A Review on Additive Manufactured Engineering Materials for Enhanced Road Safety and Transportation Applications
Abstract
:1. Introduction
2. Additive Manufacturing Technologies in Road Safety Elements
3. Materials Used in Road Safety and Transportation Applications
3.1. Polymers
Year | Materials | Objective | Input Parameter | Conclusion |
---|---|---|---|---|
2022 | Recycled tire rubber and Polypropylene (PP) [67] | Energy and carbon analysis of recycled materials in road safety barriers |
| Option B achieved 38% less CO2 and 47% less non-renewable energy consumption. Option C showed a 69% CO2 reduction and 86% less energy consumption. |
2023 | Flexible polymer barrier [69] | Develop a flexible and reusable barrier system for runaway vehicles |
| The proposed system ensured passenger safety while successfully stopping runaway vehicles. It is also cost-effective as it is reusable. |
2024 | Ethylene-Vinyl Acetate (EVA) foam [70] | Design optimization of roadside safety barriers |
| EVA foam improved the crash performance of the barrier by reducing impact energy by 30%. Better design parameters were developed through parallel Bayesian optimization. |
2023 | Modular Rotating Polymer Barrier [71] | Analyzing the crash performance of the new mountable roll barrier |
| The rotating barrier caused less damage than conventional steel barriers, increased energy absorption and improved passenger safety. |
2021 | Assembled Anti-Collision Barrier (Polymer Composite) [72] | Analyzing the crash impact of a new erected barrier |
| The new barrier provided better energy absorption than traditional steel barriers and prevented vehicles from driving off the bridge. |
2019 | Water Filled Plastic Barrier (MDPE) [73] | Evaluating the crash performance of water-filled barriers |
| MDPE plastic barriers were effective at low speeds (≤20 km/h) but did not provide sufficient safety at high speeds (>50 km/h). |
3.2. Metals
Year | Material | Objective | Input Parameter | Conclusion |
---|---|---|---|---|
2022 | Three-wave steel beam [86] | Increase crashworthiness. |
| Improved strength with new design. Maximum displacement 568.48 mm meeting Class 8 standards. |
2023 | Steel barrier [87] | Improving safety in freight car collisions |
| Absorbed 60% of the momentum. Reduced accident severity transferred to passengers. |
2023 | Q690 material [88] | Developing a passage system without a wing wall |
| Successful transition reducing the risk of snagging. Absorbed 280 KJ of crash energy. SB class protection. |
2023 | Ti-Nb Microalloyed steel [91] | Matching microstructure properties to crash loads. Microalloyed steel analyzed by laboratory tests |
| Microstructure developed for crash loads. Yield strength 729 MPA, tensile strength 813 MPa. |
2024 | Steel flange (Figure 6a,b) [92] | Reliably measure the load-bearing capacity. Material properties were evaluated with the non-destructive Barkhausen method |
| The load-bearing capacity was reliably assessed. A correlation was found between notch toughness and magnetic hardness. |
2024 | Crash barriers [93] | Optimizing barrier design and reducing impact in derailments of high-speed trains. Modeling with ABAQUS |
| Optimized design for high-speed trains. Effective in terms of dynamic damage prevention. |
2022 | W-beam barrier [95] | Poles in metal sleeves were evaluated. |
| Comparable performance to buried poles, compliant with MASH standards. |
2024 | Al 6061-T6 material [96] | Increase deformation resistance and moment of inertia. Beam optimization using LS-DYNA software |
| Higher inertia and reduced deformation. Deformation reduced by 12.8%, moment of inertia increased by 28.6%. |
2022 | Triple beam barrier [98] | Making bridge barrier connections safe. Crash tests were conducted in accordance with MASH standards. |
| Safe and effective bridge barrier connection. Compliant with MASH TL-3 standards, prevents vehicle entrapment. |
2024 | Movable steel barrier [99] | Improving highway safety with fast opening and closing barriers. |
| Fast installation for highway safety. Installation speed 12 m/min, closing speed 2 min. |
2021 | Cable barriers and strong post barriers [100] | Analyzing crash outcomes with cable barriers and pole barriers. Data analysis was performed with mixed logit models. |
| Cable barriers have the lowest share of fatal/injury accidents with 24%. |
3.3. Composites
Year | Material | Objective | Input Parameter | Conclusion |
---|---|---|---|---|
2024 | Glass fiber/LDPE composite [119] | Production and characterization for W-beam barrier |
| Glass fiber-reinforced barriers have better energy absorption capacity compared to the steel alternative. |
2023 | Natural stem (Stipa tenacissima) composite [122] | Increase impact energy absorption |
| The composite barrier absorbed 67.7% more impact energy than steel. |
2021 | Basalt fiber reinforced polymer [125] | Improving crash performance |
| It absorbed more energy than steel barriers, keeping vehicle acceleration under 200%. |
2022 | Composite blocks [126] | W-beam barrier height increase |
| MASH Test 3-11 standard was found compliant, passenger safety was increased. |
2023 | Composite-steel double-layer barrier [127] | Increasing the crashworthiness of bridge barriers |
| The double-layer barrier provided energy absorption equivalent to 59.1% of the concrete barrier. |
2023 | Carbon/Epoxy and Fiber Metal Laminated [128] | Compare the impact resistance of different barriers |
| The FML-B barrier was found to have the highest energy absorption capacity. |
2023 | Renewable hybrid barrier (RHB) [129] | Impact resistance of innovative hybrid barrier systems |
| The hybrid barrier was found to be as safe as steel and as comfortable as concrete. |
2022 | Hybrid barrier with waste materials (Figure 8b) [118] | To investigate the usability of waste materials in barriers |
| An environmentally friendly barrier compliant with EN 1317 tests was proposed. |
2024 | Recycled foam concrete [130] | Increasing energy absorption in road barriers |
| Reduced impact force by 54.46%, reduced cost by 5.5%. |
2021 | Steel-concrete composite beam [131] | Analyzing the effect of parapets | Simple beam composite bridge model | A 26.92% lower load distribution was detected with the parapet effect. |
4. AMed Materials and Its Road Safety and Transportation Structures
4.1. Polymer-Based Materials
4.2. Metal Materials
4.3. Composite Materials
5. Challenges and Future Perspectives
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Pedestrian Safety: A Road Safety Manual for Decision-Makers and Practitioners; World Health Organization: Geneva, Switzerland, 2023. [Google Scholar]
- Meesmann, U.; Wardenier, N.; Torfs, K.; Pires, C.; Delannoy, S.; Van den Berghe, W. A Global Look at Road Safety: Synthesis from the ESRA2 Survey in 48 Countries. ESRA Project (E-Survey of Road Users’ Attitudes); Vias Institute: Brussels, Belgium, 2022. [Google Scholar]
- Khan, M.N.; Das, S. Advancing Traffic Safety through the Safe System Approach: A Systematic Review. Accid. Anal. Prev. 2024, 199, 107518. [Google Scholar] [PubMed]
- Mára, M.; Konrád, P.; Fornůsek, J.; Zatloukal, J.; Frydrýn, M.; Nouzovský, L.; Sovják, R. Development of Mobile Road Barrier Made of Ultra-High-Performance Fibre-Reinforced Concrete. Mater. Today Proc. 2020, 32, 162–167. [Google Scholar]
- Pereira, T.; Kennedy, J.V.; Potgieter, J. A Comparison of Traditional Manufacturing vs Additive Manufacturing, The Best Method for the Job. Procedia Manuf. 2019, 30, 11–18. [Google Scholar]
- Alparslan, C.; Bayraktar, Ş.; Gupta, K. A Comparative Study on Mechanical Performance of PLA, ABS, and CF Materials Fabricated by Fused Deposition Modeling. Facta Univ. Ser. Mech. Eng. 2024. [Google Scholar]
- Attaran, M. The Rise of 3-D Printing: The Advantages of Additive Manufacturing Over Traditional Manufacturing. Bus. Horiz. 2017, 60, 677–688. [Google Scholar]
- Tan, L.J.; Zhu, W.; Zhou, K. Recent Progress on Polymer Materials for Additive Manufacturing. Adv. Funct. Mater. 2020, 30, 2003062. [Google Scholar]
- Eickhoff, R.; Antusch, S.; Nötzel, D.; Probst, M.; Hanemann, T. Development of Flexible and Partly Water-Soluble Binder Systems for Metal Fused Filament Fabrication (MF3) of Ti-6Al-4V Parts. Polymers 2024, 16, 2548. [Google Scholar] [CrossRef]
- Economides, A.L.; Islam, M.N.; Baxevanakis, K.P. Additively Manufactured Carbon Fibre PETG Composites: Effect of Print Parameters on Mechanical Properties. Polymers 2024, 16, 3336. [Google Scholar] [CrossRef]
- Shapiro, A.A.; Borgonia, J.P.; Chen, Q.N.; Dillon, R.P.; McEnerney, B.; Polit-Casillas, R.; Soloway, L. Additive Manufacturing for Aerospace Flight Applications. J. Spacecr. Rocket. 2016, 53, 952–959. [Google Scholar]
- Schiller, G.J. Additive Manufacturing for Aerospace. In Proceedings of the 2015 IEEE Aerospace Conference, Big Sky, MT, USA, 7–14 March 2015; pp. 1–8. [Google Scholar]
- Vasco, J.C. Additive Manufacturing for the Automotive Industry. In Additive Manufacturing; Elsevier: Amsterdam, The Netherlands, 2021; pp. 505–530. [Google Scholar]
- Schuhmann, D.; Rockinger, C.; Merkel, M.; Harrison, D.K. A Study on Additive Manufacturing for Electromobility. World Electr. Veh. J. 2022, 13, 154. [Google Scholar] [CrossRef]
- De, A.; Ramasubramian, B.; Ramakrishna, S.; Chellappan, V. Advances in Additive Manufacturing Techniques for Electrochemical Energy Storage. Adv. Mater. Technol. 2024, 9, 2301439. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, Y.; Ramanujan, D.; Ramani, K.; Chen, Y.; Williams, C.B.; Zavattieri, P.D. The Status, Challenges, and Future of Additive Manufacturing in Engineering. Comput. Aided Des. 2015, 69, 65–89. [Google Scholar] [CrossRef]
- Goh, G.D.; Agarwala, S.; Goh, G.L.; Dikshit, V.; Sing, S.L.; Yeong, W.Y. Additive Manufacturing in Unmanned Aerial Vehicles (UAVs): Challenges and Potential. Aerosp. Sci. Technol. 2017, 63, 140–151. [Google Scholar] [CrossRef]
- Tanwar, R.S.; Jhavar, S. Ti-Based Alloys for Aerospace and Biomedical Applications Fabricated through Wire+Arc Additive Manufacturing (WAAM). Mater. Today Proc. 2024, 98, 226–232. [Google Scholar]
- Sutton, A.T.; Kriewall, C.S.; Leu, M.C.; Newkirk, J.W. Powder Characterisation Techniques and Effects of Powder Characteristics on Part Properties in Powder-Bed Fusion Processes. Virtual Phys. Prototyp. 2017, 12, 3–29. [Google Scholar] [CrossRef]
- Gibbons, D.W.; Govender, P.; van der Merwe, A.F. Metal Powder Feedstock Evaluation and Management for Powder Bed Fusion: A Review of Literature, Standards, and Practical Guidelines. Prog. Addit. Manuf. 2024, 9, 805–833. [Google Scholar] [CrossRef]
- Kusoglu, I.M.; Doñate-Buendía, C.; Barcikowski, S.; Gökce, B. Laser Powder Bed Fusion of Polymers: Quantitative Research Direction Indices. Materials 2021, 14, 1169. [Google Scholar] [CrossRef]
- Ishfaq, K.; Abdullah, M.; Mahmood, M.A. A State-of-the-Art Direct Metal Laser Sintering of Ti6Al4V and AlSi10Mg Alloys: Surface Roughness, Tensile Strength, Fatigue Strength and Microstructure. Opt. Laser Technol. 2021, 143, 107366. [Google Scholar] [CrossRef]
- Bayraktar, Ş.; Alparslan, C. Comparison of the SLM, SLS, and DLMS Techniques in Additive Manufacture of AlSi10Mg Alloys. In Innovation and Sustainable Manufacturing; Woodhead Publishing: Cambridge, UK, 2023; pp. 231–253. [Google Scholar]
- Bayraktar, Ş.; Şentürk, E. Machinability of 3D Printed Materials. In Innovations in Additive Manufacturing; Springer International Publishing: Cham, Switzerland, 2022; pp. 297–319. [Google Scholar]
- Malashin, I.; Martysyuk, D.; Tynchenko, V.; Nelyub, V.; Borodulin, A.; Galinovsky, A. Mechanical Testing of Selective-Laser-Sintered Polyamide PA2200 Details: Analysis of Tensile Properties via Finite Element Method and Machine Learning Approaches. Polymers 2024, 16, 737. [Google Scholar] [CrossRef]
- Blanco, D.; Rubio, E.M.; Lorente-Pedreille, R.M.; Saenz-Nuno, M.A. Sustainable Processes in Aluminium, Magnesium, and Titanium Alloys Applied to the Transport Sector: A Review. Metals 2021, 12, 9. [Google Scholar] [CrossRef]
- Yehia, H.M.; Hamada, A.; Sebaey, T.A.; Abd-Elaziem, W. Selective Laser Sintering of Polymers: Process Parameters, Machine Learning Approaches, and Future Directions. J. Manuf. Mater. Process. 2024, 8, 197. [Google Scholar] [CrossRef]
- Tang, H.; Zhang, S.; He, L.; Yang, Z.; Liu, T. 3D Printing of High-Stiffness and High-Strength Glass Fiber Reinforced PEEK Composites by Selective Laser Sintering. Compos. Part A Appl. Sci. Manuf. 2024, 187, 108470. [Google Scholar]
- Hira, F.; Asif, M.; Ullah, H.; Khan, I.; Hussain, G.; Amir, M.; Alkahtani, M. Effects of Process Parameters on the Mechanical Properties and Microstructure of Additively Manufactured Carbon Black Particles-Reinforced Thermoplastic Polyurethane Composite Samples. Polymers 2025, 17, 426. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, P.; Lu, Q.; Zhang, Y.; Lei, H.; Yu, C.; Yu, J. Multi-Physical Honeycomb Metastructure Fabricated by Fused Deposition Modeling with Broadband Radar Absorption and Mechanical Resistance for Drones. Polym. Compos. 2024, 45, 1278–1287. [Google Scholar]
- Liu, K. Driving Towards a Greener Future: The Role of Artificial Intelligence and 3D Printing in Advancing Energy-Efficient Vehicles. In Proceedings of the 2024 International Conference on Mechanical, Electronic, and Automation Engineering (ICMEEA 2024), Singapore, 26 July 2024; Atlantis Press: Dordrecht, The Netherlands, 2024; pp. 688–703. [Google Scholar]
- Khoo, H.; Allen, W.S.; Arroyo-Currás, N.; Hur, S.C. Rapid Prototyping of Thermoplastic Microfluidic Devices via SLA 3D Printing. Sci. Rep. 2024, 14, 17646. [Google Scholar]
- Tuvshinbayar, K.; Mpofu, N.S.; Berger, T.; Storck, J.L.; Büsgen, A.; Ehrmann, A. Comparison of FDM and SLA Printing on Woven Fabrics. Commun. Dev. Assem. Text. Prod. 2024, 5, 169–177. [Google Scholar] [CrossRef]
- Hussain, M.I.; Xia, M.; Ren, X.; Ge, C.; Jamil, M.; Gupta, M.K. Digital Light Processing 3D Printing of Ceramic Materials: A Review on Basic Concept, Challenges, and Applications. Int. J. Adv. Manuf. Technol. 2024, 130, 2241–2267. [Google Scholar] [CrossRef]
- Chaudhary, R.; Akbari, R.; Antonini, C. Rational Design and Characterization of Materials for Optimized Additive Manufacturing by Digital Light Processing. Polymers 2023, 15, 287. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.; Traxel, K.D.; Lang, M.; Juhasz, M.; Eliaz, N.; Bose, S. Alloy Design via Additive Manufacturing: Advantages, Challenges, Applications and Perspectives. Mater. Today 2022, 52, 207–224. [Google Scholar]
- Attar, H.; Ehtemam-Haghighi, S.; Soro, N.; Kent, D.; Dargusch, M.S. Additive Manufacturing of Low-Cost Porous Titanium-Based Composites for Biomedical Applications: Advantages, Challenges and Opinion for Future Development. J. Alloys Compd. 2020, 827, 154263. [Google Scholar]
- Walter, A.; Marcham, C.L. Environmental Advantages in Additive Manufacturing. Prof. Saf. 2020, 65, 34–38. [Google Scholar]
- Dalla Chiara, B.; Pellicelli, M. Sustainable Road Transport from the Energy and Modern Society Points of View: Perspectives for the Automotive Industry and Production. J. Clean. Prod. 2016, 133, 1283–1301. [Google Scholar] [CrossRef]
- Jiang, W.; Huang, Y.; Sha, A. A Review of Eco-Friendly Functional Road Materials. Constr. Build. Mater. 2018, 191, 1082–1092. [Google Scholar] [CrossRef]
- Yentimur, M.F.; Kütük, T.; Kütük, S. Bor ve Bor Atığının İnşaat Yıkıntı Atığı ile Normal Beton Üzerindeki Etkileri. J. Innov. Civ. Eng. Technol. 2022, 4, 47–60. [Google Scholar]
- Babić, D.; Babić, D.; Fiolic, M.; Ferko, M. Road Markings and Signs in Road Safety. Encyclopedia 2022, 2, 1738–1752. [Google Scholar] [CrossRef]
- Molan, A.M.; Moomen, M.; Ksaibati, K. The Impact of Traffic Barrier Geometric Features on Crash Frequency and Injury Severity of Non-Interstate Highways. J. Saf. Res. 2020, 75, 155–165. [Google Scholar]
- Moon, W.; Milailidis, P.; Chau, T. Safe System Roadsides: Putting Clear Zones in Their Place. Transp. Res. Circ. 2016, 28–37. [Google Scholar]
- Molan, A.M.; Rezapour, M.; Ksaibati, K. Investigating the Relationship Between Crash Severity, Traffic Barrier Type, and Vehicle Type in Crashes Involving Traffic Barrier. J. Traffic Transp. Eng. (Eng. Ed.) 2020, 7, 125–136. [Google Scholar]
- Xu, F.; Zhang, X.; Zhang, H. A Review on Functionally Graded Structures and Materials for Energy Absorption. Eng. Struct. 2018, 171, 309–325. [Google Scholar]
- Croll, S.G. Surface Roughness Profile and Its Effect on Coating Adhesion and Corrosion Protection: A Review. Prog. Org. Coat. 2020, 148, 105847. [Google Scholar] [CrossRef]
- Chhipa, S.M.; Sharma, S.; Bagha, A.K. Recent Development in Polymer Coating to Prevent Corrosion in Metals: A Review. Mater. Today Proc. 2024, in press. [Google Scholar]
- Fan, J.; Njuguna, J. An Introduction to Lightweight Composite Materials and Their Use in Transport Structures. In Lightweight Composite Structures in Transport; Woodhead Publishing: Sawston, UK, 2016; pp. 3–34. [Google Scholar]
- Sharma, A.K.; Bhandari, R.; Aherwar, A.; Rimašauskienė, R. Matrix Materials Used in Composites: A Comprehensive Study. Mater. Today Proc. 2020, 21, 1559–1562. [Google Scholar]
- Garner, D.M.; Barnes, G.; Coles, I.; Roberts, R.; Adams, D.O. Crash Safety Assurances Strategies for Future Plastic and Composite Intensive Vehicles (PCIVs); U.S. Department of Transportation: Washington, DC, USA, 2010.
- Yang, J.; Xu, G.; Cai, C.S.; Kareem, A. Crash Performance Evaluation of a New Movable Median Guardrail on Highways. Eng. Struct. 2019, 182, 459–472. [Google Scholar]
- Lin, H.; Chen, F.; Zhang, H. Active Luminous Road Markings: A Comprehensive Review of Technologies, Materials, and Challenges. Constr. Build. Mater. 2023, 363, 129811. [Google Scholar]
- Chen, J.; Li, R.; Zhang, Y.; Wu, Y.; He, H. Study on the Reflective Principle and Long-Term Skid Resistance of a Sustainable Hydrophobic Hot-Melt Marking Paint. Sustainability 2023, 15, 9950. [Google Scholar] [CrossRef]
- Sengoz, B.; Topal, A.; Isikyakar, G. Morphology and Image Analysis of Polymer Modified Bitumens. Constr. Build. Mater. 2009, 23, 1986–1992. [Google Scholar]
- Yan, K.; Chen, J.; You, L.; Tian, S. Characteristics of Compound Asphalt Modified by Waste Tire Rubber (WTR) and Ethylene Vinyl Acetate (EVA): Conventional, Rheological, and Microstructural Properties. J. Clean. Prod. 2020, 258, 120732. [Google Scholar]
- Yang, Q.; Lin, J.; Wang, X.; Wang, D.; Xie, N.; Shi, X. A Review of Polymer-Modified Asphalt Binder: Modification Mechanisms and Mechanical Properties. Clean. Mater. 2024, 12, 100255. [Google Scholar]
- Kamal, I.; Bas, Y. Materials and Technologies in Road Pavements-An Overview. Mater. Today Proc. 2021, 42, 2660–2676. [Google Scholar]
- Wallqvist, V.; Kjell, G.; Cupina, E.; Kraft, L.; Deck, C.; Willinger, R. New Functional Pavements for Pedestrians and Cyclists. Accid. Anal. Prev. 2017, 105, 52–63. [Google Scholar]
- Boyce, P. Lighting for Driving: Roads, Vehicles, Signs, and Signals; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Thiyahuddin, M.I.; Gu, Y.; Thambiratnam, D.P.; Thilakarathna, H.M. Impact and Energy Absorption of Portable Water-Filled Road Safety Barrier System Fitted with Foam. Int. J. Impact Eng. 2014, 72, 26–39. [Google Scholar] [CrossRef]
- Gover, R.B.; Oloyede, A.; Thambiratnam, D.P.; Thiyahuddin, M.I.; Morris, A. Experimental and Numerical Study of Polymeric Foam Efficacy in Portable Water-Filled Barriers. Int. J. Impact Eng. 2015, 76, 83–97. [Google Scholar] [CrossRef]
- Pellis, A.; Malinconico, M.; Guarneri, A.; Gardossi, L. Renewable Polymers and Plastics: Performance Beyond the Green. New Biotechnol. 2021, 60, 146–158. [Google Scholar] [CrossRef] [PubMed]
- Evode, N.; Qamar, S.A.; Bilal, M.; Barceló, D.; Iqbal, H.M. Plastic Waste and Its Management Strategies for Environmental Sustainability. Case Stud. Chem. Environ. Eng. 2021, 4, 100142. [Google Scholar]
- Amulya, K.; Katakojwala, R.; Ramakrishna, S.; Mohan, S.V. Low Carbon Biodegradable Polymer Matrices for Sustainable Future. Compos. Part C Open Access 2021, 4, 100111. [Google Scholar] [CrossRef]
- Tejaswini, M.S.S.R.; Pathak, P.; Ramkrishna, S.; Ganesh, P.S. A Comprehensive Review on Integrative Approach for Sustainable Management of Plastic Waste and Its Associated Externalities. Sci. Total Environ. 2022, 825, 153973. [Google Scholar] [CrossRef]
- Monteiro, H.; Ribeiro, I.; Gonçalves, M.; Iten, M.; Caetano, N.S. Life Cycle Energy and Carbon Analysis of a Road-Safety Barrier Produced Using Recycled Tire Rubber. Energy Rep. 2022, 8, 270–276. [Google Scholar] [CrossRef]
- ISO 14040/14044:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- Xu, X.; Zhang, H.; Zhao, X.; Du, X.; Lian, D.; Liu, Z. Development of a Runaway Vehicle Protective Barrier System Using Simulation and Full-Scale Crash Testing. Sustainability 2023, 15, 1925. [Google Scholar] [CrossRef]
- Xia, F.; Le, V.H.; Ruan, D.; Tsang, H.H.; Wheatland, J.; Xu, S. Design Optimisation of Roadside Safety Roller Barriers. Eng. Struct. 2024, 317, 118602. [Google Scholar] [CrossRef]
- Yao, J.; Zhang, J.; Huang, L.; Xu, J. Analysis of Anti-Collision Performance of a New Assembled Rolling Guardrail. Structures 2023, 47, 246–259. [Google Scholar] [CrossRef]
- Yao, J.; Wang, B.; Hou, Y.; Huang, L. Analysis of Vehicle Collision on an Assembled Anti-Collision Guardrail. Sensors 2021, 21, 5152. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.; Luo, Y.; Peng, Y. Research on the Crashworthiness of Regular Centurion 2M Barrier Based on the Arbitrary Lagrange-Euler Method. Int. J. Automot. Technol. 2019, 20, 549–558. [Google Scholar]
- EN 1317:2010; European Standard for Road Restraint Systems. European Committee for Standardization: Brussels, Belgium, 2010.
- Soltani, M.; Moghaddam, T.B.; Karim, M.R.; Sulong, N.R. Analysis of Developed Transition Road Safety Barrier Systems. Accid. Anal. Prev. 2013, 59, 240–252. [Google Scholar] [PubMed]
- Martin, J.L.; Mintsa-Eya, C.; Goubel, C. Long-Term Analysis of the Impact of Longitudinal Barriers on Motorway Safety. Accid. Anal. Prev. 2013, 59, 443–451. [Google Scholar] [CrossRef]
- Bruski, D.; Burzyński, S.; Chróścielewski, J.; Jamroz, K.; Pachocki, Ł.; Witkowski, W.; Wilde, K. Experimental and Numerical Analysis of the Modified TB32 Crash Tests of the Cable Barrier System. Eng. Fail. Anal. 2019, 104, 227–246. [Google Scholar]
- Song, J.; Hu, D.; Luo, S.; Liu, W.; Wang, D.; Sun, Q.; Zhang, G. Energy-Absorption Behavior of Metallic Hollow Sphere Structures Under Impact Loading. Eng. Struct. 2021, 226, 111350. [Google Scholar]
- Baddoo, N.R. Stainless Steel in Construction: A Review of Research, Applications, Challenges and Opportunities. J. Constr. Steel Res. 2008, 64, 1199–1206. [Google Scholar]
- Sarıkaya, M.; Önler, D.B.; Dağlı, S.; Hartomacıoğlu, S.; Günay, M.; Królczyk, G.M. A Review on Aluminum Alloys Produced by Wire Arc Additive Manufacturing (WAAM): Applications, Benefits, Challenges and Future Trends. J. Mater. Res. Technol. 2024, 33, 5643–5670. [Google Scholar]
- Ortega-Iguña, M.; Chludzinski, M.; Sánchez-Amaya, J.M. Comparative Mechanical Study of Pressure Sensitive Adhesives Over Aluminium Substrates for Industrial Applications. Polymers 2022, 14, 4783. [Google Scholar] [CrossRef]
- Paul, P.; Tota-Maharaj, K. Laboratory Studies on Granular Filters and Their Relationship to Geotextiles for Stormwater Pollutant Reduction. Water 2015, 7, 1595–1609. [Google Scholar] [CrossRef]
- Di Lorenzo, G.; Formisano, A.; Terracciano, G.; Landolfo, R. Iron Alloys and Structural Steels from XIX Century Until Today: Evolution of Mechanical Properties and Proposal of a Rapid Identification Method. Constr. Build. Mater. 2021, 302, 124132. [Google Scholar]
- Olabi, A.G.; Morris, E.; Hashmi, M.S.J. Metallic Tube Type Energy Absorbers: A Synopsis. Thin-Walled Struct. 2007, 45, 706–726. [Google Scholar]
- Biswas, S.; Williams, K.; Jones, M. Development of a Constitutive Model for Erosion Based on Dissipated Particle Energy to Predict the Wear Rate of Ductile Metals. Wear 2018, 404, 166–175. [Google Scholar]
- Guo, K.; Wang, C.; Shen, L. An Experimental Study on the Impact Resistance of a New Three-Wave Beam Steel Guardrail. Front. Mater. 2022, 9, 942099. [Google Scholar]
- Jaber, M.M.; Ali, M.H.; Abd, S.K.; Abosinnee, A.S.; Malik, R.Q. Simulation Research on the Collision Between Freight Cars and Expressway Three-Wave Beam Steel Guardrail. Multimed. Tools Appl. 2023, 1, 1–22. [Google Scholar]
- Shen, L.; Hu, R.; Wang, T. Research and Design of a Wing-Wall-Free Guardrail in Transition Between the Subgrade and the Bridge. Front. Mater. 2022, 9, 918107. [Google Scholar]
- JTG B05-01-2013; Standard for Safety Performance Evaluation of Highway Barriers. Ministry of Transport of the People’s Republic of China: Beijing, China, 2013.
- JTG/T D81-2017; Design Guidelines for Highway Safety Facilities. Ministry of Transport of the People’s Republic of China: Beijing, China, 2017.
- Liu, Y.; Gan, X.; Wang, S.; Yang, H.; Li, Y.; Xu, G. Effect of Coiling Temperature on Microstructure and Properties of a Ti–Nb Microalloyed High-Speed Guardrail Steel. Steel Res. Int. 2023, 94, 2200840. [Google Scholar]
- Neslušan, M.; Minárik, P.; Čep, R.; Ondruš, J.; Pitoňák, M.; Zgútová, K. Measurement of Bearing Capacity of Steel Road Barrier Flange via Barkhausen Noise Emission. Eng. Fail. Anal. 2024, 156, 107804. [Google Scholar]
- Qian, K.; Wang, G.; Ma, H.; Zeng, H. Study on Dynamic Damage of Crash Barrier Under Impact Load of High-Speed Train. Sustainability 2024, 16, 3147. [Google Scholar] [CrossRef]
- GB 50010-2010; Code for Design of Concrete Structures. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2010.
- Sheikh, N.; Bligh, R. Evaluation of W-Beam Guardrail and Terminal Posts Installed in Metal Sleeves. Transp. Res. Rec. 2022, 2676, 355–362. [Google Scholar]
- Wang, L.; Huang, X.; Li, R.; Tang, Z.; Li, J.; Chen, D. Collision Study on New Aluminum Alloy W-Beam Guardrail. Appl. Sci. 2024, 14, 5266. [Google Scholar] [CrossRef]
- JTG/T F83-01-2004; Test Methods for Safety Performance of Highway Safety Barriers. Ministry of Transport of the People’s Republic of China: Beijing, China, 2004.
- Rasmussen, J.D.; Rosenbaugh, S.K.; Faller, R.K.; Bielenberg, R.W. Development of a Test Level 3 Approach Guardrail Transition to Steel Tube Bridge Rail. Transp. Res. Rec. 2022, 2676, 74–89. [Google Scholar]
- Zhang, A.; Bu, Q.; Zhang, W.; He, G.; Deng, Y. Test and Application of Movable Steel Barrier with Grade SB Light Composite Corrugated Beam. J. Meas. Eng. 2024, 12, 1–22. [Google Scholar]
- Hosseinpour, M.; Haleem, K. Examining Crash Injury Severity and Barrier-Hit Outcomes from Cable Barriers and Strong-Post Guardrails on Alabama’s Interstate Highways. J. Saf. Res. 2021, 78, 155–169. [Google Scholar]
- Davids, W.G.; Botting, J.K.; Peterson, M. Development and Structural Testing of a Composite-Reinforced Timber Highway Guardrail. Constr. Build. Mater. 2006, 20, 733–743. [Google Scholar]
- Bank, L.C.; Gentry, T.R. Development of a Pultruded Composite Material Highway Guardrail. Compos. Part A Appl. Sci. Manuf. 2001, 32, 1329–1338. [Google Scholar]
- Gebremichael, Y.M.; Li, W.; Boyle, W.J.O.; Meggitt, B.T.; Grattan, K.T.V.; McKinley, B.; Luke, S. Integration and Assessment of Fibre Bragg Grating Sensors in an All-Fibre Reinforced Polymer Composite Road Bridge. Sens. Actuators A Phys. 2005, 118, 78–85. [Google Scholar]
- Canning, L.; Hodgson, J.; Jarman, A.; Karuna, R.; Luke, S. The Analysis, Design and Optimisation of an Advanced Composite Bridge Deck. In Advances in Polymer Composites Structures and Applications in Construction; Thomas Telford Publishing: London, UK, 2002; p. 405. [Google Scholar]
- Yanagimoto, J.; Ikeuchi, K. Sheet Forming Process of Carbon Fiber Reinforced Plastics for Lightweight Parts. CIRP Ann. 2012, 61, 247–250. [Google Scholar]
- Masilamani, R.; Dhandapani, N.V.; Kumar, K.V.; Mani, K.T. A Review on Usage of Carbon Fiber Reinforced Plastics in Automobiles. Int. J. Pure Appl. Math. 2017, 117, 537–544. [Google Scholar]
- Li, Z.; Meng, Z. A Review of the Radio Frequency Non-Destructive Testing for Carbon-Fibre Composites. Meas. Sci. Rev. 2016, 16, 68–76. [Google Scholar]
- Visal, S.; Deokar, S.U. A Review Paper on Properties of Carbon Fiber Reinforced Polymers. Int. J. Innov. Res. Sci. Technol. 2016, 2, 238–243. [Google Scholar]
- Firmo, J.P.; Correia, J.R.; França, P. Fire Behaviour of Reinforced Concrete Beams Strengthened with CFRP Laminates: Protection Systems with Insulation of the Anchorage Zones. Compos. Part B Eng. 2012, 43, 1545–1556. [Google Scholar]
- Hegde, S.; Shenoy, B.S.; Chethan, K.N. Review on Carbon Fiber Reinforced Polymer (CFRP) and Their Mechanical Performance. Mater. Today Proc. 2019, 19, 658–662. [Google Scholar]
- Chen, Y.; Li, M.; Yang, X.; Wei, K. Durability and Mechanical Behavior of CFRP/Al Structural Joints in Accelerated Cyclic Corrosion Environments. Int. J. Adhes. Adhes. 2020, 102, 102695. [Google Scholar]
- Khan, M.S.; Din, I.U.; Khan, K.A.; Shah, S.A.; Jan, A. A Review of Design, Materials, and Manufacturing Techniques in Bumper Beam System. Compos. Part C Open Access 2024, 14, 100496. [Google Scholar]
- Shubhra, Q.T.; Alam, A.M.; Quaiyyum, M.A. Mechanical Properties of Polypropylene Composites: A Review. J. Thermoplast. Compos. Mater. 2013, 26, 362–391. [Google Scholar]
- Mohanty, A.K.; Misra, M. Studies on Jute Composites—A Literature Review. Polym. Plast. Technol. Eng. 1995, 34, 729–792. [Google Scholar]
- Hou, S.; Li, Q.; Long, S.; Yang, X.; Li, W. Crashworthiness Design for Foam-Filled Thin-Wall Structures. Mater. Des. 2009, 30, 2024–2032. [Google Scholar]
- Bi, J.; Fang, H.; Wang, Q.; Ren, X. Modeling and Optimization of Foam-Filled Thin-Walled Columns for Crashworthiness Designs. Finite Elem. Anal. Des. 2010, 46, 698–709. [Google Scholar]
- Santosa, S.P.; Wierzbicki, T.; Hanssen, A.G.; Langseth, M. Experimental and Numerical Studies of Foam-Filled Sections. Int. J. Impact Eng. 2000, 24, 509–534. [Google Scholar]
- Yumrutaş, H.İ.; Ali, Z.O. Experimental Performance Evaluation of an Innovative Hybrid Barrier System Filled with Waste Materials. Constr. Build. Mater. 2022, 316, 125231. [Google Scholar]
- Leitlands, V.; Skruls, V.; Andersons, J. Production and Characterization of Glass Fiber/LDPE Composite Material for W-Beam Guardrail. AIP Conf. Proc. 2024, 3158, 060001. [Google Scholar]
- ASTM D3039/D3039M-17; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D6641/D6641M-16; Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture. ASTM International: West Conshohocken, PA, USA, 2016.
- Helaili, S.; Bettaieb, S.; Tarhouni, R. Road Guardrail Beam Made of Natural Stem (Stipa tenacissima L.) Eco-Composite: Impact Energy Absorption Improvement by Stems and Pre-Tensioning. J. Compos. Mater. 2023, 57, 1833–1844. [Google Scholar]
- BS EN 1317-2:2010; Road Restraint Systems—Part 2: Performance Classes, Impact Test Acceptance Criteria and Test Methods for Safety Barriers. British Standards Institution: London, UK, 2010.
- ASTM E23-18; Standard Test Methods for Notched Bar Impact Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2018.
- Sun, S.; Li, H.; Zhu, C.; Mei, K.; Jiang, H.; Sun, Y.; Huang, H. Study on the Anti-Collision Performance of Basalt Fiber Reinforced Polymer Beam–Column Guardrail. Compos. Struct. 2021, 276, 114588. [Google Scholar]
- Dobrovolny, C.S.; Bligh, R.; Kiani, M.; Hangul, A. Investigation and MASH Full-Scale Crash Testing of the Practice of Raising Blockouts on W-Beam Rail Systems. Transp. Res. Rec. 2022, 2676, 776–789. [Google Scholar]
- Li, J.; Wang, Y.; Ma, Z.; Liang, D. Simulation and Performance Analysis of Passenger Bus Collision with Rigid Guardrail of Expressway Bridge. Bridge Struct. 2023, 19, 41–55. [Google Scholar]
- Mohammadi, I.; Haghighi-Yazdi, M.; Safarabadi, M.; Yousefi, A. Crashworthiness Analysis of a Composite Guardrail Under Impact Loading. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2023, 237, 1651–1664. [Google Scholar]
- Yumrutas, H.I.; Ozcanan, S.; Apak, M.Y.; Anwer, M.J. Experimental and Numerical Comparative Crashworthiness Analysis of Innovative Renewable Hybrid Barrier with Conventional Roadside Barriers. Int. J. Crashworthiness 2023, 28, 334–350. [Google Scholar]
- Jiang, L.; Wang, K.; Fang, H.; Chen, B.; Zhu, L.; Zhang, Q.; Zhang, X. Protection Performance of a Novel Anti-Collision Guardrail with Recycled Foamed Concrete Under Vehicle Collision. Eng. Struct. 2024, 305, 117795. [Google Scholar]
- Zhang, Z.; Liu, Y.; Feng, B.; Ma, Y.; Zhang, G. Analytical Solutions for Girder Distribution Factor in Steel-Concrete Composite Girders with the Effect of Parapets. Adv. Civ. Eng. 2021, 2021, 8471801. [Google Scholar]
- Aghaee, K.; Li, L.; Roshan, A.; Namakiaraghi, P. Additive Manufacturing Evolution in Construction: From Individual Terrestrial to Collective, Aerial, and Extraterrestrial Applications. J. Build. Eng. 2024, 96, 110389. [Google Scholar]
- Kakarla, A.B.; Kong, I.; Patel, V.I. Additive Manufacturing for Building and Constructions: Overview, Applications and Challenges. In Additive Manufacturing: Novel Materials, Process, Properties, Applications; Scrivener Publishing LLC: Beverly, MA, USA, 2024; pp. 485–508. [Google Scholar]
- Cecchel, S.; Ferraresi, R.; Magni, M.; Guerini, L.; Cornacchia, G. Evolution of Prototyping in Automotive Engineering: A Comprehensive Study on the Reliability of Additive Manufacturing for Advanced Powertrain Components. Frat. Ed Integrità Strutt. 2024, 18, 109–126. [Google Scholar]
- Radhika, C.; Shanmugam, R.; Ramoni, M.; Gnanavel, B.K. A Review on Additive Manufacturing for Aerospace Application. Mater. Res. Express 2024, 11, 022001. [Google Scholar]
- Kumar, S.A.; Prasad, R.V.S. Basic Principles of Additive Manufacturing: Different Additive Manufacturing Technologies. In Additive Manufacturing; Woodhead Publishing: Sawston, UK, 2021; pp. 17–35. [Google Scholar]
- Gibson, I.; Rosen, D.W.; Stucker, B.; Khorasani, M.; Rosen, D.; Stucker, B.; Khorasani, M. Additive Manufacturing Technologies; Springer: Cham, Switzerland, 2021; Volume 17, pp. 160–186. [Google Scholar]
- Fu, H.; Kaewunruen, S. State-of-the-Art Review on Additive Manufacturing Technology in Railway Infrastructure Systems. J. Compos. Sci. 2022, 6, 7. [Google Scholar]
- Pollicino, A.G. Additive Manufacturing and Metal Replacement in the Automotive Field: The Case Study of a Headlight Protection Grid. Ph.D. Thesis, Politecnico di Torino, Turin, Italy, 2023. [Google Scholar]
- Niknazar, M.; Haley, P.V.; Ramanan, L.; Truong, S.T.; Shrinivasan, Y.; Bhowmick, A.K.; Sundararajan, S. Building a Domain-Specific Guardrail Model in Production. arXiv 2024, arXiv:2408.01452. [Google Scholar]
- Baruffi, D.; Costella, M.F.; Chamberlain Pravia, Z.M. Experimental Analysis of Guardrail Structures for Occupational Safety in Construction. Open Constr. Build. Technol. J. 2021, 15, 141–151. [Google Scholar]
- Gardner, L. Metal Additive Manufacturing in Structural Engineering–Review, Advances, Opportunities and Outlook. Structures 2023, 47, 2178–2193. [Google Scholar]
- Raja, S.; Al-Tmimi, H.M.; Ghadir, G.K.; Mustafa, M.A.; Alani, Z.K.; Rusho, M.A.; Rajeswari, N. An Analysis of Polymer Material Selection and Design Optimization to Improve Structural Integrity in 3D Printed Aerospace Components. Appl. Chem. Eng. 2024, 7, 1875. [Google Scholar]
- Subramani, R.; Mustafa, M.A.; Ghadir, G.K.; Al-Tmimi, H.M.; Alani, Z.K.; Rusho, M.A.; Kumar, A.P. Exploring the Use of Biodegradable Polymer Materials in Sustainable 3D Printing. Appl. Chem. Eng. 2024, 7, 3870. [Google Scholar]
- Hassan, H.; Hallez, H.; Thielemans, W.; Vandeginste, V. A Review of Electro-Active Shape Memory Polymer Composites: Materials Engineering Strategies for Shape Memory Enhancement. Eur. Polym. J. 2024, 208, 112861. [Google Scholar]
- Kumar, A.; Dixit, S.; Singh, S.; Sreenivasa, S.; Bains, P.S.; Sharma, R. Recent Developments in the Mechanical Properties and Recycling of Fiber-Reinforced Polymer Composites. Polym. Compos. 2024, 1–26. [Google Scholar] [CrossRef]
- Tripathi, L.; Singh, O.; Behera, B.K. 3-D Woven Honeycomb Structures and Their Composites. Text. Prog. 2024, 56, 231–322. [Google Scholar] [CrossRef]
- Alqahtani, S.; Alqahtani, T.; Ali, H.M.; Farukh, F.; Kandan, K. The Effect of Lattice Topology on the Thermal and Mechanical Performance of Additively Manufactured Polymer Lattices. Results Eng. 2024, 21, 101905. [Google Scholar] [CrossRef]
- de Winter, J.; Manzaneque, T.; Ghatkesar, M.K. Damping of 3D-Printed Polymer Microbeam Resonators. J. Micromech. Microeng. 2023, 34, 015004. [Google Scholar] [CrossRef]
- Islam, M.A.; Mobarak, M.H.; Rimon, M.I.H.; Al Mahmud, M.Z.; Ghosh, J.; Ahmed, M.M.S.; Hossain, N. Additive Manufacturing in Polymer Research: Advances, Synthesis, and Applications. Polym. Test. 2024, 132, 108364. [Google Scholar] [CrossRef]
- Safi Jahanshahi, A.; Akhoundi, B.; Quagliato, L. Investigation of Compressive Strength of 3D-Printed PLA/Continuous Glass Fibers Composites Manufactured by Simultaneous Impregnation Extrusion-Based Additive Manufacturing. Eng. Res. Express 2024, 7, 015403. [Google Scholar] [CrossRef]
- Orisekeh, D.K.; Corti, G.; Jahan, M.P. Enhancing Thermo-Mechanical Properties of Additively Manufactured PLA Using Eggshell Microparticle Fillers. J. Manuf. Process. 2025, 133, 782–797. [Google Scholar] [CrossRef]
- Al Rashid, A.; Koç, M. Additive Manufacturing for Sustainability and Circular Economy: Needs, Challenges, and Opportunities for 3D Printing of Recycled Polymeric Waste. Mater. Today Sustain. 2023, 23, 100529. [Google Scholar] [CrossRef]
- Maguire, A.; Pottackal, N.; Saadi, M.A.S.R.; Rahman, M.M.; Ajayan, P.M. Additive Manufacturing of Polymer-Based Structures by Extrusion Technologies. Oxf. Open Mater. Sci. 2021, 1, itaa004. [Google Scholar] [CrossRef]
- Daminabo, S.C.; Goel, S.; Grammatikos, S.A.; Nezhad, H.Y.; Thakur, V.K. Fused Deposition Modeling-Based Additive Manufacturing (3D Printing): Techniques for Polymer Material Systems. Mater. Today Chem. 2020, 16, 100248. [Google Scholar] [CrossRef]
- Frazier, W.E. Metal Additive Manufacturing: A Review. J. Mater. Eng. Perform. 2014, 23, 1917–1928. [Google Scholar]
- Chen, M.T.; Gong, Z.; Zhang, T.; Zuo, W.; Zhao, Y.; Zhao, O.; Wang, Z. Mechanical Behavior of Austenitic Stainless Steels Produced by Wire Arc Additive Manufacturing. Thin-Walled Struct. 2024, 196, 111455. [Google Scholar]
- Zadi-Maad, A.; Rohib, R.; Irawan, A. Additive Manufacturing for Steels: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2018, 285, 012028. [Google Scholar]
- Tan, Q.; Zhang, M. Recent Advances in Inoculation Treatment for Powder-Based Additive Manufacturing of Aluminium Alloys. Mater. Sci. Eng. R Rep. 2024, 158, 100773. [Google Scholar]
- Su, J.L.; Jiang, F.L.; Teng, J.; Chen, L.Q.; Requena, G.; Yan, M.; Tan, C.L. Laser Additive Manufacturing of Titanium Alloys: Process, Materials and Post-Processing. Rare Met. 2024, 43, 6288–6328. [Google Scholar]
- Cheng, X.; Xu, J.; Yang, Z.; Guo, Q.; Li, C.; Zhou, J.; Ma, Z. A Novel Nickel-Based Superalloy with Excellent High-Temperature Performance Designed for Laser Additive Manufacturing. Mater. Sci. Eng. A 2024, 911, 146926. [Google Scholar]
- Mahamood, R.M. Laser Metal Deposition Process of Metals, Alloys, and Composite Materials; Springer: Cham, Switzerland, 2018; Volume 10. [Google Scholar]
- Yap, C.Y.; Chua, C.K.; Dong, Z.L.; Liu, Z.H.; Zhang, D.Q.; Loh, L.E.; Sing, S.L. Review of Selective Laser Melting: Materials and Applications. Appl. Phys. Rev. 2015, 2, 041101. [Google Scholar]
- Peng, J.; Zhang, T.; Xu, L.; Chen, G.; Hu, D.; Zhu, Z.; Kindo, S. Effect of C-Mn-Cu on Microstructure and Properties of Wire Arc Additive Manufacturing of High-Manganese Steels. Mater. Sci. Technol. 2024, 40, 02670836241242566. [Google Scholar]
- Zhang, M.; Liu, F.C.; Xue, P.; Zhang, H.; Wu, L.H.; Ni, D.R.; Ma, Z.Y. Fabrication of Large-Scale Steel-Aluminum Components with Homogeneously Distributed Amorphous Interfacial Layer and Enhanced Bonding Strength Using Modified Friction Stir Additive Manufacturing. J. Mater. Sci. Technol. 2024, 194, 151–166. [Google Scholar] [CrossRef]
- Wessels, H.; Weißenfels, C.; Wriggers, P. Metal Particle Fusion Analysis for Additive Manufacturing Using the Stabilized Optimal Transportation Meshfree Method. Comput. Methods Appl. Mech. Eng. 2018, 339, 91–114. [Google Scholar] [CrossRef]
- Wawryniuk, Z.; Brancewicz-Steinmetz, E.; Sawicki, J. Revolutionizing Transportation: An Overview of 3D Printing in Aviation, Automotive, and Space Industries. Int. J. Adv. Manuf. Technol. 2024, 134, 3083–3105. [Google Scholar] [CrossRef]
- Hwang, T.W.; Woo, Y.Y.; Han, S.W.; Moon, Y.H. Fabrication of Mesh Patterns Using a Selective Laser-Melting Process. Appl. Sci. 2019, 9, 1922. [Google Scholar] [CrossRef]
- Giorleo, L.; Deniz, K.I. Polymer Tools Produced by Fused Filament Fabrication for Steel-Bending Process: Effect of Layering Orientation. J. Manuf. Mater. Process. 2024, 8, 243. [Google Scholar] [CrossRef]
- Wang, H.; He, L.; Zhang, Q.; Yuan, Y. Influence of Ni Contents on Microstructure and Mechanical Performance of AlSi10Mg Alloy by Selective Laser Melting. Materials 2023, 16, 4679. [Google Scholar] [CrossRef]
- Ozlati, A.; Movahedi, M.; Ramezani, H. Wire Arc Additive Manufacturing of Stainless Steel/Aluminum Bi-Metal Using Roll-Bonded Transition Joint. Manuf. Lett. 2025, 43, 6–11. [Google Scholar] [CrossRef]
- Li, Y.; Guan, X.; Liu, X.; Gu, H. The Effect of TiC Addition on the Mechanical Properties and Thermal Expansion Coefficient During Laser Metal Deposition of Invar 36 Alloy. Eng. Fail. Anal. 2024, 169, 109198. [Google Scholar] [CrossRef]
- Katsuyama, Y.; Hui, J.; Thiel, M.; Haba, N.; Yang, Z.; Kaner, R.B. 3D-Printed Carbon Scaffold for Structural Lithium Metal Batteries. Small Methods 2024, 8, 2400831. [Google Scholar] [CrossRef]
- Yang, Y.; Lin, H.; Dong, P.; Li, Y.; Li, Q. An Analytical Temperature–Based Thermomechanical Finite Element Model for Process Modeling of Metal Additive Manufacturing. J. Mech. Sci. Technol. 2025, 39, 1–12. [Google Scholar] [CrossRef]
- Latte, M.; Mazzarisi, M.; Guerra, M.G.; Campanelli, S.L.; Galantucci, L.M. Key Performance Indexes for the Evaluation of Geometrical Characteristics and Subsurface Defects Through Laser Line Monitoring of Laser Metal Deposition Process. Opt. Laser Technol. 2025, 182, 112085. [Google Scholar] [CrossRef]
- Wu, H.; Guo, A.; Kong, D.; Sheng, X.; Liu, C.; Wu, J.; Chen, Z. Additive Manufacturing of Bionic Layered Ceramic-Metal Composites for Enhanced Toughness and Damage Resistance. Virtual Phys. Prototyp. 2025, 20, e2443102. [Google Scholar] [CrossRef]
- Yakout, M.; Elbestawi, M.A. Additive Manufacturing of Composite Materials: An Overview. In Proceedings of the 6th International Conference on Virtual Machining Process Technology (VMPT), Montréal, QC, Canada, 29 May–2 June 2017. [Google Scholar]
- Yi, H.; Jia, L.; Ding, J.; Li, H. Achieving Material Diversity in Wire Arc Additive Manufacturing: Leaping from Alloys to Composites via Wire Innovation. Int. J. Mach. Tools Manuf. 2024, 194, 104103. [Google Scholar]
- Regassa, Y.; Lemu, H.G.; Sirabizuh, B. Trends of Using Polymer Composite Materials in Additive Manufacturing. IOP Conf. Ser. Mater. Sci. Eng. 2019, 659, 012021. [Google Scholar]
- Del Rey, G.R.; de Lucas Salgado, J.; Hernández, A.A.G.; Tanarro, E.C. Design, Manufacturing and Experimental Validation of Additive Manufacturing Cores for Bearing Seats in Carbon Fibre Reinforced Polymer Structures. Heliyon 2024, 10, e35652. [Google Scholar]
- Tang, S.; Ummethala, R.; Suryanarayana, C.; Eckert, J.; Prashanth, K.G.; Wang, Z. Additive Manufacturing of Aluminum-Based Metal Matrix Composites—A Review. Adv. Eng. Mater. 2021, 23, 2100053. [Google Scholar]
- Sun, J.; Ye, D.; Zou, J.; Chen, X.; Wang, Y.; Yuan, J.; Bai, J. A Review on Additive Manufacturing of Ceramic Matrix Composites. J. Mater. Sci. Technol. 2023, 138, 1–16. [Google Scholar]
- Garmabi, M.M.; Jalali, A.; Manzoor, A.; Malik, R.; Sain, M. Driving Sustainability and Performance: 3D-Printing of Lightweight Functional Components Using Recycled Carbon Fiber Reinforced Polyphenylene Sulfide Composites for Automotive Industry. Prog. Addit. Manuf. 2025, 10, 2397–2409. [Google Scholar] [CrossRef]
- Zhai, C.; Chen, Y.; Zhao, Y.; Li, Q.; Zhang, Z.; Yang, W.; Li, Y. A Review on Process Parameter Influence and Optimization for 3D Printing of Fiber-Reinforced Thermoplastic Composites. J. Reinf. Plast. Compos. 2024, 07316844241273038. [Google Scholar] [CrossRef]
- Sivakumar, N.K.; Palaniyappan, S.; Basavarajappa, S.; Hashem, M.I.; Bodaghi, M.; Sekar, V. Study on the Impact of Material Extrusion Factors on the Compressive Characteristics of Honeycomb Lattice-Structured Onyx™ Composites. Mater. Today Commun. 2023, 37, 107317. [Google Scholar]
- Yu, R.; Bai, X.; Yu, X.; Zhang, H. WC-Reinforced Iron Matrix Composites Fabricated by Wire Arc Additive Manufacturing Combined with Gravity-Driven Powder Feeding: Particle Transportation and Size Effects. Rapid Prototyp. J. 2023, 29, 1014–1028. [Google Scholar]
- Landrie, D.M.; Tekinalp, H.; Hassen, A.; Theodore, M.; Vaidya, U. Ballistic Characterization of Additively Manufactured Extrusion Deposited Thermoplastic Composite Plates. Polym. Polym. Compos. 2023, 31, 09673911231171043. [Google Scholar]
- Chaves Figueiredo, S.; Romero Rodríguez, C.; Ahmed, Y.; Bos, D.H.; Xu, Y.; Salet, T.M.; Bos, F.P. Mechanical Behavior of Printed Strain Hardening Cementitious Composites. Materials 2020, 13, 2253. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Han, Y.; Cheng, D.; Liu, H.; Chen, F.; Le, J.; Lu, W. Dual Hetero-Structured Ti Composites by Manipulating Self-Assembled Powder Embedded with Nano-Reinforcements. Compos. Part B Eng. 2025, 291, 111999. [Google Scholar]
- Xiong, Y.; Zhang, F.; Huang, Y.; Dai, T.; Wan, Q.; Chen, Y.; Yin, S. A Novel Composites of Laser 3D Printed CoCrFeNiMn/Ti6Al4V Lattice Structure with B4C/AlSi10Mg Interpenetrating Phases. Compos. Part A Appl. Sci. Manuf. 2025, 188, 108579. [Google Scholar]
- Wang, Y.; Fan, W.; Zhou, F.; Prashanth, K.G.; Feng, Z.; Zhang, S.; Lin, X. The Influence of Process Parameters on the Microstructure and Properties of the TiC/Ti-Alloy Composites Fabricated by the Directed Energy Deposition Process. J. Mater. Res. Technol. 2025, 34, 164–174. [Google Scholar]
- Sikora, P.; Chougan, M.; Cuevas, K.; Liebscher, M.; Mechtcherine, V.; Ghaffar, S.H.; Stephan, D. The Effects of Nano-and Micro-Sized Additives on 3D Printable Cementitious and Alkali-Activated Composites: A Review. Appl. Nanosci. 2022, 12, 805–823. [Google Scholar]
- Mingione, E.; Salvi, D.; Almonti, D.; Ponticelli, G.S. Improvement of Thermal, Electrical, and Tribological Performances of GnPs Composites Produced by Selective Laser Sintering. Polym. Compos. 2025, 2025, 29467. [Google Scholar]
- Cuccarollo, P.; Pontefisso, A.; Carraro, P.A.; Quaresimin, M. Characterization and Modelling of the Microstructural and Mechanical Properties of Additively Manufactured Continuous Fiber Polymer Composites. Compos. Sci. Technol. 2025, 260, 110986. [Google Scholar]
- Li, G.; Li, H.; Liu, Q.; Sun, H.; Nie, Y.; Li, Q.; Ren, L. 4D Printing of Polycarbonate Ternary Composites and the Biomimetic Folding Deployment Mechanisms. Adv. Compos. Hybrid Mater. 2025, 8, 54. [Google Scholar]
- Zhang, X.; Wei, G.; Huang, X.; Zhang, H.; Hao, X.; Tan, S.; Ji, G. Optimized Pyramidal Honeycomb PEEK/CF Composites Metastructure Through 3D Printing for Broadband Electromagnetic Wave Absorption. Mater. Today Phys. 2025, 50, 101620. [Google Scholar]
- Vafadar, A.; Guzzomi, F.; Rassau, A.; Hayward, K. Advances in Metal Additive Manufacturing: A Review of Common Processes, Industrial Applications, and Current Challenges. Appl. Sci. 2021, 11, 1213. [Google Scholar] [CrossRef]
- Saleh Alghamdi, S.; John, S.; Roy Choudhury, N.; Dutta, N.K. Additive Manufacturing of Polymer Materials: Progress, Promise and Challenges. Polymers 2021, 13, 753. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.; Akram, T.; Chen, H.; Chen, S. On the Evolution of Additive Manufacturing (3D/4D Printing) Technologies: Materials, Applications, and Challenges. Polymers 2022, 14, 4698. [Google Scholar] [CrossRef]
Technique | Accuracy | Surface Finish | Material Range | Cost | Production Speed | Advantages | Limitations |
---|---|---|---|---|---|---|---|
FDM | Low–Medium | Rough | Thermoplastics | Low | Fast | Low cost, easy to use, rapid prototyping | Poor surface finish, limited material strength |
SLA | High | Excellent | Photopolymers | Medium | Slow | High detail, smooth surfaces | Brittle parts, limited material types |
DLP | High | Excellent | Photopolymers | Medium | Fast | High resolution, faster than SLA | Limited build volume, costly resins |
SLS | Medium | Good | Polymers, Composites | Medium–High | Medium | No support needed, good mechanical properties | Rough surface, powder handling required |
SLM | High | Good | Metals | High | Slow | High strength, dense metal parts | Expensive, requires post-processing |
DMLS | High | Good | Metals | High | Slow | Excellent detail and strength | High cost, slow process |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alparslan, C.; Yentimur, M.F.; Kütük-Sert, T.; Bayraktar, Ş. A Review on Additive Manufactured Engineering Materials for Enhanced Road Safety and Transportation Applications. Polymers 2025, 17, 877. https://doi.org/10.3390/polym17070877
Alparslan C, Yentimur MF, Kütük-Sert T, Bayraktar Ş. A Review on Additive Manufactured Engineering Materials for Enhanced Road Safety and Transportation Applications. Polymers. 2025; 17(7):877. https://doi.org/10.3390/polym17070877
Chicago/Turabian StyleAlparslan, Cem, Muhammed Fatih Yentimur, Tuba Kütük-Sert, and Şenol Bayraktar. 2025. "A Review on Additive Manufactured Engineering Materials for Enhanced Road Safety and Transportation Applications" Polymers 17, no. 7: 877. https://doi.org/10.3390/polym17070877
APA StyleAlparslan, C., Yentimur, M. F., Kütük-Sert, T., & Bayraktar, Ş. (2025). A Review on Additive Manufactured Engineering Materials for Enhanced Road Safety and Transportation Applications. Polymers, 17(7), 877. https://doi.org/10.3390/polym17070877