Investigating 3D-Printed Carbon–Carbonyl Iron Composites for Electromagnetic Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sankaran, S.; Deshmukh, K.; Ahamed, M.B.; Pasha, S.K.K. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review. Compos. Part A-Appl. Sci. Manuf. 2018, 114, 49–71. [Google Scholar] [CrossRef]
- Snoeck, J.L. Gyromagnetic resonance in ferrites. Nature 1947, 160, 90. [Google Scholar] [CrossRef] [PubMed]
- Sista, K.S.; Dwarapudi, S.; Kumar, D.; Sinha, G.R.; Moon, A.P. Carbonyl iron powders as absorption material for microwave shielding: A review. J. Alloys Compd. 2021, 853, 157251. [Google Scholar] [CrossRef]
- Cao, X.G.; Ren, H.; Zhang, H.Y. Preparation and microwave shielding property of silver-coated carbonyl iron powder. J. Alloys Compd. 2015, 631, 133. [Google Scholar] [CrossRef]
- Wu, L.Z.; Ding, J.; Jiang, H.B.; Chen, L.F.; Ong, C.K. Particle size influence to the microwave properties of iron based magnetic particulate composites. J. Magn. Magn. Mater. 2005, 285, 233–239. [Google Scholar] [CrossRef]
- Pinho, M.S.; Gregory, M.L.; Nunes, R.C.R.; Soares, B.G. Performance of radar absorbing materials by waveguide measurements for X- and Ku-band frequencies. Eur. Polym. J. 2002, 38, 2321. [Google Scholar] [CrossRef]
- Duan, Y.; Li, G.; Liu, L.; Liu, S. Electromagnetic properties of carbonyl iron and their microwave absorbing characterization as filler in silicone ruber. Bull. Mater. Sci. 2010, 33, 633. [Google Scholar] [CrossRef]
- Wang, B.; Wei, J.; Yang, Y.; Wang, T.; Li, F. Investigation on peak frequency of the microwave absorption for carbonyl iron/epoxy resin composite. J. Magn. Magn. Mater. 2011, 323, 1101. [Google Scholar] [CrossRef]
- Fan, M.; He, Z.; Pang, H. Microwave absorption enhancement of CIP/PANI composites. Synth. Met. 2013, 166, 1–6. [Google Scholar] [CrossRef]
- Joseph, N.; Thomas Sebstian, M. Electromagnetic interference shielding nature of PVDF-carbonyl iron composites. Mater. Lett. 2013, 90, 64. [Google Scholar] [CrossRef]
- Qin, F.; Brosseau, C.A. A reviewe and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J. Appl. Phys. 2012, 111, 061301. [Google Scholar] [CrossRef]
- Liang, J.J.; Wang, Y.; Huang, Y.; Ma, Y.F.; Liu, Z.F.; Cai, J.M.; Zhang, C.D.; Gao, H.J.; Chen, Y.S. Electromagnetic interference shielding of graphene/epoxy composites. Carbon 2009, 47, 922. [Google Scholar] [CrossRef]
- Sandler, J.W.K.; Kirk, J.E.; Kinloch, I.A.; Schaffer, M.S.P.; Windle, A.H. Ultra low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 2003, 44, 5893–5899. [Google Scholar] [CrossRef]
- Mierczynska, A.; Mayne-LHermite, M.; Boiteux, G.; Jeszka, J.K. Electrical and mechanical properties of carbon nanotube/ultrahigh-molecular-weight polyethylene composites prepared by a filler prelocalization method. J. Appl. Polym. Sci. 2007, 105, 158–168. [Google Scholar] [CrossRef]
- Palaimiene, E.; Macutkevic, J.; Banys, J.; Selskis, A.; Fierro, V.; Celzard, A.; Schaefer, S.; Shenderova, O. Ultra-low percolation threshold in epoxy resin-onion-like carbon composites. Appl. Phys. Lett. 2018, 113, 033105. [Google Scholar] [CrossRef]
- Kuilla, T.; Bhadra, S.; Yao, D.; Kim, N.H.; Bose, S.; Lee, J.H. Recent advances in graphene based polymer composites. Prog. Polym. Sci. 2010, 35, 1350–1375. [Google Scholar] [CrossRef]
- Letellier, M.; Macutkevic, J.; Kuzhir, P.; Banys, J.; Fierro, V.; Celzard, A. Electromagnetic properties of model vitreous carbon foam. Carbon 2017, 122, 217–227. [Google Scholar] [CrossRef]
- Deng, H.; Lin, L.; Ji, M.; Zhang, S.; Yang, M.; Fu, Q. Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Prog. Polym. Sci. 2014, 39, 627–655. [Google Scholar] [CrossRef]
- Castro-Guttierrez, J.; Palaimiene, E.; Macutkevic, J.; Banys, J.; Kuzhir, P.; Schaefer, S.; Fierro, V.; Celzard, A. Electromagnetic properties of carbon gels. Materials 2019, 12, 4143. [Google Scholar] [CrossRef]
- Bychanok, D.; Li, S.; Sanchez-Sanchez, A.; Gorokhov, G.; Kuzhir, P.; Ogrin, F.Y.; Pasc, A.; Balweg, T.; Mandel, K.; Szczurek, A.; et al. Hollow carbon spheres in microwaves: Bio inspired absorbing coating. Appl. Phys. Lett. 2016, 108, 013701. [Google Scholar] [CrossRef]
- Wu, N.; Hu, Q.; Wei, R.; Mai, X.; Naik, N.; Pan, D.; Guo, Z.; Shi, Z. Review on electromagnetic shielding properties of carbon based materials and their novel composites: Recent progress, challenges and prospects. Carbon 2021, 176, 88–105. [Google Scholar] [CrossRef]
- Theilman, P.; Yun, D.Y.; Asbeck, P.; Park, S.H. Superior electromagnetic interference shielding and dielectric properties of carbon nanotubes composites though the use of high aspect CNTs and three-roll miling. Org. Electron. 2013, 14, 1531–1537. [Google Scholar] [CrossRef]
- Ao, D.; Tang, Y.; Xu, X.; Xiang, X.; Yu, J.; Li, S.; Zu, X. Highly conductive PDMS composite mechanically enhanced with 3D-graphene network for high-performance emi shielding application. Nanomaterials 2020, 10, 768. [Google Scholar] [CrossRef]
- Qin, Q.Q.; Hu, Y.M.; Sun, N.; Lei, T.; Qin, S.H.; Yang, Y.Y.; Wu, X.; Cui, Z.Y.; An, M.Z. Fabrication of PVC-based electromagnetic intereference shielding composite film by positively charged SMA enhancing the dispersibility of carbon nanomaterial. Carbon 2024, 231, 119701. [Google Scholar] [CrossRef]
- Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon nanotube-polymer composites: Chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 2010, 35, 357. [Google Scholar] [CrossRef]
- Bauhofer, W.; Kovacs, J.Z. A review and analysis of electrical percolation in carbon nanotube polymeric composite. Compos. Sci. Technol. 2009, 69, 1486. [Google Scholar] [CrossRef]
- Wu, J.; Kong, L. High microwave permittivity of multiwalled carbon nanotube composites. Appl. Phys. Lett. 2004, 84, 4956. [Google Scholar] [CrossRef]
- Wang, H.; Ma, H. Highly enhanced electromagnetic wave absorption bandwidth based on reduced graphene oxide-Fe aerogel composites. Nanotechnology 2019, 31, 095711. [Google Scholar] [CrossRef]
- Xu, D.; Ren, Y.; Guo, X.; Zhao, B. Three-dimensional magnetic functionalized graphene composite aerogels for microwave absorption: A review. ACS Appl. Nano Mater. 2022, 5, 14133. [Google Scholar] [CrossRef]
- Blyweert, P.; Zharov, A.; Meisak, D.; Plyushch, A.; Macutkevič, J.; Banys, J.; Fierro, V.; Celzard, A. Electromagnetic properties of 3D-printed carbon-BaTiO3 composites. Appl. Phys. Lett. 2023, 123, 012903. [Google Scholar] [CrossRef]
- Blyweert, P.; Nicolas, V.; Macutkevic, J.; Fierro, V.; Celzard, A. Tannin-based resins for 3D printing of porous carbon architectures. ACS Sustain. Chem. Eng. 2022, 10, 7702. [Google Scholar] [CrossRef]
- Blyweert, P.; Nicolas, V.; Fierro, V.; Celzard, A. Experimental design optimisation of tannin-acrylate photocurable resins for 3D printing of biobased porous carbon architectures. Molecules 2022, 27, 2091. [Google Scholar] [CrossRef] [PubMed]
- Grigas, J. Microwave Dielectric Spectroscopy of Ferroelectrics and Related Materials; Gordon and Breach Science Publishers: London, UK, 1996. [Google Scholar]
- Jang, D.; Park, J.E.; Kim, Y. K Evaluation of (CNT@CIP) embedded magneto-resistive sensor based on carbon nanotube and carbonyl iron powder polymer composite. Polymers 2022, 14, 542. [Google Scholar] [CrossRef] [PubMed]
- Klein, C.A. Electrical properties of pyrolytic graphites. Rev. Mod. Phys. 1962, 34, 56. [Google Scholar] [CrossRef]
- Plyushch, A.; Macutkevic, J.; Svirskas, S.; Banys, J.; Plausinaitiene, V.; Bychanok, D.; Maksimenko, S.A.; Selskis, A.; Sokal, A.; Lapko, K.N.; et al. Silicon carbide/phosphate ceramics composite for electromagnetic shielding applications whiskers vs particles. Appl. Phys. Lett. 2019, 114, 183105. [Google Scholar] [CrossRef]
- Jonsher, A.K. The universal dielectric response. Nature 1977, 267, 673. [Google Scholar] [CrossRef]
- Wei, B.; Wang, M.; Yao, Z.; Chen, Z.; Chen, P.; Tao, X.; Liu, Y.; Zhou, J. Bimetallic nanoarrays embedded in three-dimensional carbon foam as lightweight and and efficient microwave absorber. Carbon 2022, 191, 486. [Google Scholar] [CrossRef]
- Fante, R.L.; McCormack, M.T. Reflection properties of the Salisburry screen. IEEE Trans. Antennas Propag. 1988, 36, 1443. [Google Scholar] [CrossRef]
- Meisak, D.; Plyushch, A.; Macutkevič, J.; Grigalaitis, R.; Sokal, A.; Lapko, K.N.; Selskis, A.; Kuzhir, P.P.; Banys, J. Effect of temperature on shielding efficiency of phosphate-bonded CoFe2O4-xBaTiO3 multiferroic composite in microwaves. J. Mater. Res. Technol. 2023, 24, 1939. [Google Scholar] [CrossRef]
Initial CIP Concentration, Φi (wt.%) | Final CIP Concentration, Φf (wt.%) * | Final CIP Concentration, Φv (vol.%) ** | Bulk Density, ρb (g/cm3) |
---|---|---|---|
0 | 0 | 0 | 0.42 |
5 | 20 | 1 | 0.44 |
10 | 35 | 2 | 0.51 |
15 | 46 | 4 | 0.67 |
CIP Concentration, wt.% | Temperature Region, K | σ0, S/cm | E/k, K (meV) |
---|---|---|---|
0 | T < 155 | 7.2 | 137 (11.8) |
T > 155 | 9.6 | 184 (15.8) | |
20 | T < 186 | 2.27 | 302.7 (26) |
T < 186 | 1.02 | 152.1 (13.1) | |
35 | T < 227 | 11.98 | 131.9 (11.3) |
T > 259 | 11.98 | 186.3 (13) | |
46 | T < 220 | 1.79 | 275.6 (23.7) |
T > 250 | 1.15 | 147.2 (12.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsyhanok, D.; Meisak, D.; Blyweert, P.; Selskis, A.; Macutkevič, J.; Banys, J.; Fierro, V.; Celzard, A. Investigating 3D-Printed Carbon–Carbonyl Iron Composites for Electromagnetic Applications. Polymers 2025, 17, 1009. https://doi.org/10.3390/polym17081009
Tsyhanok D, Meisak D, Blyweert P, Selskis A, Macutkevič J, Banys J, Fierro V, Celzard A. Investigating 3D-Printed Carbon–Carbonyl Iron Composites for Electromagnetic Applications. Polymers. 2025; 17(8):1009. https://doi.org/10.3390/polym17081009
Chicago/Turabian StyleTsyhanok, Dzmitry, Darya Meisak, Pauline Blyweert, Algirdas Selskis, Jan Macutkevič, Jūras Banys, Vanessa Fierro, and Alain Celzard. 2025. "Investigating 3D-Printed Carbon–Carbonyl Iron Composites for Electromagnetic Applications" Polymers 17, no. 8: 1009. https://doi.org/10.3390/polym17081009
APA StyleTsyhanok, D., Meisak, D., Blyweert, P., Selskis, A., Macutkevič, J., Banys, J., Fierro, V., & Celzard, A. (2025). Investigating 3D-Printed Carbon–Carbonyl Iron Composites for Electromagnetic Applications. Polymers, 17(8), 1009. https://doi.org/10.3390/polym17081009