Development of a Digital Image Processing- and Machine Learning-Based Approach to Predict the Morphology and Thermal Properties of Polyurethane Foams
Abstract
:1. Introduction
The Aim of This Study
2. Materials and Methods
2.1. Materials
2.2. Computational Chemistry Methods
2.3. Voronoi Tessellation Method
2.4. Digital Image Processing, Segmentation, Identification, Outlier Handling, and Prediction
3. Results and Discussion
3.1. The Foam Density and Thermal Conductivity Relationship
3.2. Molecular Modeling Results
3.3. Voronoi Tessellation Algorithm Results
3.4. SEM Results
4. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ashida, K. Polyurethane and Related Foams: Chemistry and Technology, 1st ed.; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Das, S.; Heasman, P.; Ben, T.; Qiu, S. Porous organic materials: Strategic design and structure-function correlation. Chem. Rev. 2017, 117, 1515–1563. [Google Scholar] [PubMed]
- Gama, N.V.; Ferreira, A.; Barros-Timmons, A. Polyurethane foams: Past, present, and future. Materials 2018, 11, 1841. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, M. Polyols for Polyurethanes: Chemistry and Technology, 3rd ed.; Walter de Gruyter GmbH: Berlin, Germany; Boston, MA, USA, 2019; Volume 1. [Google Scholar]
- Waleed, H.Q.; Csécsi, M.; Hadjadj, R.; Thangaraj, R.; Pecsmány, D.; Owen, M.; Szőri, M.; Fejes, Z.; Viskolcz, B.; Fiser, B. Computational study of catalytic urethane formation. Polymers 2022, 14, 8. [Google Scholar]
- Waleed, H.Q.; Pecsmány, D.; Csécsi, M.; Farkas, L.; Viskolcz, B.; Fejes, Z.; Fiser, B. Experimental and theoretical study of cyclic amine catalysed urethane formation. Polymers 2022, 14, 2859. [Google Scholar] [CrossRef]
- Celik Bayar, C.; Onur, T.O. The use of digital image processing method to estimate the foam characteristics of polyurethane. Macromol. Mater. Eng. 2023, 308, 2300154. [Google Scholar]
- Al-Moameri, H.; Zhao, Y.; Ghoreishi, R.; Suppes, G.J. Simulation blowing agent performance, cell morphology, and cell pressure in rigid polyurethane foams. Ind. Eng. Chem. Res. 2016, 55, 2336–2344. [Google Scholar]
- Jaf, L.; Al-Moameri, H.H.; Ayash, A.A.; Lubguban, A.A.; Malaluan, R.M.; Ghosh, T. Limits of performance of polyurethane blowing agents. Sustainability 2023, 15, 6737. [Google Scholar] [CrossRef]
- Baser, S.A.; Khakhar, D.V. Modeling of the dynamics of water and R-11 blown polyurethane foam formation. Polym. Eng. Sci. 1994, 34, 642–649. [Google Scholar]
- Tesser, R.; Di Serio, M.; Sclafani, A.; Santacesaria, E. Modeling of polyurethane foam formation. J. Appl. Polym. Sci. 2004, 92, 1875–1886. [Google Scholar]
- McDonald, S.A.; Dedreuil-Monet, G.; Yao, Y.T.; Alderson, A.; Withers, P.J. In situ 3D X-ray microtomography study comparing auxetic and non-auxetic polymeric foams under tension. Phys. Status Solidi B 2011, 248, 45–51. [Google Scholar]
- Pardo-Alonso, S.; Solórzano, E.; Rodriguez-Perez, M.A. Time-resolved X-ray imaging of nanofiller-polyurethane reactive foam systems. Colloids Surf. A: Physicochem. Eng. Asp. 2013, 438, 119–125. [Google Scholar] [CrossRef]
- Shah, K.A.; Brütting, C.; Albuquerque, R.Q.; Ruckdäschel, H. Machine learning investigation of polylactic acid bead foam extrusion. J. Appl. Polym. Sci. 2024, 141, e55693. [Google Scholar]
- Shah, K.A.; Albuquerque, R.Q.; Brütting, C.; Ruckdäschel, H. Machine learning-based time series analysis of polylactic acid bead foam extrusion. J. Appl. Polym. Sci. 2024, 141, e56170. [Google Scholar]
- Rohim, M.A.S.; Nazmi, N.; Bahiuddin, I.; Mazlan, S.A.; Norhaniza, R.; Yamamoto, S.I.; Nordin, N.A.; Aziz, S.A.A. Prediction for magnetostriction magnetorheological foam using machine learning method. J. Appl. Polym. Sci. 2022, 139, e52798. [Google Scholar] [CrossRef]
- Gao, T.; Qiu, H.; Fu, L. A semi-meshless Lagrangian finite-volume framework based on Voronoi diagram for general elastoplastic Reissner-Mindlin shell. J. Comput. Phys. 2024, 501, 112802. [Google Scholar] [CrossRef]
- Singh, M.; Datta, D.; Gupta, A. Modelling and optimization of dosimeters in the product box for commissioning dosimetry at gamma irradiator using Voronoi diagram algorithm. Radiat. Phys. Chem. 2023, 210, 111011. [Google Scholar]
- Asakawa, K.; Hirano, Y.; Tan, K.T.; Ogasawara, T. Bio-inspired study of stiffener arrangement in composite stiffened panels using a Voronoi diagram as an indicator. Compos. Struct. 2024, 327, 117640. [Google Scholar]
- Becedas, A.; Kohn, K.; Venturello, L. Voronoi diagrams of algebraic varieties under polyhedral norms. J. Symb. Comput. 2024, 120, 102229. [Google Scholar]
- Chao, L.; He, Y.; Gu, J.; Xie, D.; Yang, Y.; Shen, L.; Wu, G.; Wang, L.; Tian, Z.; Liang, H. Design of porous structure based on the Voronoi diagram and stress line for better stress shielding relief and permeability. J. Mater. Res. Technol. 2023, 25, 1719–1734. [Google Scholar] [CrossRef]
- Shuai, C.; Zhang, X.; Ouyang, X.; Liu, K.; Yang, Y. Research on charging demands of commercial electric vehicles based on Voronoi diagram and spatial econometrics model: An empirical study in Chongqing China. Sustain. Cities Soc. 2024, 105, 105335. [Google Scholar]
- Chen, B.Y.; Teng, W.; Jia, T.; Chen, H.P.; Liu, X. Transit Voronoi diagrams in multi-mode public transport networks. Comput. Environ. Urban Syst. 2022, 96, 101849. [Google Scholar]
- Gao, T.; Fu, L. A new particle shifting technique for SPH methods based on Voronoi diagram and volume compensation. Comput. Methods Appl. Mech. Eng. 2023, 404, 115788. [Google Scholar]
- Chen, D.; Zhu, L. Branching tubular surfaces based on spherical Voronoi diagrams. Comput. Graph. 2022, 105, 1–11. [Google Scholar]
- Hari Ganesh, S.; Samuel, G.L. A 3D Voronoi diagram based form error estimation method for fast and accurate inspection of free-form surfaces. Measurement 2022, 189, 110476. [Google Scholar]
- Verpol Company Products. Available online: https://www.verpolboya.com/en/ (accessed on 23 March 2025).
- KD2 Pro Thermal Properties Analyzer Operator’s Manual, Decagon Devices, Inc. Available online: https://library.metergroup.com/Manuals/13351_KD2%20Pro_Web.pdf (accessed on 23 March 2025).
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision E.01; Gaussian, Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Diep, P.; Jordan, K.D.; Johnson, J.K.; Beckman, E.J. CO2-Fluorocarbon and CO2-hydrocarbon interactions from first-principles calculations. J. Phys. Chem. A 1998, 102, 2231–2236. [Google Scholar]
- Møller, J. Lectures on Random Voronoi Tessellations, 1st ed.; Springer: New York, NY, USA, 1994. [Google Scholar]
- Python Programming Language. Available online: https://www.python.org/ (accessed on 23 March 2025).
Polyol (mL) | Polyol (g) | PMDI (mL) | PMDI (g) | Water (mL) | Water (g) | CH (mL) | CH (g) | CH (wt.%) | |
---|---|---|---|---|---|---|---|---|---|
Reference | 30 | 29.1 | 30 | 33.6 | 0.3 | 0.3 | 0 | 0 | 0 |
Sample 1 | 30 | 29.1 | 30 | 33.6 | 0.3 | 0.3 | 0.3 | 0.2 | 0.4 |
Sample 2 | 30 | 29.1 | 30 | 33.6 | 0.3 | 0.3 | 1.5 | 1.2 | 2 |
Sample 3 | 30 | 29.1 | 30 | 33.6 | 0.3 | 0.3 | 3.0 | 2.3 | 4 |
Sample 4 | 30 | 29.1 | 30 | 33.6 | 0.3 | 0.3 | 6.0 | 4.7 | 7 |
Sample 5 | 30 | 29.1 | 30 | 33.6 | 0.3 | 0.3 | 9.0 | 7.0 | 10 |
Sample | Density | Thermal Conductivity Coefficient |
---|---|---|
(kg m−3) | (λ) (W m−1 K−1) | |
Reference | 633.30 | 0.093 |
Sample 1 | 512.87 | 0.073 |
Sample 2 | 514.62 | 0.074 |
Sample 3 | 547.55 | 0.087 |
Sample 4 | 581.81 | 0.093 |
Sample 5 | 768.16 | 0.12 |
T = 393.15 K (120 °C) | |||||||
P (atm) | 1 | 25 | 50 | 75 | 100 | 125 | 150 |
(ΔGf) (au) | −234.9921 | −234.9881 | −234.9873 | −234.9868 | −234.9864 | −234.9861 | −234.9859 |
(ΔGf)rel (au) | 0 | 0.004006 | 0.004869 | 0.005374 | 0.005732 | 0.006010 | 0.006237 |
(ΔGf)rel (kJ mol−1) | 0 | 11 | 13 | 14 | 15 | 16 | 16 |
T = 343.15 K (70 °C) | |||||||
P (atm) | 1 | 25 | 50 | 75 | 100 | 125 | 150 |
(ΔGf) (au) | −234.9857 | −234.9822 | −234.9815 | −234.9810 | −234.9807 | −234.9805 | −234.9803 |
(ΔGf)rel (au) | 0.006422 | 0.009920 | 0.010673 | 0.011114 | 0.011426 | 0.011669 | 0.011867 |
(ΔGf)rel (kJ mol−1) | 17 | 26 | 28 | 29 | 30 | 31 | 31 |
T = 298.15 K (25 °C) | |||||||
P (atm) | 1 | 25 | 50 | 75 | 100 | 125 | 150 |
(ΔGf) (au) | −234.9802 | −234.9772 | −234.9765 | −234.9762 | −234.9759 | −234.9757 | −234.9755 |
(ΔGf)rel (au) | 0.011910 | 0.014949 | 0.015604 | 0.015987 | 0.016258 | 0.016469 | 0.016641 |
(ΔGf)rel (kJ mol−1) | 31 | 39 | 41 | 42 | 43 | 43 | 44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Celik Bayar, C. Development of a Digital Image Processing- and Machine Learning-Based Approach to Predict the Morphology and Thermal Properties of Polyurethane Foams. Polymers 2025, 17, 928. https://doi.org/10.3390/polym17070928
Celik Bayar C. Development of a Digital Image Processing- and Machine Learning-Based Approach to Predict the Morphology and Thermal Properties of Polyurethane Foams. Polymers. 2025; 17(7):928. https://doi.org/10.3390/polym17070928
Chicago/Turabian StyleCelik Bayar, Caglar. 2025. "Development of a Digital Image Processing- and Machine Learning-Based Approach to Predict the Morphology and Thermal Properties of Polyurethane Foams" Polymers 17, no. 7: 928. https://doi.org/10.3390/polym17070928
APA StyleCelik Bayar, C. (2025). Development of a Digital Image Processing- and Machine Learning-Based Approach to Predict the Morphology and Thermal Properties of Polyurethane Foams. Polymers, 17(7), 928. https://doi.org/10.3390/polym17070928