates by the KellGold process. Hydrometallurgy 2020, 196, 105431. [Google Scholar] [CrossRef]
- Senthil, K.; Akiba, U.; Fujiwara, K.; Hamada, F.; Kondo, Y. High selectivity and extractability of palladium from chloride leach liquors of an automotive catalyst residue by azothiacalix[4]arene derivative. Hydrometallurgy 2017, 169, 478–487. [Google Scholar] [CrossRef]
- Trinh, H.B.; Lee, J.C.; Srivastava, R.R.; Kim, S. Total recycling of all the components from spent auto-catalyst by NaOH roasting assisted hydrometallurgical route. J. Hazard. Mater. 2019, 379, 120772. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.Q.; Wu, Y.F.; Tang, A.J.; Pan, D.A.; Li, B. Recovery of scattered and precious metals from copper anode slime by hydrometallurgy: A review. Hydrometallurgy 2020, 197, 105460. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Riaño, S.; Aktan, E.; Deferm, C.; Fransaer, J.; Binnemans, K. Solvometallurgical recovery of platinum group metals from spent automotive catalysts. ACS Sustain. Chem. Eng. 2021, 9, 337–350. [Google Scholar] [CrossRef]
- Liang, G.; Qu, Z. Insight into Pyrometallurgical Recovery of Platinum Group Metals from Spent Industrial Catalyst: Co-disposal of Industrial Wastes. ACS ES&T Eng. J. 2023, 3, 1532–1546. [Google Scholar]
- Dong, H.; Zhao, J.; Chen, J.; Wu, Y.; Li, B. Recovery of platinum group metals from spent catalysts: A review. Int. J. Miner. Process. 2015, 145, 108–113. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Cui, K.; Fu, T.; Gao, J.; Hussain, S.; AlGarni, T.S. Pyrometallurgical recovery of zinc and valuable metals from electric arc furnace dust—A review. J. Clean. Prod. 2021, 298, 126788. [Google Scholar] [CrossRef]
- Liu, C.; Sun, S.C.; Zhu, X.P.; Tu, G.F. Metals smelting-collection method for recycling of platinum group metals from waste catalysts: A mini review. Waste Manag. Res. 2021, 39, 43–52. [Google Scholar] [CrossRef]
- Godlewska-Żyłkiewicz, B.; Sawicka, S.; Karpińska, J. Removal of Platinum and Palladium from Wastewater by Means of Biosorption on Fungi Aspergillus sp. and Yeast Saccharomyces sp. Water 2019, 11, 1522. [Google Scholar] [CrossRef]
- Osman, A.I.; Farrell, C.; Al-Muhtase, A.H.; Harrison, J.; Rooney, D.W. The production and application of carbon nanomaterials from high alkali silicate herbaceous biomass. Sci. Rep. 2020, 10, 2263. [Google Scholar] [CrossRef]
- Osman, A.I.; O’Connor, E.; McSpadden, G.; Abu-Dahrieh, J.K.; Farrell, C.; Al-Muhtaseb, A.H.; Harrison, J.; Rooney, D.W. Upcycling brewer’s spent grain waste into activated carbon and carbon nanotubes for energy and other applications via two-stage activation. J. Chem. Technol. Biotechnol. 2020, 95, 183–195. [Google Scholar] [CrossRef]
- Wongsawa, T.; Traiwongsa, N.; Pancharoen, U.; Nootong, K. A review of the recovery of precious metals using ionic liquid extractants in hydrometallurgical processes. Hydrometallurgy 2020, 198, 105488. [Google Scholar] [CrossRef]
- Hubicki, Z.; Wawrzkiewicz, M.; Wołowicz, A. Application of ion exchange methods in recovery of Pd(II) ions—A review. Chem. Anal. 2008, 53, 759–784. [Google Scholar]
- Kononova, O.N.; Goryaeva, N.G.; Dostovalova, N.B.; Kachin, S.V.; Kholmogorov, A.G. Extraction of palladium from acidic solutions with the use of carbon adsorbents. Solid Fuel Chem. 2007, 41, 252–255. [Google Scholar] [CrossRef]
- Kononova, O.N.; Lukianov, A.N.; Derevyashkin, M.V.; Kholmogorov, A.G.; Kachin, S.V.; Goryaeva, N.G. Sorption of palladium on carbon adsorbents from nitric acid solutions. J. Porous. Mater. 2008, 15, 61–66. [Google Scholar] [CrossRef]
- Kononova, O.N.; Goryaeva, N.G.; Dychko, O.V. Ion exchange recovery of palladium (II) from nitrate weak acidic solutions. Nat. Sci. 2009, 1, 166–175. [Google Scholar] [CrossRef]
- Melnikov, A.M.; Kononova, O.N.; Pavlenko, N.I.; Krylov, A.S. Ion exchange equilibria in simultaneous extraction of platinum (II, IV) and rhodium (III) from hydrochloric solution. Russ. J. Phys. Chem. A 2012, 86, 1018–1024. [Google Scholar] [CrossRef]
- Fujiwara, K.; Ramesh, A.; Maki, T.; Asegawa, H.; Ueda, K. Adsorption of platinum (IV), palladium (II) and gold (III) from aqueous solutions onto L-lysine modified crosslinked chitosan resin. J. Hazard. Mater. 2007, 146, 39–50. [Google Scholar] [CrossRef]
- Muzzarelli, R.A.A.; Rocchetti, R. Enhanced capacity of chitosan for transition-metal ions in sulphate-sulphuric acid solutions. Talanta 1974, 21, 1137–1143. [Google Scholar] [CrossRef]
- Evans, J.R.; Davids, W.G.; MacRae, J.D.; Amirbahman, A. Kinetics of cadmium uptake by chitosan-based crab shells. Water. Res. 2002, 36, 3219–3226. [Google Scholar] [CrossRef]
- Ruiz, M.; Sastre, A.M.; Guibal, E. Pd and Pt recovery using chitosan gel beads. II. Influence of chemical modifications on sorption properties. Sep. Sci. Technol. 2002, 37, 2385–2403. [Google Scholar] [CrossRef]
- Ruiz, M.; Sastre, A.M.; Guibal, E. Osmium and iridium sorption on chitosan derivatives. Solvent Extr. Ion Exch. 2003, 21, 307–329. [Google Scholar] [CrossRef]
- Guibal, E.; Van Offenberg Sweeney, N.; Vincent, T.; Tobin, J.M. Sulfur derivatives of chitosan for palladium sorption. React. Funct. Polym. 2002, 50, 149–163. [Google Scholar] [CrossRef]
- Ghassary, P.; Vincent, T.; Marcano, J.S.; Macaskie, L.E.; Guibal, E. Palladium and platinum recovery from bicomponent mixtures using chitosan derivatives. Hydrometallurgy 2005, 76, 131–147. [Google Scholar] [CrossRef]
- Sabaruddin, A.; Oshita, K.; Oshima, M.; Motomizu, S. Synthesis of chitosan resin possessing 3,4-diamino benzoic acid moiety for the collection/concentration of arsenic and selenium in water samples and their measurement by inductively coupled plasma-mass spectrometry. Anal. Chim. Acta 2005, 542, 207–215. [Google Scholar] [CrossRef]
- Sabaruddin, A.; Oshita, K.; Oshima, M.; Motomizu, S. Synthesis of crosslinked chitosan possessing N-methyl-d-glucamine moiety (CCTSNMDG) for adsorption/concentration of boron in water samples and its accurate measurement by ICP-MS and ICP-AES. Talanta 2005, 66, 136–144. [Google Scholar] [CrossRef]
- Katarina, R.K.; Takayanagi, T.; Oshima, M.; Motomizu, S. Synthesis of a chitosan-based chelating resin and its application to the selective concentration and ultratrace determination of silver in environmental water samples. Anal. Chim. Acta 2006, 558, 246. [Google Scholar] [CrossRef]
- Justi, K.C.; Favere, V.T.; Laranjeria, M.C.M.; Neves, A.; Peratla, R.A. Kinetics and equilibrium adsorption of Cu (II), Cd (II), and Ni (II) ions by chitosan functionalized with 2[-bis-(pyridylmethyl)aminomethyl]-4-methyl-6-formylphenol. J. Colloid Interf. Sci. 2005, 291, 369–374. [Google Scholar] [CrossRef]
- Ramesh, A.; Hasegawa, H.; Sugimoto, W.; Maki, T.; Ueda, K. Adsorption of gold (III), platinum (IV) and palladium (II) onto glycine modified crosslinked chitosan resin. Bioresour. Technol. 2008, 99, 3801–3809. [Google Scholar] [CrossRef]
- Borah, D.; Satokawa, S.; Kato, S.; Kojima, T. Surface-modified carbon black for As(V) removal. J. Colloid Interface Sci. 2008, 319, 53–62. [Google Scholar] [CrossRef]
- Sert, S.; Kütahyali, C.; Inan, S.; Talip, Z.; Cetinkaya, B.; Eral, M. Biosorption of lanthanum and cerium from aqueous solutions by Platanus orientalis leaf powder. Hydrometallurgy 2008, 90, 13–18. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef]
- Freundlich, H. Uber die Adsorption in Losungen. Z. Phys. Chem. 1906, 57, 385–470. [Google Scholar] [CrossRef]
- Sips, R. On the structure of a catalyst surface. J. Chem. Phys. 1948, 16, 490–495. [Google Scholar] [CrossRef]
- Patel, H. Fixed-bed column adsorption study: A comprehensive review. Appl. Water Sci. 2019, 9, 45. [Google Scholar] [CrossRef]
- Xavier, A.L.P.; Adarme, O.F.H.; Furtado, L.M.; Ferreira, G.M.D.; Mendes da Silva, L.H.; Gil, L.F.; Gurgel, L.V.A. Modeling adsorption of copper(II), cobalt(II) and nickel(II) metal ions from aqueous solution onto a new carboxylated sugarcane bagasse. Part II: Optimization of monocomponent fixed-bed column adsorption. J. Colloid Interface Sci. 2018, 516, 431–445. [Google Scholar] [CrossRef]
- Bohart, G.S.; Adams, E.Q. SOME Aspects of the Behavior of Charcoal with Respect to Chlorine. J. Am. Chem. Soc. 1920, 42, 523. [Google Scholar] [CrossRef]
- Vilvanathan, S.; Shanthakumar, S. Removal from Aqueous Solution Using Native and Biochar Form of Tectona grandis. Environ. Prog. Sustain. Energy 2017, 36, 1030–1038. [Google Scholar] [CrossRef]
- Clark, R.M. Modeling TOC removal by GAC: The general logistic function. J. Am. Water Works Assoc. 1987, 79, 33–131. [Google Scholar] [CrossRef]
- Thomas, H.C. Heterogeneous ion exchange in a flowing system. J. Am. Chem. Soc. 1944, 66, 1664. [Google Scholar] [CrossRef]
- Masheane, M.; Nthunya, L.; Malinga, S.; Nxumalo, E.; Barnard, T.; Mhlanga, S. Antimicrobial Properties of Chitosan-Alumina/f-MWCNT Nanocomposites. J. Nanotechnol. 2016, 16, 8. [Google Scholar] [CrossRef]
- Ardean, C.; Davidescu, C.M.; Nemeş, N.; Negrea, A.; Ciopec, M.; Duteanu, N.; Negrea, P.; Duda-Seiman, D.M.; Muntean, D. Antimicrobial Activities of Chitosan Derivatives. Pharmaceutics 2021, 13, 1639. [Google Scholar] [CrossRef] [PubMed]
- Lustriane, C.; Dwivany, F.M.; Suendo, V.; Reza, M. Effect of chitosan and chitosan-nanoparticles on post harvest quality of banan fruits. J. Plant Biotechnol. 2018, 45, 36–44. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, X.; Yang, Y.; Zou, T.; Xing, X.; Zhao, R.; Wang, Z.; Wang, Y. L-Aspartic Acid Capped CdS Quantum Dots as a High Performance Fluorescence Assay for Sliver Ions (I) Detection. Nanomaterials 2019, 9, 1165. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Sharma, J.G.; Maji, S.; Malhotra, B.D. A biocompatible serine functionalized nanostructured zirconia based biosensing platform for non-invasive oral cancer detection. RSC Adv. 2016, 6, 77037–77046. [Google Scholar] [CrossRef]
- Manesa, K.C.; Kebede, T.G.; Dube, S.; Nindi, M.M. Profiling of Silk Sericin from Cocoons of Three Southern African Wild Silk Moths with a Focus on Their Antimicrobial and Antioxidant Properties. Materials 2020, 13, 5706. [Google Scholar] [CrossRef]
- Nemes, N.; Negrea, A. Infrared and Visible Spectroscopy: Fourier Transform Infrared Spectroscopy and Ultraviolet–Visible Spectroscopy. In Microbial Electrochemical Technologies: Fundamentals and Applications; Ghangrekar, M.M., Duteanu, N.M., Surampalli, R.Y., Zhang, T.C., Eds.; Wiley-VCH GmbH: Weinheim, Germany, 2023; pp. 163–200. [Google Scholar]
- Cruz, L.; Polizeli, A.; Enzweiler, H.; Paulino, A. Chitosan-co-GLU/eucalyptus residue composite membrane for the stabilization of β-d-galactosidase in aqueous solutions. Polym. Bull. 2023, 81, 6437–6455. [Google Scholar] [CrossRef]
- Ciopec, M.; Grad, O.; Negrea, A.; Duteanu, N.; Negrea, P.; Paul, C.; Ianăși, C.; Mosoarca, G.; Vancea, C. A New Perspective on Adsorbent Materials Based Impregnated MgSiO3 with Crown Ethers for Palladium Recovery. Int. J. Mol. Sci. 2021, 22, 10718. [Google Scholar] [CrossRef]
- Facin, B.R.; Moret, B.; Baretta, D.; Belfiore, L.A.; Paulino, A.T. Immobilization and controlled release of β-galactosidase from chitosan-grafted hydrogels. Food Chem. 2015, 179, 44–51. [Google Scholar] [CrossRef]
- Reffas, A.; Bernardet, V.; David, B.; Reinert, L.; Bencheikh Lehocine, M.; Dubois, M.; Batisse, N.; Duclaux, L. Carbons prepared from coffee grounds by H3PO4 activation: Characterization and adsorption of methylene blue and Nylosan Red N-2RBL. J. Hazard. Mater. 2010, 175, 779–788. [Google Scholar] [CrossRef]
- Muleja, A.A. Adsorption of platinum ion from aged aqueous solution: Application and comparative study between purified MWCNTs and triphenylphosphine MWCNTs. Environ. Sci. Pollut. Res. 2018, 25, 20032–20047. [Google Scholar] [CrossRef]
- Guibal, E. Interactions of metal ions with chitosan-based sorbents: A review. Sep. Purif. Technol. 2004, 38, 43–74. [Google Scholar] [CrossRef]
- Ren, G.; Wang, X.; Huang, P.; Zhong, B.; Zhang, Z.; Yang, L.; Yang, X. Chromium (VI) adsorption from wastewater using porous magnetite nanoparticles prepared from titanium residue by a novel solid-phase reduction method. Sci. Total Environ. 2017, 607–608, 900–910. [Google Scholar] [CrossRef] [PubMed]
- Buriac, O.; Ciopec, M.; Duţeanu, N.; Negrea, A.; Negrea, P.; Grozav, I. Platinum (IV) Recovery from Waste Solutions by Adsorption onto Dibenzo-30-crown-10 Ether Immobilized on Amberlite XAD7 Resin–Factorial Design Analysis. Molecules 2020, 25, 3692. [Google Scholar] [CrossRef] [PubMed]
- Mosoarca, G.; Vancea, C.; Popa, S.; Boran, S. Bathurst Burr (Xanthium spinosum) Powder—A New Natural Effective Adsorbent for Crystal Violet Dye Removal from Synthetic Wastewaters. Materials 2021, 14, 5861. [Google Scholar] [CrossRef]
- Fernández-López, J.A.; Angosto, J.M.; Roca, M.J.; Miñarro, M.D. Taguchi design-based enhancement of heavy metals bioremoval by agroindustrial waste biomass from artichoke. Sci. Total. Environ. 2018, 653, 55–63. [Google Scholar] [CrossRef]
Isotherm Model | Parameters | Value |
---|---|---|
Langmuir | KL (L/mg) | 0.088 ± 0.011 |
qmax (mg/g) | 7.2 ± 0.7 | |
R2 | 0.9827 | |
RMSE | 0.3336 | |
Freundlich | Kf (mg/g) | 1.41 ± 0.24 |
1/n | 0.43 ± 0.08 | |
R2 | 0.9788 | |
RMSE | 0.2195 | |
Sips | Qsat (mg/g) | 7.06 ± 0.94 |
KS (L/mg) | 0.07 ± 0.01 | |
n | 3.33 ± 0.43 | |
R2 | 0.9921 | |
RMSE | 0.2154 |
Column Parameters | |||||
---|---|---|---|---|---|
Bohart–Adams model | Material amount (g) | KB−A (L/mg·min) | N0 (mg/L) | R2 | RMSE |
10 | (20.30 ± 1.43) × 10−4 | 287.22 ± 17.32 | 0.9686 | 0.3799 | |
5 | (18.36 ± 1.24) × 10−4 | 315.68 ± 24.42 | 0.9329 | 0.4340 | |
3 | (22.73 ± 1.84) × 10−4 | 236.54 ± 11.41 | 0.8596 | 0.6406 | |
Thomas model | Material amount (g) | KTh (L/mg·min) | qTh (mg/g) | R2 | RMSE |
10 | (34.67 ± 2.54) × 10−4 | 517.8 ± 27.53 | 0.9771 | 0.4177 | |
5 | (30.59 ± 1.89) × 10−4 | 1165.1 ± 49.57 | 0.9864 | 0.3209 | |
3 | (37.41 ± 3.02) × 10−4 | 1741.5 ± 61.54 | 0.9802 | 0.5246 | |
Clark model | Material amount (g) | r (1/min) | A | R2 | RMSE |
10 | 0.3974 ± 0.0478 | 831.64 ± 42.75 | 0.9853 | 0.2863 | |
5 | 0.3524 ± 0.0421 | 818.43 ± 35.74 | 0.9893 | 0.3161 | |
3 | 0.4309 ± 0.0624 | 470.78 ± 22.51 | 0.9831 | 0.3399 |
Factor | Level 1 | Level 2 | Level 3 | Level 4 |
---|---|---|---|---|
pH | 1 | 4 | 7 | 10 |
Solid/liquid ratio | 0.025 | 0.1 | 0.2 | 0.3 |
Time (min) | 15 | 50 | 90 | 120 |
Temperature (°C) | 25 | 35 | 45 | 55 |
Initial dye concentration (mg/L) | 5 | 25 | 50 | 80 |
pH | S-L Ratio | Time (min) | Temperature (°C) | Initial Concentration (mg/L) | Efficiency (%) |
---|---|---|---|---|---|
1 | 0.025 | 15 | 25 | 5 | 4.23 |
1 | 0.1 | 50 | 35 | 25 | 13.6 |
1 | 0.2 | 90 | 45 | 50 | 14.8 |
1 | 0.3 | 120 | 55 | 80 | 2.25 |
4 | 0.025 | 50 | 45 | 80 | 14.0 |
4 | 0.1 | 15 | 55 | 50 | 18.4 |
4 | 0.2 | 120 | 25 | 25 | 59.2 |
4 | 0.3 | 90 | 35 | 5 | 99.2 |
7 | 0.025 | 90 | 55 | 25 | 21.6 |
7 | 0.1 | 120 | 45 | 5 | 99.6 |
7 | 0.2 | 15 | 35 | 80 | 8.87 |
7 | 0.3 | 50 | 25 | 50 | 37.4 |
10 | 0.025 | 120 | 35 | 50 | 23.4 |
10 | 0.1 | 90 | 25 | 80 | 35.5 |
10 | 0.2 | 50 | 55 | 5 | 99.4 |
10 | 0.3 | 15 | 45 | 25 | 31.6 |
Level | pH | S-L Ratio | Time | Temperature | Initial Concentration |
---|---|---|---|---|---|
1 | 16.29 | 22.26 | 21.57 | 27.49 | 32.97 |
2 | 30.90 | 29.73 | 29.25 | 27.24 | 28.70 |
3 | 29.27 | 29.44 | 30.26 | 29.07 | 26.89 |
4 | 32.08 | 27.11 | 27.46 | 24.75 | 19.98 |
Delta | 15.79 | 7.47 | 8.68 | 4.33 | 12.99 |
Rank | 1 | 4 | 3 | 5 | 2 |
Contribution (%) | 47.1 | 10.57 | 13.34 | 2.83 | 25.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babău, T.; Ciopec, M.; Mosoarca, G.; Vancea, C.; Negrea, A.; Nemeş, N.S.; Pascu, B.; Negrea, P.; Ianăşi, C.; Buzatu, A.R. Functionalized Biopolymer for Enhanced Pt(IV) Recovery from Aqueous Solutions. Polymers 2025, 17, 1132. https://doi.org/10.3390/polym17091132
Babău T, Ciopec M, Mosoarca G, Vancea C, Negrea A, Nemeş NS, Pascu B, Negrea P, Ianăşi C, Buzatu AR. Functionalized Biopolymer for Enhanced Pt(IV) Recovery from Aqueous Solutions. Polymers. 2025; 17(9):1132. https://doi.org/10.3390/polym17091132
Chicago/Turabian StyleBabău, Theodora, Mihaela Ciopec, Giannin Mosoarca, Cosmin Vancea, Adina Negrea, Nicoleta Sorina Nemeş, Bogdan Pascu, Petru Negrea, Catalin Ianăşi, and Alina Ramona Buzatu. 2025. "Functionalized Biopolymer for Enhanced Pt(IV) Recovery from Aqueous Solutions" Polymers 17, no. 9: 1132. https://doi.org/10.3390/polym17091132
APA StyleBabău, T., Ciopec, M., Mosoarca, G., Vancea, C., Negrea, A., Nemeş, N. S., Pascu, B., Negrea, P., Ianăşi, C., & Buzatu, A. R. (2025). Functionalized Biopolymer for Enhanced Pt(IV) Recovery from Aqueous Solutions. Polymers, 17(9), 1132. https://doi.org/10.3390/polym17091132