How Molar Mass, Acid Type, and Coagulation Bath Composition Influence Coagulation Kinetics, Mechanical Properties, and Swelling Behavior of Chitosan Filaments: A Full Factorial Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methodology
2.2.1. Formulation of Spinnable Chitosan Solutions
2.2.2. Obtaining Chitosan Filaments
2.2.3. Full Factorial Experiment Design
2.2.4. Coagulation Rate Measurement
2.2.5. Swelling Degree
2.2.6. Instrumentation
3. Results and Discussion
3.1. Coagulation Measurements of CS Solutions
3.2. Mechanical Properties of CS Filaments
3.3. Swelling Degree of CS Filaments
3.4. Analysis of the Factorial Design
3.4.1. Multiple Regression
3.4.2. Pareto Chart of the Responses
3.4.3. Contour and Surface Plots of the Responses
3.4.4. Main Effects Plot of the Responses
3.4.5. Interaction Between Factors
3.4.6. Optimization of the Responses
3.5. Optimized Sample Characterization
3.5.1. X-Ray Diffraction of CS Filaments
3.5.2. FT-IR of CS Filaments
3.5.3. Scanning Electron Microscopy of CS Filaments
4. Conclusions
- Adjusting the CS molar mass to control fiber diameter without compromising mechanical strength;
- Choosing the appropriate acid solvent (e.g., acetic acid for greater crystallinity or lac-tic acid for greater flexibility and water absorption) depending on the desired application;
- Changing the composition of the coagulation bath to obtain more homogeneous or rough surfaces, directly influencing its application in tissue engineering;
- Improving the mechanical strength and crystallinity of the filaments, making them more durable for sutures and cellular scaffolds;
- Adjusting the absorption and swelling rate, allowing greater control over drug release or biodegradation in contact with biological tissues;
- Adjustments in the manufacture of CS filaments without the need for crosslinking or reinforcement with other materials.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ke, C.L.; Deng, F.S.; Chuang, C.Y.; Lin, C.H. Antimicrobial Actions and Applications of Chitosan. Polymers 2021, 13, 904. [Google Scholar] [CrossRef]
- Dutta, P.K.; Tripathi, S.; Mehrotra, G.K.; Dutta, J. Perspectives for chitosan based antimicrobial films in food applications. Food Chem. 2009, 114, 1173–1182. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol. 2010, 144, 51–63. [Google Scholar] [CrossRef]
- Gutha, Y.; Pathak, J.L.; Zhang, W.; Zhang, Y.; Jiao, X. Antibacterial and wound healing properties of chitosan/poly(vinyl alcohol)/zinc oxide beads (CS/PVA/ZnO). Int. J. Biol. Macromol. 2017, 103, 234–241. [Google Scholar] [CrossRef]
- Matica, M.A.; Aachmann, F.L.; Tøndervik, A.; Sletta, H.; Ostafe, V. Chitosan as a Wound Dressing Starting Material: Antimicrobial Properties and Mode of Action. Int. J. Mol. Sci. 2019, 20, 5889. [Google Scholar] [CrossRef] [PubMed]
- Patrulea, V.; Ostafe, V.; Borchard, G.; Jordan, O. Chitosan as a starting material for wound healing applications. Eur. J. Pharm. Biopharm. 2015, 97, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.H.; Mondal, M.I.H. Stability, challenges, and prospects of chitosan for the delivery of anticancer drugs and tissue regenerative growth factors. Heliyon 2024, 10, e39879. [Google Scholar] [CrossRef]
- Salahuddin, A.; Ashraf, A.; Ahmad, K.; Hou, H. Recent advances in chitosan-based smart hydrogel for drug delivery systems. Int. J. Biol. Macromol. 2024, 280, 135803. [Google Scholar] [CrossRef]
- Zhang, W.; Geng, X.; Qin, S.; Xie, Z.; Li, W.; Li, J. Research progress and application of chitosan dressings in hemostasis: A review. Int. J. Biol. Macromol. 2024, 282, 136421. [Google Scholar] [CrossRef]
- Edo, G.I.; Yousif, E.; Al-Mashhadani, M.H. Modified chitosan: Insight on biomedical and industrial applications. Int. J. Biol. Macromol. 2024, 275, 133526. [Google Scholar] [CrossRef]
- Ladet, S.; David, L.; Domard, A. Multi-membrane hydrogels. Nature 2008, 452, 76–79. [Google Scholar] [CrossRef] [PubMed]
- Brunel, F.; Véron, L.; David, L.; Domard, A.; Delair, T. A Novel Synthesis of Chitosan Nanoparticles in Reverse Emulsion. Langmuir 2008, 24, 11370–11377. [Google Scholar] [CrossRef] [PubMed]
- Costalat, M.; Alcouffe, P.; David, L.; Delair, T. Macro-hydrogels versus nanoparticles by the controlled assembly of polysaccharides. Carbohydr. Polym. 2015, 134, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Osorio-Madrazo, A.; David, L.; Peniche-Covas, C.; Rochas, C.; Putaux, J.-L.; Trombotto, S.; Alcouffe, P.; Domard, A. Fine microstructure of processed chitosan nanofibril networks preserving directional packing and high molecular weight. Carbohydr. Polym. 2015, 131, 1–8. [Google Scholar] [CrossRef]
- Andrady, A.L.; Xu, P. Elastic behavior of chitosan films. J. Polym. Sci. Parte B Polym. Phys. 1997, 35, 517–521. [Google Scholar] [CrossRef]
- Chhabra, P.; Tyagi, P.; Bhatnagar, A.; Mittal, G.; Kumar, A.J.J.o.p.; sciences, b. Optimization, characterization, and efficacy evaluation of 2% chitosan scaffold for tissue engineering and wound healing. J. Pharm. BioAllied Sci. 2016, 8, 300. [Google Scholar] [CrossRef]
- da Silva, H.N.; da Silva, M.C.; dos Santos, F.S.F.; da Silva Júnior, J.A.C.; Barbosa, R.C.; Fook, M.V.L. Chitosan Woven Meshes: Influence of Threads Configuration on Mechanical, Morphological, and Physiological Properties. Polymers 2021, 13, 47. [Google Scholar] [CrossRef]
- da Silva, M.C.; da Silva, H.N.; Alves Leal Cruz, R.C.; Sagoe Amoah, S.K.; de Lima Silva, S.M.; Lia Fook, M.V. N-Acetyl-D-Glucosamine-Loaded Chitosan Filaments Biodegradable and Biocompatible for Use as Absorbable Surgical Suture Materials. Materials 2019, 12, 1807. [Google Scholar] [CrossRef]
- Silva, M.C.; Leal, R.C.A.; Silva, H.N.; Fook, M.V.L. Biodegradable suture threads as controlled drug delivery systems. Mater. Res. Innov. 2019, 24, 161–165. [Google Scholar] [CrossRef]
- Pillai, C.K.S.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 2009, 34, 641–678. [Google Scholar] [CrossRef]
- Ravi Kumar, M.N.V. Chitin and chitosan fibres: A review. Bull. Mater. Sci. 1999, 22, 905. [Google Scholar] [CrossRef]
- Knaul, J.Z.; Hudson, S.M.; Creber, K.A.M. Improved mechanical properties of chitosan fibers. J. Appl. Polym. Sci. 1999, 72, 1721–1732. [Google Scholar] [CrossRef]
- Lee, S.-H. Ripening time and fiber formation of chitosan spinning dope. J. Appl. Polym. Sci. 2003, 90, 2870–2877. [Google Scholar] [CrossRef]
- Lee, S.-H.; Park, S.-Y.; Choi, J.-H. Fiber formation and physical properties of chitosan fiber crosslinked by epichlorohydrin in a wet spinning system: The effect of the concentration of the crosslinking agent epichlorohydrin. J. Appl. Polym. Sci. 2004, 92, 2054–2062. [Google Scholar] [CrossRef]
- Tamura, H.; Tsuruta, Y.; Itoyama, K.; Worakitkanchanakul, W.; Rujiravanit, R.; Tokura, S. Preparation of chitosan filament applying new coagulation system. Carbohydr. Polym. 2004, 56, 205–211. [Google Scholar] [CrossRef]
- Enache, A.A.; David, L.; Puaux, J.-P.; Banu, I.; Bozga, G. An experimental study of chitosan wet spinning process. Proc. UPB Sci. Bull. Ser. B Chem. Mater. Sci. 2018, 80, 1454–2331. [Google Scholar]
- Venault, A.; Bouyer, D.; Pochat-Bohatier, C.; Vachoud, L.; Faur, C.J.A.j. Investigation of chitosan gelation mechanisms by a modeling approach coupled to local experimental measurement. AIChE J. 2012, 58, 2226–2240. [Google Scholar] [CrossRef]
- Enache, A.A.; David, L.; Puaux, J.-P.; Banu, I.; Bozga, G. Kinetics of chitosan coagulation from aqueous solutions. J. Appl. Polym. Sci. 2018, 135, 46062. [Google Scholar] [CrossRef]
- Knaul, J.Z.; Creber, K.A.M. Coagulation rate studies of spinnable chitosan solutions. J. Appl. Polym. Sci. 1997, 66, 117–127. [Google Scholar] [CrossRef]
- Mohammadkhani, G.; Kumar Ramamoorthy, S.; Adolfsson, K.H.; Mahboubi, A.; Hakkarainen, M.; Zamani, A. New Solvent and Coagulating Agent for Development of Chitosan Fibers by Wet Spinning. Polymers 2021, 13, 2121. [Google Scholar] [CrossRef]
- Maevskaia, E.N.; Dresvyanina, E.N.; Yudenko, A.N.; Yudin, V.E. The Mechanical Properties of Chitosan Fibers Obtained in Different Spinning Conditions by Coagulation Method. Tech. Phys. 2018, 63, 1323–1327. [Google Scholar] [CrossRef]
- Tavares Luiz, M.; Santos Rosa Viegas, J.; Palma Abriata, J.; Viegas, F.; Testa Moura de Carvalho Vicentini, F.; Lopes Badra Bentley, M.V.; Chorilli, M.; Maldonado Marchetti, J.; Tapia-Blácido, D.R. Design of experiments (DoE) to develop and to optimize nanoparticles as drug delivery systems. Eur. J. Pharm. Biopharm. 2021, 165, 127–148. [Google Scholar] [CrossRef]
- Drégelyi-Kiss, Á. Application of Experimental Design-Based Predictive Models and Optimization in Additive Manufacturing–a Review. Hung. J. Ind. Chem. 2024, 52, 55–70. [Google Scholar] [CrossRef]
- Dar, A.A.; Yadav, P.; N, A.; A, T.W. Optimizing processes and products: The role of DOE. Insight-Stat. 2024, 7, 1–19. [Google Scholar] [CrossRef]
- Weisser, P.; Barbier, G.; Richard, C.; Drean, J.-Y. Characterization of the coagulation process: Wet-spinning tool development and void fraction evaluation. Text. Res. J. 2015, 86, 1210–1219. [Google Scholar] [CrossRef]
- Nechyporchuk, O.; Yang Nilsson, T.; Ulmefors, H.; Köhnke, T. Wet Spinning of Chitosan Fibers: Effect of Sodium Dodecyl Sulfate Adsorption and Enhanced Dope Temperature. ACS Appl. Polym. Mater. 2020, 2, 3867–3875. [Google Scholar] [CrossRef]
- Albanna, M.Z.; Bou-Akl, T.H.; Blowytsky, O.; Walters, H.L.; Matthew, H.W.T. Chitosan fibers with improved biological and mechanical properties for tissue engineering applications. J. Mech. Behav. Biomed. Mater. 2013, 20, 217–226. [Google Scholar] [CrossRef]
- Albanna, M.Z.; Bou-Akl, T.H.; Walters, H.L.; Matthew, H.W.T. Improving the mechanical properties of chitosan-based heart valve scaffolds using chitosan fibers. J. Mech. Behav. Biomed. Mater. 2012, 5, 171–180. [Google Scholar] [CrossRef]
- Li, J.; Liu, D.; Hu, C.; Sun, F.; Gustave, W.; Tian, H.; Yang, S. Flexible fibers wet-spun from formic acid modified chitosan. Carbohydr. Polym. 2016, 136, 1137–1143. [Google Scholar] [CrossRef]
- Yan, W.; Shen, L.; Ji, Y.; Yang, Q.; Shen, X. Chitin nanocrystal reinforced wet-spun chitosan fibers. J. Appl. Polym. Sci. 2014, 131, 40852. [Google Scholar] [CrossRef]
- Hirano, S.; Nagamura, K.; Zhang, M.; Kim, S.K.; Chung, B.G.; Yoshikawa, M.; Midorikawa, T. Chitosan staple fibers and their chemical modification with some aldehydes. Carbohydr. Polym. 1999, 38, 293–298. [Google Scholar] [CrossRef]
- Wei, Y.C.; Hudson, S.M.; Mayer, J.M.; Kaplan, D.L. The crosslinking of chitosan fibers. J. Polym. Sci. Part A Polym. Chem. 1992, 30, 2187–2193. [Google Scholar] [CrossRef]
- East, G.C.; Qin, Y. Wet spinning of chitosan and the acetylation of chitosan fibers. J. Appl. Polym. Sci. 1993, 50, 1773–1779. [Google Scholar] [CrossRef]
- Kolhe, P.; Kannan, R.M. Improvement in ductility of chitosan through blending and copolymerization with PEG: FTIR investigation of molecular interactions. Biomacromolecules 2003, 4, 173–180. [Google Scholar] [CrossRef]
- Silva, H.N.d.; Silva, M.C.d.; Barbosa, F.C.; Cardoso, H.P.; Pina, H.d.V.; Silva, S.M.d.L.; Fook, M.V.L. Chitosan Woven Meshes for Use as Biomaterial: From the Wet Spinning Process and Filament Obtention to Mesh Properties. Mater. Res. 2024, 27, e20240104. [Google Scholar] [CrossRef]
- Barbosa, M.C.d.S.; Silva, H.N.d.; Lopes, D.d.S.; Wanderley, W.F.; Rosendo, R.A.; Penha, E.S.d.; Medeiros, L.A.D.M.d.; Silva, S.M.d.L.; Fook, M.V.L. Biodegradable Chitosan Sutures Enhanced with N-Acetyl-D-Glucosamine: Comparative Study with Catgut Sutures. Mater. Res. 2024, 27, e20240278. [Google Scholar] [CrossRef]
- Araiza, R.N.R.; Rochas, C.; David, L.; Domard, A. Interrupted Wet-Spinning Process for Chitosan Hollow Fiber Elaboration. Macromol. Symp. 2008, 266, 1–5. [Google Scholar] [CrossRef]
- García-Aparicio, C.; Quijada-Garrido, I.; Garrido, L. Diffusion of small molecules in a chitosan/water gel determined by proton localized NMR spectroscopy. J. Colloid. Interface Sci. 2012, 368, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Guibal, E.; Vincent, T.; Navarro, R. Metal ion biosorption on chitosan for the synthesis of advanced materials. J. Mater. Sci. 2014, 49, 5505–5518. [Google Scholar] [CrossRef]
- Paul, D.R. Diffusion during the coagulation step of wet-spinning. J. Appl. Polym. Sci. 1968, 12, 383–402. [Google Scholar] [CrossRef]
- Masaro, L.; Zhu, X.X. Physical models of diffusion for polymer solutions, gels and solids. Prog. Polym. Sci. 1999, 24, 731–775. [Google Scholar] [CrossRef]
- Cho, J.; Heuzey, M.-C.; Bégin, A.; Carreau, P.J. Viscoelastic properties of chitosan solutions: Effect of concentration and ionic strength. J. Food Eng. 2006, 74, 500–515. [Google Scholar] [CrossRef]
- Desbrieres, J. Viscosity of Semiflexible Chitosan Solutions: Influence of Concentration, Temperature, and Role of Intermolecular Interactions. Biomacromolecules 2002, 3, 342–349. [Google Scholar] [CrossRef]
- Shamov, M.V.; Bratskaya, S.Y.; Avramenko, V.A. Interaction of Carboxylic Acids with Chitosan: Effect of pK and Hydrocarbon Chain Length. J. Colloid. Interface Sci. 2002, 249, 316–321. [Google Scholar] [CrossRef]
- Hamdine, M.; Heuzey, M.-C.; Bégin, A. Effect of organic and inorganic acids on concentrated chitosan solutions and gels. Int. J. Biol. Macromol. 2005, 37, 134–142. [Google Scholar] [CrossRef]
- Chen, P.-H.; Kuo, T.-Y.; Liu, F.-H.; Hwang, Y.-H.; Ho, M.-H.; Wang, D.-M.; Lai, J.-Y.; Hsieh, H.-J. Use of Dicarboxylic Acids To Improve and Diversify the Material Properties of Porous Chitosan Membranes. J. Agric. Food Chem. 2008, 56, 9015–9021. [Google Scholar] [CrossRef] [PubMed]
- Soares, L.d.S.; Perim, R.B.; de Alvarenga, E.S.; Guimarães, L.d.M.; Teixeira, A.V.N.d.C.; Coimbra, J.S.d.R.; de Oliveira, E.B. Insights on physicochemical aspects of chitosan dispersion in aqueous solutions of acetic, glycolic, propionic or lactic acid. Int. J. Biol. Macromol. 2019, 128, 140–148. [Google Scholar] [CrossRef]
- Rabello, M. Aditivação de Polímeros; Artliber: São Paulo, Brazil, 2000. [Google Scholar]
- Kasaai, M.R.; Arul, J.; Charlet, G. Intrinsic viscosity–molecular weight relationship for chitosan. J. Polym. Sci. Part B Polym. Phys. 2000, 38, 2591–2598. [Google Scholar] [CrossRef]
- Zhong, Y.; Zhuang, C.; Gu, W.M.; Zhao, Y.J.C.p. Effect of molecular weight on the properties of chitosan films prepared using electrostatic spraying technique. Carbohydr. Polym. 2019, 212, 197–205. [Google Scholar] [CrossRef]
- Han, Z.; Wang, H.; Wang, Q.; Liao, X.; Sun, R.; Xie, M. Mechanical and shape memory properties of Eucommia ulmoides gum-based elastic fibers with various architectures. React. Funct. Polym. 2024, 200, 105937. [Google Scholar] [CrossRef]
- Upadhyay, A.; Alimohammadi, F.; Tehrani, R. Engineering Porosity-Tuned Chitosan Beads: Balancing Porosity, Kinetics, and Mechanical Integrity. ACS Omega 2024, 9, 33857–33867. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Schiffman, J.D.; Perry, S.L. Linear Viscoelasticity and Time–Alcohol Superposition of Chitosan/Hyaluronic Acid Complex Coacervates. ACS Appl. Polym. Mater. 2022, 4, 1617–1625. [Google Scholar] [CrossRef]
- Mucha, M.; Wańkowicz, K.; Balcerzak, J. Analysis of Water Adsorption on Chitosan and Its Blends with Hydroxypropylcellulose. e-Polymers 2007, 7. [Google Scholar] [CrossRef]
- Qiao, C.; Ma, X.; Wang, X.; Liu, L. Structure and properties of chitosan films: Effect of the type of solvent acid. LWT 2021, 135, 109984. [Google Scholar] [CrossRef]
- Liu, X.; Zou, Z.; Wang, D.; Du, D.; Li, Z.; Li, W. Sustainable fabrication of chitosan membranes with optimized performance for ultrafiltration. Sep. Purif. Technol. 2024, 330, 125276. [Google Scholar] [CrossRef]
- Oxley, A.; Livingston, A.G. Effect of polymer molecular weight on the long-term process stability of crosslinked polybenzimidazole organic solvent nanofiltration (OSN) membranes. J. Membr. Sci. 2024, 689, 122149. [Google Scholar] [CrossRef]
- Weissman, S.A.; Anderson, N.G. Design of Experiments (DoE) and Process Optimization. A Review of Recent Publications. Org. Process Res. Dev. 2015, 19, 1605–1633. [Google Scholar] [CrossRef]
- Sabbagh, H.A.; Hussein-Al-Ali, S.H.; Hussein, M.Z.; Abudayeh, Z.; Ayoub, R.; Abudoleh, S.M. A Statistical Study on the Development of Metronidazole-Chitosan-Alginate Nanocomposite Formulation Using the Full Factorial Design. Polymers 2020, 12, 772. [Google Scholar] [CrossRef]
- Baklagina, Y.G.; Klechkovskaya, V.V.; Kononova, S.V.; Petrova, V.A.; Poshina, D.N.; Orekhov, A.S.; Skorik, Y.A. Polymorphic Modifications of Chitosan. Crystallogr. Rep. 2018, 63, 303–313. [Google Scholar] [CrossRef]
- Zhou, C.; Li, H.; Zhang, Y.; Xue, F.; Huang, S.; Wen, H.; Li, J.; de Claville Christiansen, J.; Yu, D.; Wu, Z.; et al. Deformation and structure evolution of glassy poly (lactic acid) below the glass transition temperature. CrystEngComm 2015, 17, 5651–5663. [Google Scholar] [CrossRef]
- Losada, M.; Tran, H.; Xu, Y. Lactic acid in solution: Investigations of lactic acid self-aggregation and hydrogen bonding interactions with water and methanol using vibrational absorption and vibrational circular dichroism spectroscopies. J. Chem. Phys. 2008, 128, 014508. [Google Scholar] [CrossRef] [PubMed]
- Guibal, E.; Roussy, J. Coagulation and flocculation of dye-containing solutions using a biopolymer (Chitosan). React. Funct. Polym. 2007, 67, 33–42. [Google Scholar] [CrossRef]
- Amorim, M.L.; Ferreira, G.M.D.; Soares, L.d.S.; Soares, W.A.d.S.; Ramos, A.M.; Coimbra, J.S.d.R.; da Silva, L.H.M.; de Oliveira, E.B. Physicochemical Aspects of Chitosan Dispersibility in Acidic Aqueous Media: Effects of the Food Acid Counter-Anion. Food Biophys. 2016, 11, 388–399. [Google Scholar] [CrossRef]
- Kumar, M.N.; Muzzarelli, R.A.; Muzzarelli, C.; Sashiwa, H.; Domb, A.J. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 2004, 104, 6017–6084. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, Y. Influence of coagulation bath on morphology of cellulose membranes prepared by NMMO method. Front. Chem. Eng. China 2008, 2, 204–208. [Google Scholar] [CrossRef]
- Lam, R.K.; Smith, J.W.; Saykally, R.J. Communication: Hydrogen bonding interactions in water-alcohol mixtures from X-ray absorption spectroscopy. J. Chem. Phys. 2016, 144, 191103. [Google Scholar] [CrossRef]
- Liu, H.L.; Xiao, C.F.; Huang, Q.L.; Fan, Z.L.; Hu, X.Y.; Shu, W.; Huan, G.L. Effect of Ethanol Composition in Water Coagulation Bath on Structure and Performance of Homogeneous-Reinforced Polyvinyl Chloride Hollow Fiber Membranes. Adv. Mater. Res. 2014, 936, 226–232. [Google Scholar] [CrossRef]
- Singh, J.; Dutta, P.K. Spectroscopic and conformational study of chitosan acid salts. J. Polym. Res. 2009, 16, 231–238. [Google Scholar] [CrossRef]
- Branca, C.; D’Angelo, G.; Crupi, C.; Khouzami, K.; Rifici, S.; Ruello, G.; Wanderlingh, U. Role of the OH and NH vibrational groups in polysaccharide-nanocomposite interactions: A FTIR-ATR study on chitosan and chitosan/clay films. Polymer 2016, 99, 614–622. [Google Scholar] [CrossRef]
- Kasaai, M.R. Determination of the degree of N-acetylation for chitin and chitosan by various NMR spectroscopy techniques: A review. Carbohydr. Polym. 2010, 79, 801–810. [Google Scholar] [CrossRef]
- Ho, T.T.; Bremmell, K.E.; Krasowska, M.; MacWilliams, S.V.; Richard, C.J.; Stringer, D.N.; Beattie, D.A. In Situ ATR FTIR Spectroscopic Study of the Formation and Hydration of a Fucoidan/Chitosan Polyelectrolyte Multilayer. Langmuir 2015, 31, 11249–11259. [Google Scholar] [CrossRef] [PubMed]
- Mucha, M.; Pawlak, A. Complex study on chitosan degradability. Polimery 2022, 47, 509–516. [Google Scholar] [CrossRef]
- de Moura, M.R.; Aouada, F.A.; Mattoso, L.H.C. Preparation of chitosan nanoparticles using methacrylic acid. J. Colloid. Interface Sci. 2008, 321, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Chen, Y.; Tan, W.; Li, Q.; Gu, G.; Dong, F.; Guo, Z. Synthesis, Characterization, and Antifungal Activity of Pyridine-Based Triple Quaternized Chitosan Derivatives. Molecules 2018, 23, 2604. [Google Scholar] [CrossRef]
- Szymańska, E.; Winnicka, K. Stability of chitosan-a challenge for pharmaceutical and biomedical applications. Mar. Drugs 2015, 13, 1819–1846. [Google Scholar] [CrossRef]
- Panar, M.; Avakian, P.; Blume, R.C.; Gardner, K.H.; Gierke, T.D.; Yang, H.H. Morphology of poly(p-phenylene terephthalamide) fibers. J. Polym. Sci. Polym. Phys. Ed. 1983, 21, 1955–1969. [Google Scholar] [CrossRef]
- Dawelbeit, A.; Hongpeng, Z.; Haijuan, K.; Jing, L.; Yu, M.; Muhuo, Y. Microstructural Developments of Poly (p-phenylene terephthalamide) Fibers During Heat Treatment Process: A Review. Mater. Res. 2014, 17, 1180–1200. [Google Scholar] [CrossRef]
- Dobrovolskaya, I.P.; Sudareva, N.N.; Mayevskaya, E.N.; Dresvyanina, E.N.; Ivan’kova, E.M.; Yudin, V.E. Influence of ethanol–alkali mixture on the structure of chitosan fibers and film coatings. Text. Res. J. 2022, 92, 2141–2149. [Google Scholar] [CrossRef]
- Yudin, V.E.; Dobrovolskaya, I.P.; Neelov, I.M.; Dresvyanina, E.N.; Popryadukhin, P.V.; Ivan’kova, E.M.; Elokhovskii, V.Y.; Kasatkin, I.A.; Okrugin, B.M.; Morganti, P. Wet spinning of fibers made of chitosan and chitin nanofibrils. Carbohydr. Polym. 2014, 108, 176–182. [Google Scholar] [CrossRef]
- Gnus, M. Influence of Chitosan Molecular Weight and Degree of Deacetylation on Membrane Physicochemical and Separation Properties in Ethanol Dehydration by the Vapour Permeation Process. Prog. Chem. Appl. Chitin Its Deriv. 2020, 25, 79. [Google Scholar] [CrossRef]
Levels | A—Chitosan Molar Mass | B—Acid | C—Coagulation Bath |
---|---|---|---|
1 | 83 KDa | Acetic | NaOH 0.5M + Ethanol |
2 | 155 KDa | Lactic | NaOH 0.5M + Methanol |
3 | 200 KDa | - | - |
Standard Order | Run Order | Sample Code * | A | B | C |
---|---|---|---|---|---|
21 | 1 | 3AAE | 3 | 1 | 1 |
14 | 2 | 2AAM | 2 | 1 | 2 |
20 | 3 | 1LAM | 1 | 2 | 2 |
22 | 4 | 3AAM | 3 | 1 | 2 |
13 | 5 | 2AAE | 2 | 1 | 1 |
17 | 6 | 1AAE | 1 | 1 | 1 |
18 | 7 | 1AAM | 1 | 1 | 2 |
8 | 8 | 1LAM | 1 | 2 | 2 |
24 | 9 | 3LAM | 3 | 2 | 2 |
9 | 10 | 3AAE | 3 | 1 | 1 |
23 | 11 | 3LAE | 3 | 2 | 1 |
19 | 12 | 1LAE | 1 | 2 | 1 |
15 | 13 | 2LAE | 2 | 2 | 1 |
7 | 14 | 1LAE | 1 | 2 | 1 |
11 | 15 | 3LAE | 3 | 2 | 1 |
16 | 16 | 2LAM | 2 | 2 | 2 |
5 | 17 | 1AAE | 1 | 1 | 1 |
12 | 18 | 3LAM | 3 | 2 | 2 |
2 | 19 | 2AAM | 2 | 1 | 2 |
10 | 20 | 3AAM | 3 | 1 | 2 |
4 | 21 | 2LAM | 2 | 2 | 2 |
3 | 22 | 2LAE | 2 | 2 | 1 |
6 | 23 | 1AAM | 1 | 1 | 2 |
1 | 24 | 2AAE | 2 | 1 | 1 |
Sample Code | Coagulation Rate (mm/s1/2) |
---|---|
1AAE | 0.0710 ± 0.00198 |
2AAE | 0.0589 ± 0.00438 |
3AAE | 0.0525 ± 0.00431 |
1AAM | 0.0648 ± 0.00205 |
2AAM | 0.0535 ± 0.00092 |
3AAM | 0.0514 ± 0.00368 |
1LAE | 0.0604 ± 0.00262 |
2LAE | 0.0643 ± 0.00283 |
3LAE | 0.0637 ± 0.00106 |
1LAM | 0.0560 ± 0.00010 |
2LAM | 0.0599 ± 0.00375 |
3LAM | 0.0579 ± 0.00163 |
SAMPLE CODE | Diameter (µm) | Tensile Strength (MPa) | Young’s Modulus (GPa) | Strain at Fracture (%) |
---|---|---|---|---|
1AAE | 203.0 ± 33.0 | 118 ± 34.4 | 11.0 ± 0.37 | 3.5 ± 0.71 |
2AAE | 213.3 ± 16.03 | 123 ± 21.1 | 10.7 ± 2.88 | 4.3 ± 0.42 |
3AAE | 242.7 ± 9.43 | 85 ± 12.8 | 9.3 ± 0.56 | 3.4 ± 0.28 |
1AAM | 207.5 ± 8.25 | 117 ± 12.8 | 8.6 ± 0.93 | 3.9 ± 0.25 |
2AAM | 235.3 ± 2.83 | 55 ± 61.0 | 12.0 ± 0.05 | 4.3 ± 0.60 |
3AAM | 225.2 ± 20.51 | 126 ± 4.3 | 11.9 ± 0.43 | 3.8 ± 0.22 |
1LAE | 185.2 ± 6.36 | 154 ± 7.1 | 12.1 ± 1.22 | 5.7 ± 0.73 |
2LAE | 206.3 ± 33.47 | 146 ± 18.8 | 10.9 ± 0.99 | 4.3 ± 0.11 |
3LAE | 245.7 ± 7.54 | 82 ± 1.3 | 6.8 ± 0.18 | 4.1 ± 0.30 |
1LAM | 198.5 ± 9.19 | 103 ± 4.1 | 10.8 ± 0.61 | 3.9 ± 0.59 |
2LAM | 214.3 ± 16.03 | 131 ± 0.8 | 8.9 ± 0.44 | 4.3 ± 0.07 |
3LAM | 223.3 ± 12.73 | 123 ± 6.9 | 10.6 ± 0.11 | 4.3 ± 0.05 |
Coagulation Rate | ||||||
Source * | DF | Contribution | Adj SS | Adj MS | F-Value | p-Value |
Model | 11 | 88.77% | 0.000735 | 0.000067 | 8.62 | 0.000 |
A | 2 | 21.66% | 0.000179 | 0.000090 | 11.57 | 0.002 |
B | 1 | 2.07% | 0.000017 | 0.000017 | 2.22 | 0.162 |
C | 1 | 14.95% | 0.000124 | 0.000124 | 15.97 | 0.002 |
A × B | 2 | 48.10% | 0.000398 | 0.000199 | 25.69 | 0.000 |
A × C | 2 | 0.44% | 0.000004 | 0.000002 | 0.23 | 0.795 |
B × C | 1 | 0.08% | 0.000001 | 0.000001 | 0.08 | 0.780 |
A × B × C | 2 | 1.46% | 0.000012 | 0.000006 | 0.78 | 0.479 |
Error | 12 | 11.23% | 0.000093 | 0.000008 | ||
Tensile Strength | ||||||
Source * | DF | Contribution | Adj SS | Adj MS | F-Value | p-Value |
Model | 11 | 73.74% | 17,339.9 | 1576.35 | 3.06 | 0.033 |
A | 2 | 6.08% | 1430.7 | 715.33 | 1.39 | 0.286 |
B | 1 | 9.33% | 2195.0 | 2194.98 | 4.27 | 0.061 |
C | 1 | 1.94% | 455.9 | 455.88 | 0.89 | 0.365 |
A × B | 2 | 12.42% | 2919.4 | 1459.72 | 2.84 | 0.098 |
A × C | 2 | 32.57% | 7657.9 | 3828.94 | 7.44 | 0.008 |
B × C | 1 | 0.01% | 2.0 | 2.01 | 0.00 | 0.951 |
A × B × C | 2 | 11.39% | 2679.0 | 1339.52 | 2.60 | 0.115 |
Error | 12 | 26.26% | 6173.6 | 514.47 |
Young’s Modulus | ||||||
---|---|---|---|---|---|---|
Source * | DF | Contribution | Adj SS | Adj MS | F-Value | p-Value |
Model | 11 | 81.11% | 553.642 | 50.331 | 4.68 | 0.007 |
A | 2 | 7.70% | 52.561 | 26.281 | 2.45 | 0.129 |
B | 1 | 2.57% | 17.550 | 17.550 | 1.63 | 0.225 |
C | 1 | 0.93% | 0.6370 | 0.6370 | 0.59 | 0.456 |
A × B | 2 | 21.80% | 148.814 | 74.407 | 6.93 | 0.010 |
A × C | 2 | 38.85% | 265.204 | 132.602 | 12.34 | 0.001 |
B × C | 1 | 0.24% | 0.1650 | 0.1650 | 0.15 | 0.702 |
A × B × C | 2 | 9.01% | 61.492 | 30.746 | 2.86 | 0.096 |
Error | 12 | 18.89% | 128.921 | 10.743 | ||
Swelling Degree | ||||||
Source * | DF | Contribution | Adj SS | Adj MS | F-Value | p-Value |
Model | 11 | 94.76% | 701,734 | 63,794 | 19.72 | 0.000 |
A | 2 | 2.78% | 20,583 | 10,292 | 3.18 | 0.078 |
B | 1 | 23.45% | 173,635 | 173,635 | 53.68 | 0.000 |
C | 1 | 9.93% | 73,524 | 73,524 | 22.73 | 0.000 |
A × B | 2 | 3.87% | 28,660 | 14,330 | 4.43 | 0.036 |
A × C | 2 | 13.49% | 99,891 | 49,946 | 15.44 | 0.000 |
B × C | 1 | 20.37% | 150,871 | 150,871 | 46.64 | 0.000 |
A × B × C | 2 | 20.87% | 154,569 | 77,284 | 23.89 | 0.000 |
Error | 12 | 5.24% | 38,818 | 3235 |
Response | S | R-sq | R-sq(adj) | PRESS | AICc | BIC |
---|---|---|---|---|---|---|
Coagulation Rate | 0.0027835 | 88.77% | 78.47% | 0.0003719 | −168.56 | −189.65 |
Tensile Strength | 226.819 | 73.74% | 49.68% | 24694.4 | 263.71 | 242.62 |
Young’s modulus | 103.650 | 81.11% | 63.80% | 515.682 | 115.59 | 94.51 |
Swelling degree | 568.756 | 94.76% | 89.95% | 155272 | 307.84 | 286.75 |
Response | Fit | SE Fit | 95% CI | 95% PI |
---|---|---|---|---|
Swelling degree (%) | 415.9 | 40.2 | (328.3, 503.5) | (264.1, 567.7) |
Young’s modulus (GPa) | 11.885 | 0.733 | (10.288, 13.482) | (9.119, 14.651) |
Tensile strength (MPa) | 126.2 | 16.0 | (91.3, 161.1) | (65.7, 186.7) |
Coagulation rate (mm/s1/2) | 0.05140 | 0.00197 | (0.04711, 0.05569) | (0.04397, 0.05883) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, H.N.; Barbosa, M.C.d.S.; de Souza, M.F.; Lima, A.M.d.S.; Duarte, R.R.d.A.; Navarro, R.F.; Silva, S.M.d.L.; Fook, M.V.L. How Molar Mass, Acid Type, and Coagulation Bath Composition Influence Coagulation Kinetics, Mechanical Properties, and Swelling Behavior of Chitosan Filaments: A Full Factorial Approach. Polymers 2025, 17, 927. https://doi.org/10.3390/polym17070927
da Silva HN, Barbosa MCdS, de Souza MF, Lima AMdS, Duarte RRdA, Navarro RF, Silva SMdL, Fook MVL. How Molar Mass, Acid Type, and Coagulation Bath Composition Influence Coagulation Kinetics, Mechanical Properties, and Swelling Behavior of Chitosan Filaments: A Full Factorial Approach. Polymers. 2025; 17(7):927. https://doi.org/10.3390/polym17070927
Chicago/Turabian Styleda Silva, Henrique Nunes, Milena Costa da Silva Barbosa, Matheus Ferreira de Souza, Athirson Mikael de Sousa Lima, Rafaella Resende de Almeida Duarte, Rômulo Feitosa Navarro, Suédina Maria de Lima Silva, and Marcus Vinícius Lia Fook. 2025. "How Molar Mass, Acid Type, and Coagulation Bath Composition Influence Coagulation Kinetics, Mechanical Properties, and Swelling Behavior of Chitosan Filaments: A Full Factorial Approach" Polymers 17, no. 7: 927. https://doi.org/10.3390/polym17070927
APA Styleda Silva, H. N., Barbosa, M. C. d. S., de Souza, M. F., Lima, A. M. d. S., Duarte, R. R. d. A., Navarro, R. F., Silva, S. M. d. L., & Fook, M. V. L. (2025). How Molar Mass, Acid Type, and Coagulation Bath Composition Influence Coagulation Kinetics, Mechanical Properties, and Swelling Behavior of Chitosan Filaments: A Full Factorial Approach. Polymers, 17(7), 927. https://doi.org/10.3390/polym17070927