Valorization of Extracted Bark for Particleboard Production: A Life-Cycle Impact Assessment
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Hot Water Extraction of Tree Bark
3.2. Physical and Mechanical Properties of the Bark-Based Panels
3.3. Holistic Assessment of Different Processing Scenarios
Life-Cycle Impact Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosell, J.A. Bark in Woody Plants: Understanding the Diversity of a Multifunctional Structure. Integr. Comp. Biol. 2019, 59, 535–547. [Google Scholar] [CrossRef]
- Holubcik, M.; Jandacka, J.; Palacka, M.; Kantova, N.; Jachniak, E.; Pavlik, P. The Impact of Bark Content in Wood Pellets on Emission Production During Combustion in Small Heat Source. Commun.-Sci. Lett. Univ. Zilina 2017, 19, 94–100. [Google Scholar] [CrossRef]
- Krigstin, S.; Helmeste, C.; Jia, H.; Johnson, K.E.; Wetzel, S.; Volpe, S.; Faizal, W.; Ferrero, F. Comparative Analysis of Bark and Woodchip Biomass Piles for Enhancing Predictability of Self-Heating. Fuel 2019, 242, 699–709. [Google Scholar] [CrossRef]
- Anerud, E.; Routa, J.; Bergström, D.; Eliasson, L. Fuel Quality of Stored Spruce Bark–Influence of Semi-Permeable Covering Material. Fuel 2020, 279, 118467. [Google Scholar] [CrossRef]
- Elisa, P.; Alessandro, P.; Andrea, A.; Silvia, B.; Mathis, P.; Dominik, P.; Manuela, R.; Francesca, T.; Voglar, G.E.; Tine, G.; et al. Environmental and Climate Change Impacts of Eighteen Biomass-Based Plants in the Alpine Region: A Comparative Analysis. J. Clean. Prod. 2020, 242, 118449. [Google Scholar] [CrossRef]
- Miranda, I.; Gominho, J.; Mirra, I.; Pereira, H. Fractioning and Chemical Characterization of Barks of Betula Pendula and Eucalyptus Globulus. Ind. Crops Prod. 2013, 41, 299–305. [Google Scholar] [CrossRef]
- Hamad, A.M.A.; Ates, S.; Olgun, Ç.; Gür, M. Chemical Composition and Antioxidant Properties of Some Industrial Tree Bark Extracts. Bioresources 2019, 14, 5657–5671. [Google Scholar] [CrossRef]
- Pásztory, Z.; Mohácsiné, I.R.; Gorbacheva, G.; Börcsök, Z. The Utilization of Tree Bark. Bioresources 2016, 11, 7859–7888. [Google Scholar] [CrossRef]
- Wagner, K.; Roth, C.; Willför, S.; Musso, M.; Petutschnigg, A.; Oostingh, G.J.; Schnabel, T. Identification of Antimicrobial Compounds in Different Hydrophilic Larch Bark Extracts. Bioresources 2019, 14, 5807–5815. [Google Scholar] [CrossRef]
- Kain, G.; Güttler, V.; Barbu, M.C.; Petutschnigg, A.; Richter, K.; Tondi, G. Density Related Properties of Bark Insulation Boards Bonded with Tannin Hexamine Resin. Eur. J. Wood Wood Prod. 2014, 72, 417–424. [Google Scholar] [CrossRef]
- Tudor, E.M.; Barbu, M.C.; Petutschnigg, A.; Réh, R. Added-Value for Wood Bark as a Coating Layer for Flooring Tiles. J. Clean. Prod. 2018, 170, 1354–1360. [Google Scholar] [CrossRef]
- Busquets-Ferrer, M.; Czabany, I.; Vay, O.; Gindl-Altmutter, W.; Hansmann, C. Alkali-Extracted Tree Bark for Efficient Bio-Based Thermal Insulation. Constr. Build. Mater. 2021, 271, 121577. [Google Scholar] [CrossRef]
- Kain, G.; Barbu, M.C.; Hinterreiter, S.; Richter, K.; Petutschnigg, A. Using Bark as a Heat Insulation Material. BioRessources 2013, 8, 3718–3731. [Google Scholar]
- Tudor, E.; Kristak, L.; Barbu, M.; Gergeľ, T.; Němec, M.; Kain, G.; Réh, R. Acoustic Properties of Larch Bark Panels. Forests 2021, 12, 887. [Google Scholar] [CrossRef]
- Yemele, M.; Blanchet, P.; Cloutier, A.; Koubaa, A. Effects of Bark Content and Particle Geometry on the Physical and Mechanical Properties of Particleboard Made from Black Spruce and Trembling Aspen Bark. For. Prod. J. 2008, 58, 48–56. [Google Scholar]
- Xing, C.; Deng, J.; Zhang, S.Y. Effect of Thermo-Mechanical Refining on Properties of MDF Made from Black Spruce Bark. Wood Sci. Technol. 2007, 41, 329–338. [Google Scholar] [CrossRef]
- Domingos, B.E.M.; Moura, J.D. de M. Viabilty of Eucalyptus Bark for the Composition of OSB Panels. Bioresources 2019, 14, 9472–9484. [Google Scholar] [CrossRef]
- Tudor, E.M.; Scheriau, C.; Barbu, M.C.; Réh, R.; Krišťák, Ľ.; Schnabel, T. Enhanced Resistance to Fire of the Bark-Based Panels Bonded with Clay. Appl. Sci. 2020, 10, 5594. [Google Scholar] [CrossRef]
- Pacher, T.; Barbu, M.; Urstöger, J.; Petutschnigg, A.; Tudor, E. Fire Retardancy of Cementitious Panels with Larch and Spruce Bark as Bio-Admixtures. Polymers 2022, 14, 1469. [Google Scholar] [CrossRef]
- Häsler Gunnarsdottir, S.; Sommerauer, L.; Schnabel, T.; Oostingh, G.J.; Schuster, A. Antioxidative and Antimicrobial Evaluation of Bark Extracts from Common European Trees in Light of Dermal Applications. Antibiotics 2023, 12, 130. [Google Scholar] [CrossRef]
- Réh, R.; Krišťák, Ľ.; Sedliačik, J.; Bekhta, P.; Božiková, M.; Kunecová, D.; Vozárová, V.; Tudor, E.M.; Antov, P.; Savov, V. Utilization of Birch Bark as an Eco-Friendly Filler in Urea-Formaldehyde Adhesives for Plywood Manufacturing. Polymers 2021, 13, 511. [Google Scholar] [CrossRef]
- Bello, A.; Bergmann, U.; Vepsäläinen, J.; Leiviskä, T. Effects of Tree Harvesting Time and Tannin Cold/Hot-Water Extraction Procedures on the Performance of Spruce Tannin Biocoagulant for Water Treatment. Chem. Eng. J. 2022, 449, 137809. [Google Scholar] [CrossRef]
- Kilpeläinen, P.; Liski, E.; Saranpää, P. Optimising and Scaling up Hot Water Extraction of Tannins from Norway Spruce and Scots Pine Bark. Ind. Crops Prod. 2023, 192, 116089. [Google Scholar] [CrossRef]
- Le Normand, M.; Edlund, U.; Holmbom, B.; Ek, M. Hot-Water Extraction and Characterization of Spruce Bark Non-Cellulosic Polysaccharides. Nord. Pulp Pap. Res. J. 2012, 27, 18–23. [Google Scholar]
- Bianchi, S.; Koch, G.; Janzon, R.; Mayer, I.; Saake, B.; Pichelin, F. Hot Water Extraction of Norway Spruce (Picea abies [Karst.]) Bark: Analyses of the Influence of Bark Aging and Process Parameters on the Extract Composition. Holzforschung 2016, 70, 619–631. [Google Scholar] [CrossRef]
- Grzybek, J.; Sepperer, T.; Petutschnigg, A.; Schnabel, T. Organosolv Lignin from European Tree Bark: Influence of Bark Pretreatment. Materials 2021, 14, 7774. [Google Scholar] [CrossRef]
- Kemppainen, K.; Siika-aho, M.; Pattathil, S.; Giovando, S.; Kruus, K. Spruce Bark as an Industrial Source of Condensed Tannins and Non-Cellulosic Sugars. Ind. Crops Prod. 2014, 52, 158–168. [Google Scholar] [CrossRef]
- Yadav, P.; Korpinen, R.; Räty, T.; Korkalo, P.; Räsänen, K.; Tienaho, J.; Saranpää, P. Life Cycle Assessment of Suberin and Betulin Production from Birch Bark. J. Clean. Prod. 2024, 474, 143570. [Google Scholar] [CrossRef]
- Jyske, T.; Brännström, H.; Halmemies, E.; Laakso, T.; Kilpeläinen, P.; Hyvönen, J.; Kärkkäinen, K.; Saranpää, P. Stilbenoids of Norway Spruce Bark: Does the Variability Caused by Raw-Material Processing Offset the Biological Variability? Biomass Convers. Biorefin. 2024, 14, 5085–5099. [Google Scholar] [CrossRef]
- Feng, S.; Cheng, S.; Yuan, Z.; Leitch, M.; Xu, C. (Charles) Valorization of Bark for Chemicals and Materials: A Review. Renew. Sustain. Energy Rev. 2013, 26, 560–578. [Google Scholar] [CrossRef]
- de Hoyos-Martínez, P.L.; Merle, J.; Labidi, J.; Charrier-El Bouhtoury, F. Tannins Extraction: A Key Point for Their Valorization and Cleaner Production. J. Clean. Prod. 2019, 206, 1138–1155. [Google Scholar] [CrossRef]
- Emrich, S.; Schuster, A.; Schnabel, T.; Oostingh, G.J. Antimicrobial Activity and Wound-Healing Capacity of Birch, Beech and Larch Bark Extracts. Molecules 2022, 27, 2817. [Google Scholar] [CrossRef] [PubMed]
- Tienaho, J.; Reshamwala, D.; Sarjala, T.; Kilpeläinen, P.; Liimatainen, J.; Dou, J.; Viherä-Aarnio, A.; Linnakoski, R.; Marjomäki, V.; Jyske, T. Salix spp. Bark Hot Water Extracts Show Antiviral, Antibacterial, and Antioxidant Activities—The Bioactive Properties of 16 Clones. Front. Bioeng. Biotechnol. 2021, 9, 797939. [Google Scholar] [CrossRef]
- Şen, U.; Esteves, B.; Pereira, H. Pyrolysis and Extraction of Bark in a Biorefineries Context: A Critical Review. Energies 2023, 16, 4848. [Google Scholar] [CrossRef]
- Rasi, S.; Kilpeläinen, P.; Rasa, K.; Korpinen, R.; Raitanen, J.-E.; Vainio, M.; Kitunen, V.; Pulkkinen, H.; Jyske, T. Cascade Processing of Softwood Bark with Hot Water Extraction, Pyrolysis and Anaerobic Digestion. Bioresour. Technol. 2019, 292, 121893. [Google Scholar] [CrossRef] [PubMed]
- Holmberg, A.; Stenström, S. Dewatering and Drying of Bark. Int. J. Energy Eng. 2014, 4, 8–16. [Google Scholar]
- Yemele, M.; Cloutier, A.; Diouf, P.N.; Koubaa, A.; Blachet, P.; Stevanovic, T. Physical and Mechanical Properties of Particleboard Made from Extracted Black Spruce and Trembling Aspen Bark. For. Prod. J. 2009, 58, 38–46. [Google Scholar]
- Routa, J.; Brännström, H.; Hellström, J.; Laitila, J. Influence of Storage on the Physical and Chemical Properties of Scots Pine Bark. Bioenergy Res. 2021, 14, 575–587. [Google Scholar] [CrossRef]
- Dumfort, S. Degradation of Biomass during the Storage of Woodchips. In Proceedings of the 21st Biomass Conference, KOpenhagen, Denmark, 3–7 June 2013. [Google Scholar]
- Carlqvist, K.; Arshadi, M.; Mossing, T.; Östman, U.; Brännström, H.; Halmemies, E.; Nurmi, J.; Lidén, G.; Börjesson, P. Life-cycle Assessment of the Production of Cationized Tannins from Norway Spruce Bark as Flocculants in Wastewater Treatment. Biofuels Bioprod. Biorefining 2020, 14, 1270–1285. [Google Scholar] [CrossRef]
- Trübswetter, T. Holztrocknung: Verfahren zur Trocknung von Schnittholz-Planung von Trocknungsanlagen, 2nd ed.; Carl Hanser Verlag: München, Germany, 2009. [Google Scholar]
- Kollmann, F. Technologie des Holzes und der Holzwerkstoffe, 2nd ed.; Springer: Berlin, Germany, 1951; Volume XVII. [Google Scholar]
- Sain, S.; Matsakas, L.; Rova, U.; Christakopoulos, P.; Öman, T.; Skrifvars, M. Spruce Bark-Extracted Lignin and Tannin-Based Bioresin-Adhesives: Effect of Curing Temperatures on the Thermal Properties of the Resins. Molecules 2021, 26, 3523. [Google Scholar] [CrossRef]
- Sepperer, T.; Hernandez-Ramos, F.; Labidi, J.; Oostingh, G.J.; Bogner, B.; Petutschnigg, A.; Tondi, G. Purification of Industrial Tannin Extract through Simple Solid-Liquid Extractions. Ind. Crops Prod. 2019, 139, 111502. [Google Scholar] [CrossRef]
- EN 15804 + A2; Sustainability of Construction Works - Environmental Product Declarations–Core Rules for the Product Category of Construction Products. European Committee for Standardization: Brussels, Belgium, 2022.
- Lacoste, C.; Čop, M.; Kemppainen, K.; Giovando, S.; Pizzi, A.; Laborie, M.-P.; Sernek, M.; Celzard, A. Biobased Foams from Condensed Tannin Extracts from Norway Spruce (Picea Abies) Bark. Ind. Crops Prod. 2015, 73, 144–153. [Google Scholar] [CrossRef]
- Bianchi, S.; Kroslakova, I.; Janzon, R.; Mayer, I.; Saake, B.; Pichelin, F. Characterization of Condensed Tannins and Carbohydrates in Hot Water Bark Extracts of European Softwood Species. Phytochemistry 2015, 120, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.Z.M.; Elansary, H.O.; Elkelish, A.A.; Zeidler, A.; Ali, H.M.; EL-Hefny, M.; Yessoufou, K. In Vitro Bioactivity and Antimicrobial Activity of Picea abies and Larix decidua Wood and Bark Extracts. Bioresources 2016, 11, 9421–9437. [Google Scholar] [CrossRef]
- Vijaya Kumar Reddy, C.; Sreeramulu, D.; Raghunath, M. Antioxidant Activity of Fresh and Dry Fruits Commonly Consumed in India. Food Res. Int. 2010, 43, 285–288. [Google Scholar] [CrossRef]
- Chen, L.-Y.; Cheng, C.-W.; Liang, J.-Y. Effect of Esterification Condensation on the Folin–Ciocalteu Method for the Quantitative Measurement of Total Phenols. Food Chem. 2015, 170, 10–15. [Google Scholar] [CrossRef]
- Hofmann, T.; Nebehaj, E.; Stefanovits-Bányai, É.; Albert, L. Antioxidant Capacity and Total Phenol Content of Beech (Fagus sylvatica L.) Bark Extracts. Ind. Crops Prod. 2015, 77, 375–381. [Google Scholar] [CrossRef]
- Bekhta, P.; Sedliačik, J.; Noshchenko, G.; Kačík, F.; Bekhta, N. Characteristics of Beech Bark and Its Effect on Properties of UF Adhesive and on Bonding Strength and Formaldehyde Emission of Plywood Panels. Eur. J. Wood Wood Prod. 2021, 79, 423–433. [Google Scholar] [CrossRef]
- Sreejaya, M.M.; Jeevan Sankar, R.; Ramanunni, K.; Pillai, N.P.; Ramkumar, K.; Anuvinda, P.; Meenakshi, V.S.; Sadanandan, S. Lignin-Based Organic Coatings and Their Applications: A Review. Mater. Today Proc. 2022, 60, 494–501. [Google Scholar] [CrossRef]
- EN 317:2005; Particleboards and Fibreboards; Determination of Swelling in Thickness After Immersion in Water. European Committee for Standardization: Brussels, Belgium, 2005.
- EN 312:2010; Particleboards-Specifications. European Committee for Standardization: Brussels, Belgium, 2005.
- Cellulose Chemistry and Properties: Fibers, Nanocelluloses and Advanced Materials; Rojas, O.J., Ed.; Springer International Publishing: Cham, Switzerland, 2016; Volume 271, ISBN 978-3-319-26013-6. [Google Scholar]
- Barjoveanu, G.; Pătrăuțanu, O.-A.; Teodosiu, C.; Volf, I. Life Cycle Assessment of Polyphenols Extraction Processes from Waste Biomass. Sci. Rep. 2020, 10, 13632. [Google Scholar] [CrossRef]
- Carlqvist, K.; Wallberg, O.; Lidén, G.; Börjesson, P. Life Cycle Assessment for Identification of Critical Aspects in Emerging Technologies for the Extraction of Phenolic Compounds from Spruce Bark. J. Clean. Prod. 2022, 333, 130093. [Google Scholar] [CrossRef]
- Ding, T.; Bianchi, S.; Ganne-Chédeville, C.; Kilpeläinen, P.; Haapala, A.; Räty, T. Life Cycle Assessment of Tannin Extraction from Spruce Bark. iForest 2017, 10, 807–814. [Google Scholar] [CrossRef]
- Todd, R.; Baroutian, S. A Techno-Economic Comparison of Subcritical Water, Supercritical CO2 and Organic Solvent Extraction of Bioactives from Grape Marc. J. Clean. Prod. 2017, 158, 349–358. [Google Scholar] [CrossRef]
- Missiatto Gavioli, L.; Lopes Silva, D.A.; Bueno, C.; Rossignolo, J.A. Life Cycle Assessment as a Circular Economy Strategy to Select Eco-Efficient Raw Materials for Particleboard Production. Resour. Conserv. Recycl. 2025, 212, 107921. [Google Scholar] [CrossRef]
- Yılmaz, E. Environmental Impact Assessment of Melamine Coated Medium Density Fiberboard (MDF-LAM) Production and Cumulative Energy Demand: A Case Study in Türkiye. Case Stud. Constr. Mater. 2024, 20, e02733. [Google Scholar] [CrossRef]
Operation | Value | Unit | Reference |
---|---|---|---|
Natural mass loss due to storage | 10 | % | [4] |
Hot water extraction—2 h | 0.77 | kWh/kg | Present study |
Hot water extraction—4 h | 0.921 | kWh/kg | Present study |
Evaporation | 0.01167 | kWh/kg | [40] |
Pressing for remove water | 0.005 | kWh/kg water | [40] |
Bark drying (from 30 to 8% moisture) | 1.5 | kWh/kg water | [41] |
Heating up for panel pressing | 0.08029 | kWh/kg | [42] |
Dry calorific value for spruce bark | 20.668 | MJ/kg | Present study |
Dry calorific value for larch bark | 19.822 | MJ/kg | Present study |
Dry calorific value for beech bark | 16.321 | MJ/kg | Present study |
Sample | Total Phenolic Content [mgGAE/g] | Antioxidant Activity [Inhibition %] | Yield [%] |
---|---|---|---|
Spruce bark after 2 h HWE | 160.16 * | 27.55 * | 3.10 |
Spruce bark after 4 h HWE | 202.32 * | 44.08 * | 7.13 |
Larch bark after 2 h HWE | 324.04 * | 53.16 * | 13.71 |
Larch bark after 4 h HWE | 458.21 * | 82.16 * | 21.19 |
Beech bark after 2 h HWE | 317.65 * | 62.30 * | 10.34 |
Beech bark after 4 h HWE | 231.84 * | 76.76 * | 30.91 |
Density | IB | MOR | MOE | TS | ||||||
---|---|---|---|---|---|---|---|---|---|---|
p | p | p | p | p | ||||||
Model | 0.001 | 0.46 | 0.001 | 0.49 | 0.001 | 0.57 | 0.001 | 0.49 | 0.001 | 0.35 |
Bark species | 0.16 | 0.61 | 0.001 | 0.27 | 0.001 | 0.38 | 0.001 | 0.25 | 0.101 | 0.17 |
Steam exposure | 0.17 | 0.24 | 0.27 | 0.11 | 0.19 | 0.06 | 0.17 | 0.1 | 0.2 | 0.03 |
Board Type | Density (kg/m3) | Specific TS (%) | Specific IB (N/mm2) | Specific MOR (N/mm2) | Specific MOE (N/mm2) |
---|---|---|---|---|---|
Beech bark untreated | 698 (15) | 0.01 (0.0007) | 0.001 (0.0006) | 0.002 (0.0007) | 0.54 (0.09) |
Beech bark after 2 h HWE | 746 (22) | 0.01 (0.001) | 0.0007 (0.0004) | 0.003 (0.001) | 0.54 (0.17) |
Beech bark after 4 h HWE | 772 (47) | 0.01 (0.001) | 0.0009 (0.0002) | 0.002 (0.0008) | 0.69 (0.23) |
Spruce bark untreated | 718 (25) | 0.01 (0.001) | 0.0007 (0.0006) | 0.005 (0.001) | 0.84 (0.2) |
Spruce bark after 2 h HWE | 768 (37) | 0.01 (0.001) | 0.0006 (0.0001) | 0.04 (0.001) | 0.98 (0.3) |
Spruce bark after 4 h HWE | 708 (31) | 0.01 (0.0008) | 0.0007 (0.0001) | 0.003 (0.001) | 0.73 (0.15) |
Larch bark untreated | 724 (6) | 0.01 (0.0008) | 0.006 (0.0009) | 0.004 (0.0005) | 0.72 (0.04) |
Larch bark after 2 h HWE | 762 (32) | 0.01 (0.001) | 0.0006 (0.0001) | 0.006 (0.001) | 1.11 (0.17) |
Larch bark after 4 h HWE | 714 (25) | 0.01 (0.001) | 0.0007 (0.0003) | 0.005 (0.001) | 1.06 (0.17) |
Impact Category | Unit | Scenario 1 | Scenario 2 | Scenario 3 |
---|---|---|---|---|
Acidification | mmol H+ eq | 8.630 | 14.294 | 18.349 |
Climate change—total | kg CO2 eq | −1.516 | −0.113 | −4.038 |
Climate change—biogenic | kg CO2 eq | −2.112 | −2.328 | −8.797 |
Climate change—fossil | kg CO2 eq | 0.595 | 2.211 | 4.753 |
Climate change—LULUC | g CO2 eq | 1.206 | 3.318 | 5.782 |
Eutrophication, marine | g N eq | 3.365 | 4.344 | 3.691 |
Eutrophication, freshwater | g P eq | 0.260 | 1.966 | 3.998 |
Eutrophication, terrestrial | mol N eq | 0.038 | 0.046 | 0.036 |
Ozone depletion | mg CFC-11 eq | 0.004 | 0.045 | 0.148 |
Photochemical ozone formation | kg NMVOC eq | 0.011 | 0.014 | 0.014 |
Resource use, fossils | MJ | 7.078 | 33.166 | 86.259 |
Resource use, minerals, and metals | mg Sb eq | 3.367 | 34.076 | 80.924 |
Water use | m3 depriv. | 0.283 | 0.446 | 2.059 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morandini, M.; Barbu, M.C.; Váňová, R.; Kain, S.; Tippner, J.; Petutschnigg, A.; Kristak, L.; Kain, G.; Sepperer, T.; Schnabel, T. Valorization of Extracted Bark for Particleboard Production: A Life-Cycle Impact Assessment. Polymers 2025, 17, 925. https://doi.org/10.3390/polym17070925
Morandini M, Barbu MC, Váňová R, Kain S, Tippner J, Petutschnigg A, Kristak L, Kain G, Sepperer T, Schnabel T. Valorization of Extracted Bark for Particleboard Production: A Life-Cycle Impact Assessment. Polymers. 2025; 17(7):925. https://doi.org/10.3390/polym17070925
Chicago/Turabian StyleMorandini, Marco, Marius Cătălin Barbu, Rozália Váňová, Stefan Kain, Jan Tippner, Alexander Petutschnigg, Lubos Kristak, Günther Kain, Thomas Sepperer, and Thomas Schnabel. 2025. "Valorization of Extracted Bark for Particleboard Production: A Life-Cycle Impact Assessment" Polymers 17, no. 7: 925. https://doi.org/10.3390/polym17070925
APA StyleMorandini, M., Barbu, M. C., Váňová, R., Kain, S., Tippner, J., Petutschnigg, A., Kristak, L., Kain, G., Sepperer, T., & Schnabel, T. (2025). Valorization of Extracted Bark for Particleboard Production: A Life-Cycle Impact Assessment. Polymers, 17(7), 925. https://doi.org/10.3390/polym17070925