Research Progress on the Application of Metal Porphyrin Electrochemical Sensors in the Detection of Phenolic Antioxidants in Food
Abstract
:1. Introduction
1.1. Overview of Phenolic Antioxidants
1.2. Physicochemical Properties and Hazards of Phenolic Antioxidants
1.3. Regulations and Limits for Phenolic Antioxidants
2. Research on Analytical Methods of Phenolic Antioxidants
2.1. Research Overview of Traditional Detection Methods
2.2. Research Overview of New Detection Methods
3. Research Progress of Electrochemical Sensors in Phenolic Antioxidants
3.1. The Basic Principle of Electrochemical Sensors
3.2. Research Progress of Electrochemical Sensors in Phenolic Antioxidants
4. Research Progress of Metal Porphyrin Nanocomposites in the Field of Electrochemical Sensing
4.1. Research Progress of Metalloporphyrins in the Field of Electrochemical Sensing
4.2. Research Progress of Metal Porphyrin-Based Covalent Organic Frameworks in the Field of Electrochemical Sensing
4.3. The Application of Metal Porphyrin Carbon-Based Nanocomposites in the Field of Electrochemical Sensing
5. The Existing Challenges of Electrochemical Sensors Based on Metal Porphyrins
5.1. Stability Problem
5.2. Selectivity and Sensitivity
5.3. The Complexity and Cost of Synthesis
5.4. Reproducibility and the Challenge of Mass Production
6. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zeb, A. Concept, Mechanism, and Applications of Phenolic Antioxidants in Foods. J. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Chai, Z.; Hutabarat, R.P.; Zeng, Q.; Niu, L.; Li, D.; Yu, H.; Huang, W. Blueberry Leaves from 73 Different Cultivars in Southeastern China as Nutraceutical Supplements Rich in Antioxidants. Food Res. Int. 2019, 122, 548–560. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Ivane, N.M.A.; Haruna, S.A.; Zekrumah, M.; Elysé, F.K.R.; Tahir, H.E.; Wang, G.; Wang, C.; Zou, X. Recent Trends in the Micro-Encapsulation of Plant-Derived Compounds and Their Specific Application in Meat as Antioxidants and Antimicrobials. Meat Sci. 2022, 191, 108842. [Google Scholar] [CrossRef]
- Kahimbi, H.; Kichonge, B.; Kivevele, T. The Potential of Underutilized Plant Resources and Agricultural Wastes for Enhancing Biodiesel Stability: The Role of Phenolic-Rich Natural Antioxidants. Int. J. Energy Res. 2023. [Google Scholar] [CrossRef]
- Luo, X.; Cui, J.; Zhang, H.; Duan, Y.; Zhang, D.; Cai, M.; Chen, G. Ultrasound Assisted Extraction of Polyphenolic Compounds from Red Sorghum (Sorghum bicolor L.) Bran and Their Biological Activities and Polyphenolic Compositions. Ind. Crops Prod. 2018, 112, 296–304. [Google Scholar] [CrossRef]
- Gao, Q.; Li, Y.; Li, Y.; Zhang, Z.; Liang, Y. Antioxidant and Prooxidant Activities of Phenolic Acids Commonly Existed in Vegetables and Their Relationship with Structures. Food Sci. Technol. 2022, 42, e07622. [Google Scholar] [CrossRef]
- Xia, J.; Liu, F.; Yan, L.; Suo, H.; Qian, J.; Zou, B. Simultaneous Determination of Tert-Butylhydroquinone, Butylated Hydroxyanisole and Phenol in Plant Oil by Metalloporphyrin-Based Covalent Organic Framework Electrochemical Sensor. J. Food Compos. Anal. 2023, 122, 105486. [Google Scholar]
- Mamy, D.; Boateng, I.D.; Chen, X. Two-Pot Optimization of Nutrient Sources to Enhance Antioxidants in Citrus Reticulata Peel Powder through Solid-State Fermentation with Aspergillus Niger Cgmcc 3.6189. Food Biosci. 2024, 59, 104145. [Google Scholar] [CrossRef]
- Soetanto, D.A.; Li, F.; Boateng, I.D.; Yang, X.M. Thermal Fixation Technologies Affect Phenolic Profile, Ginkgolides, Bilobalide, Product Quality, and Ginkgolic Acids in Ginkgo Biloba Leaf Tea. J. Food Sci. 2024, 89, 4093–4108. [Google Scholar] [CrossRef]
- Esazadeh, K.; Dolatabadi, J.E.N.; Andishmand, H.; Mohammadzadeh-Aghdash, H.; Mahmoudpour, M.; Kermanshahi, M.N.; Roosta, Y. Cytotoxic and Genotoxic Effects of Tert-Butylhydroquinone, Butylated Hydroxyanisole and Propyl Gallate as Synthetic Food Antioxidants. Food Sci. Nutr. 2024, 12, 7004–7016. [Google Scholar] [CrossRef]
- Ziyatdinova, G.; Guss, E.; Budnikov, H. Amperometric Sensor Based on Mwnt and Electropolymerized Carminic Acid for the Simultaneous Quantification of Tbhq and Bha. J. Electroanal. Chem. 2020, 859, 113885. [Google Scholar] [CrossRef]
- Bin, Z.; Feng, L.; Yan, Y. Biomimetic Metalloporphyrin Oxidase Modified Carbon Nanotubes for Highly Sensitive and Stable Quantification of Anti-Oxidants Tert-Butylhydroquinone in Plant Oil. Food Chem. 2022, 388, 132898. [Google Scholar] [CrossRef] [PubMed]
- Demir, E.; Mısır, M.; Dincer, I.; Ozdogan, N.A.; Manjunatha, J.G. Electrochemical Strategies for Determination of Tert-Butyl Hydroquinone (Tbhq) in Food Samples. J. Food Meas. Charact. 2024, 18, 5014–5030. [Google Scholar] [CrossRef]
- Liu, R.; Mabury, S.A. Synthetic Phenolic Antioxidants: A Review of Environmental Occurrence, Fate, Human Exposure, and Toxicity. Environ. Sci. Technol. 2020, 54, 11706–11719. [Google Scholar] [CrossRef]
- Gu, J.; Ma, Y.; Li, Z.; Liu, H.; Zhang, Q. Probing the Interaction of Tert-Butylhydroquinone and Its Β-Cyclodextrin Inclusion Complex with Bovine Serum Albumin. J. Mol. Liq. 2023, 384, 122249. [Google Scholar] [CrossRef]
- Boss, A.P. The Effects of Tert-Butylhydroquinone on the Murine Natural Killer Cell Activation, Effector Function, and Primary Response to Influenza. Ph.D Thesis, Stanford University School of Medicine, Stanford, CA, USA, 2023. [Google Scholar]
- Xu, J.; Yang, W.; Liu, Y. Novel Dual-Emission Carbonized Polymer Dot-Based Ratiometric Fluorescence Probe for the Sensitive Detection of Tertiary Butylhydroquinone. ACS Appl. Mater. Interfaces 2023, 15, 27065–27074. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Chen, L.; Fan, Z.; Liu, W.; Yu, J. Vortex-assisted liquid-liquid microextraction with polyhydric alcohols as selective extraction solvents coupled with HPLC for highly efficient analysis of TBHQ in biodiesel. Microchem J. 2024, 203, 110886. [Google Scholar] [CrossRef]
- Zhang, X.; Diao, M.; Zhang, Y. A Review of the Occurrence, Metabolites anzd Health Risks of Butylated Hydroxyanisole (Bha). J. Sci. Food Agric. 2023, 103, 6150–6166. [Google Scholar] [CrossRef]
- Ziyatdinova, G.K.; Zhupanova, A.S.; Budnikov, H.C. Electrochemical Sensors for the Simultaneous Detection of Phenolic Antioxidants. J. Anal. Chem. 2022, 77, 155–172. [Google Scholar] [CrossRef]
- Liu, W.; Zong, B.; Wang, X.; Yang, G.; Yu, J. Deep Eutectic Solvents as Switchable Solvents for Highly Efficient Liquid-Liquid Microextraction of Phenolic Antioxidant: Easily Tracking the Original Tbhq in Edible Oils. Food Chem. 2022, 377, 131946. [Google Scholar] [CrossRef]
- Balram, D.; Lian, K.-Y.; Sebastian, N.; Rasana, N. Ultrasensitive Detection of Cytotoxic Food Preservative Tert-Butylhydroquinone Using 3d Cupric Oxide Nanoflowers Embedded Functionalized Carbon Nanotubes. J. Hazard. Mater. 2021, 406, 124792. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, N.; Yu, W.-C.; Balram, D.; Al-Mubaddel, F.S.; Noman, M.T. Al-Mubaddel, and Muhammad Tayyab Noman. Nanomolar Detection of Food Additive Tert-Butylhydroquinone in Edible Oils Based on Novel Ternary Metal Oxide Embedded Β-Cyclodextrin Functionalized Carbon Black. Food Chem. 2022, 377, 131867. [Google Scholar] [CrossRef]
- Christodoulou, M.C.; Palacios, J.C.O.; Hesami, G.; Jafarzadeh, S.; Lorenzo, J.M.; Domínguez, R.; Moreno, A.; Hadidi, M. Spectrophotometric Methods for Measurement of Antioxidant Activity in Food and Pharmaceuticals. Antioxidants 2022, 11, 2213. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Hassan, M.; Ali, S.; Li, H.; Sheng, R.; Chen, Q. Evolving Trends in Sers-Based Techniques for Food Quality and Safety: A Review. Trends Food Sci. Technol. 2021, 112, 225–240. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.; Huang, X.; Hu, X.; Huang, X.; Yin, L.; Huang, Q.; Wen, Y.; Li, B.; Shi, J.; et al. Switchable Aptamer-Fueled Colorimetric Sensing toward Agricultural Fipronil Exposure Sensitized with Affiliative Metal-Organic Framework. Food Chem. 2023, 407, 135115. [Google Scholar] [CrossRef]
- Chen, T.; Liu, C.; Meng, L.; Lu, D.; Chen, B.; Cheng, Q. Early Warning of Rice Mildew Based on Gas Chromatography-Ion Mobility Spectrometry Technology and Chemometrics. J. Food Meas. Charact. 2021, 15, 1939–1948. [Google Scholar] [CrossRef]
- Arslan, M.; Zareef, M.; Tahir, H.E.; Guo, Z.; Rakha, A.; Xuetao, H.; Shi, J.; Zhihua, L.; Xiaobo, Z.; Khan, M.R. Discrimination of Rice Varieties Using Smartphone-Based Colorimetric Sensor Arrays and Gas Chromatography Techniques. Food Chem. 2022, 368, 130783. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, Y.; Xu, L. A Rapid Method for Analyzing Synthetic Phenolic Antioxidants in Food Grade Lubricant Samples Based on Headspace Solid-Phase Microextracion Coupled with Gas Chromatography-Mass Spectrometer. Food Anal. Methods 2021, 14, 2524–2533. [Google Scholar] [CrossRef]
- He, P.; Hassan, M.; Tang, F.; Jiang, H.; Chen, M.; Liu, R.; Lin, H.; Chen, Q. Total Fungi Counts and Metabolic Dynamics of Volatile Organic Compounds in Paddy Contaminated by Aspergillus Niger During Storage Employing Gas Chromatography-Ion Mobility Spectrometry. Food Anal. Methods 2022, 15, 1638–1651. [Google Scholar] [CrossRef]
- Xu, M.; Li, J.; Bi, Y.; Song, J.; Fu, C.A. Method for Evaluating the Initial Addition of Tert-Butylhydroquinone to Oils During Storage Condition Based on Gas Chromatography-Mass Spectrometry. J. Food Compos. Anal. 2024, 136, 106835. [Google Scholar] [CrossRef]
- Lin, L.; Li, J.; Yu, Z.; He, J.; Li, Y.; Jiang, J.; Xia, Y. Nrf2 activator tertiary butylhydroquinone enhances neural stem cell differentiation and implantation in Alzheimer’s disease by boosting mitochondrial function. Brain Res. 2025, 1849, 149341. [Google Scholar] [CrossRef] [PubMed]
- Abedi, A.; Hemmati, F.; Abedini, A.H.; Mohammadi, A.; Moslemi, M. Application of Thermal Ultrasound-Assisted Liquid-Liquid Micro-Extraction Coupled with Hplc-Uv for Rapid Determination of Synthetic Phenolic Antioxidants in Edible Oils. J. Am. Oil Chem. Soc. 2021, 98, 969–978. [Google Scholar] [CrossRef]
- Liu, J.; Chen, N.; Yang, J.; Yang, B.; Ouyang, Z.; Wu, C.; Yuan, Y.; Wang, W.; Chen, M. An Integrated Approach Combining Hplc, Gc/Ms, Nirs, and Chemometrics for the Geographical Discrimination and Commercial Categorization of Saffron. Food Chem. 2018, 253, 284–292. [Google Scholar] [CrossRef]
- Mei, S.; Ding, J.; Chen, X. Identification of Differential Volatile and Non-Volatile Compounds in Coffee Leaves Prepared from Different Tea Processing Steps Using Hs-Spme/Gc-Ms and Hplc-Orbitrap-Ms/Ms and Investigation of the Binding Mechanism of Key Phytochemicals with Olfactory and Taste Receptors Using Molecular Docking. Food Res. Int. 2023, 168, 112760. [Google Scholar]
- Park, Y.J.; Bin Choi, Y.; Oh, S.-B.; Moon, J.; Truong, T.Q.; Huynh, P.K.; Kim, S.M. Development and Application of a High-Performance Liquid Chromatography Diode-Array Detection (Hplc-Dad) Method for the Simultaneous Quantification of Phenolic Compounds in the Aerial Part of Glehnia Littoralis. Appl. Biol. Chem. 2024, 67, 34. [Google Scholar] [CrossRef]
- Razola-Díaz, M.d.C.; Aznar-Ramos, M.J.; Benítez, G.; Gómez-Caravaca, A.M.; Verardo, V. Exploring the Potential of Phenolic and Antioxidant Compounds in New Rosaceae Fruits. J. Sci. Food Agric. 2024, 104, 3705–3718. [Google Scholar] [CrossRef]
- Du, J.; Pan, R.; Obadi, M.; Li, H.; Shao, F.; Sun, J.; Wang, Y.; Qi, Y.; Xu, B. In Vitro Starch Digestibility of Buckwheat Cultivars in Comparison to Wheat: The Key Role of Starch Molecular Structure. Food Chem. 2022, 368, 130806. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Liu, Z.; Sun, Y.; Sun, M.; Duan, J.; Tian, Y.; Du, D.; Li, M. Cascade Amplifying Electrochemical Bioanalysis for Zearalenone Detection in Agricultural Products: Utilizing a Glucose-Fenton-Hq System on Bimetallic-Zif@Cnp Nanocomposites. Foods 2024, 13, 3192. [Google Scholar] [CrossRef]
- Schwenzer, A.; Kruse, L.; Jooß, K.; Neusüß, C. Capillary Electrophoresis-Mass Spectrometry for Protein Analyses under Native Conditions: Current Progress and Perspectives. Proteomics 2024, 24, e2300135. [Google Scholar] [CrossRef]
- Huang, H.-Y.; Cheng, Y.-J.; Lin, C.-L. Analyses of Synthetic Antioxidants by Capillary Electrochromatography Using Poly(Styrene–Divinylbenzene–Lauryl Methacrylate) Monolith. Talanta 2010, 82, 1426–1433. [Google Scholar] [CrossRef]
- Wang, J.; Meng, Q.; Yang, Y.; Zhong, S.; Zhang, R.; Fang, Y.; Gao, Y.; Cui, X. Schiff Base Aggregation-Induced Emission Luminogens for Sensing Applications: A Review. ACS Sens. 2022, 7, 2521–2536. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yu, X.; Shi, X.; Han, Y.; Guo, Z.; Liu, Y. Development of Carbon Quantum Dot-Labeled Antibody Fluorescence Immunoassays for the Detection of Morphine in Hot Pot Soup Base. Food Anal. Methods 2020, 13, 1042–1049. [Google Scholar] [CrossRef]
- Ghervase, L.; Cortea, I.M. Lighting up the Heritage Sciences: The Past and Future of Laser-Induced Fluorescence Spectroscopy in the Field of Cultural Goods. Chemosensors 2023, 11, 100. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Li, R.; Du, L.; Feng, X.; Ding, Y. A Highly Sensitive and Selective Turn Off-on Fluorescent Sensor Based on Sm-Mof for the Detection of Tertiary Butylhydroquinone. Dye. Pigment. 2020, 178, 108347. [Google Scholar] [CrossRef]
- Gu, H.; Huang, X.; Sun, Y.; Chen, Q.; Wei, Z.; Lv, R. Intelligent Evaluation of Total Polar Compounds (Tpc) Content of Frying Oil Based on Fluorescence Spectroscopy and Low-Field Nmr. Food Chem. 2021, 342, 128242. [Google Scholar] [CrossRef]
- Gu, H.; Lv, R.; Huang, X.; Chen, Q.; Dong, Y. Rapid Quantitative Assessment of Lipid Oxidation in a Rapeseed Oil-in-Water (O/W) Emulsion by Three-Dimensional Fluorescence Spectroscopy. J. Food Compos. Anal. 2022, 114, 104762. [Google Scholar] [CrossRef]
- Afsharara, H.; Asadian, E.; Mostafiz, B.; Banan, K.; Bigdeli, S.A.; Hatamabadi, D.; Keshavarz, A.; Hussain, C.M.; Keçili, R.; Ghorbani-Bidkorpeh, F. Molecularly Imprinted Polymer-Modified Carbon Paste Electrodes (Mip-Cpe): A Review on Sensitive Electrochemical Sensors for Pharmaceutical Determinations. TRAC Trends Anal. Chem. 2023, 160, 116949. [Google Scholar] [CrossRef]
- Li, W.; Zhang, X.; Shi, Y.; Hu, X.; Wang, X.; Liang, N.; Shen, T.; Zou, X.; Shi, J. A Dual-Modal Biosensor Coupling Cooperative Catalysis Strategy for Sensitive Detection of Afb1 in Agri-Products. Food Chem. 2023, 426, 136553. [Google Scholar] [CrossRef]
- Kaur, G.; Garima; Prakash, V.; Gupta, S.; Chaudhary, M.K.; Mehta, S.; Sharma, S. Graphene Oxide Functionalized Halloysite Nanotubes for Voltammetric Determination of Psychoactive Drug from Alcoholic and Non-Alcoholic Drinks. Flatchem 2025, 49, 100794. [Google Scholar] [CrossRef]
- Wang, R.; Li, B.; Li, G.; Shen, Q.; Zou, L. Nicofes/Rgo Nanozyme-Mediated Multifunctional Homogeneous Sensing System for Ultrasensitive Electrochemical Assay of Pesticides Residues in Fruits and Vegetables. Sens. Actuators B Chem. 2025, 422, 136664. [Google Scholar] [CrossRef]
- Zhang, C.; Lai, Q.; Chen, W.; Zhang, Y.; Mo, L.; Liu, Z. Three-Dimensional Electrochemical Sensors for Food Safety Applications. Biosensors 2023, 13, 529. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Huang, A.; He, L.; Cai, C.; You, T. Recent Advances in Foodborne Pathogen Detection Using Photoelectrochemical Biosensors: From Photoactive Material to Sensing Strategy. Front. Sustain. Food Syst. 2024, 8, 1432555. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, D.; Li, Y.; Chen, T.; You, T. Label-Free Ratiometric Homogeneous Electrochemical Aptasensor Based on Hybridization Chain Reaction for Facile and Rapid Detection of Aflatoxin B1 in Cereal Crops. Food Chem. 2022, 373, 131443. [Google Scholar] [CrossRef]
- Doddanagowada, S.; Palakollu, V.N.; Vattikuti, S.V.P.; Shim, J.; Mameda, N. Recent Progress, Challenges, and Future Perspectives of Electrochemical Biosensing of Aflatoxins. Microchim. Acta 2025, 192, 17. [Google Scholar]
- Romani, A.; Minunni, M.; Mulinacci, N.; Pinelli, P.; Vincieri, F.F.; Del Carlo, M.; Mascini, M. Comparison among Differential Pulse Voltammetry, Amperometric Biosensor, and Hplc/Dad Analysis for Polyphenol Determination. J. Agric. Food Chem. 2000, 48, 1197–1203. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Zheng, S.-B.; Jiang, S.-X.; Li, J.; Guo, T.; Guo, J.-H. Metal Organic Framework (Zif-67)-Derived Co Nanoparticles/N-Doped Carbon Nanotubes Composites for Electrochemical Detecting of Tert-Butyl Hydroquinone. Rare Met. 2021, 40, 478–488. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Y.; Li, Y.; Li, Y.; Li, Z.; Zhang, W.; Zou, X.; Shi, J.; Huang, X.; Liu, C.; et al. Rapid Detection of Cadmium Ions in Meat by a Multi-Walled Carbon Nanotubes Enhanced Metal-Organic Framework Modified Electrochemical Sensor. Food Chem. 2021, 357, 129762. [Google Scholar] [CrossRef]
- Wei, M.; Yuan, Y.; Chen, D.-S.; Pan, L.; Tong, W.; Lu, W. A Systematic Review on Electrochemical Sensors for the Detection of Acetaminophen. Anal. Methods 2024, 16, 6134–6155. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Q.-Y.; Jiang, M.; Li, S.-S. Application of Valence-Variable Transition-Metal-Oxide-Based Nanomaterials in Electrochemical Analysis: A Review. Anal. Chim. Acta 2024, 1295, 342270. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, W.; Zhang, L.; Jia, Y.; Liu, Y. Simultaneous Determination of Catechol and Hydroquinone Using Gold Nanoparticles/Poly(P-Aminobenzenesulfonic Acid)/Multi-Walled Carbon Nanotubes Modified Glassy Carbon Electrode. J. Electrochem. Soc. 2022, 169, 107504. [Google Scholar] [CrossRef]
- Jangid, K.; Sahu, R.P.; Sakib, S.; Zhitomirsky, I.; Puri, I.K. Surface-Modified Metal Oxides for Ultrasensitive Electrochemical Detection of Organophosphates, Heavy Metals, and Nutrients. Acs Appl. Nano Mater. 2022, 5, 17183–17193. [Google Scholar] [CrossRef]
- Han, E.; Pan, Y.; Li, L.; Cai, J. Bisphenol a Detection Based on Nano Gold-Doped Molecular Imprinting Electrochemical Sensor with Enhanced Sensitivity. Food Chem. 2023, 426, 136608. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, W.; Shi, J.; Li, Z.; Huang, X.; Zou, X.; Tan, W.; Zhang, X.; Hu, X.; Wang, X.; et al. Impedimetric Aptasensor Based on Highly Porous Gold for Sensitive Detection of Acetamiprid in Fruits and Vegetables. Food Chem. 2020, 322, 126762. [Google Scholar] [CrossRef]
- Okeke, E.S.; Ezeorba, T.P.C.; Okoye, C.O.; Chen, Y.; Mao, G.; Feng, W.; Wu, X. Analytical Detection Methods for Azo Dyes: A Focus on Comparative Limitations and Prospects of Bio-Sensing and Electrochemical Nano-Detection. J. Food Compos. Anal. 2022, 114, 104778. [Google Scholar] [CrossRef]
- Zhai, X.; Li, Z.; Zhang, J.; Shi, J.; Zou, X.; Huang, X.; Zhang, D.; Sun, Y.; Yang, Z.; Holmes, M.; et al. Natural Biomaterial-Based Edible and Ph-Sensitive Films Combined with Electrochemical Writing for Intelligent Food Packaging. J. Agric. Food Chem. 2018, 66, 12836–12846. [Google Scholar] [CrossRef]
- Yue, X.; Song, W.; Zhu, W.; Wang, J.; Wang, Y. In Situ Surface Electrochemical Co-Reduction Route Towards Controllable Construction of Aunps/Ergo Electrochemical Sensing Platform for Simultaneous Determination of Bha and Tbhq. Electrochim. Acta 2015, 182, 847–855. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, S.; Ma, X.; Yan, F.; Tang, W. Highly Sensitive Electrochemical Determination of Butylated Hydroxyanisole in Food Samples Using Electrochemical-Pretreated Three-Dimensional Graphene Electrode Modified with Silica Nanochannel Film. Nanomaterials 2024, 14, 569. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, S.; Pan, J.; Lin, J.; Wang, J.; Li, M.; Xie, A.; Luo, S. Nanomaterials-Based Electrochemical Sensors for the Detection of Natural Antioxidants in Food and Biological Samples: Research Progress. Microchim. Acta 2022, 189, 318. [Google Scholar] [CrossRef]
- Luo, L.; Liu, X.; Ma, S.; Li, L.; You, T. Quantification of Zearalenone in Mildewing Cereal Crops Using an Innovative Photoelectrochemical Aptamer Sensing Strategy Based on Zno-Ngqds Composites. Food Chem. 2020, 322, 126778. [Google Scholar] [CrossRef]
- Yang, W.; Gao, M.; Zhang, Y.; Dai, Y.; Peng, W.; Ji, S.; Ji, Y.; Huang, W.; Xu, W. Self-Driven Photoelectrochemical Sensor Based on Z-Type Perovskite Heterojunction for Profenofos Detection in Milk and Cabbage. J. Food Compos. Anal. 2024, 136, 106738. [Google Scholar] [CrossRef]
- Han, E.; Li, L.; Gao, T.; Pan, Y.; Cai, J. Nitrite Determination in Food Using Electrochemical Sensor Based on Self-Assembled Mwcnts/Aunps/Poly-Melamine Nanocomposite. Food Chem. 2024, 437, 137773. [Google Scholar] [CrossRef]
- Zhu, L.; Dong, X.-X.; Gao, C.-B.; Gai, Z.; He, Y.-X.; Qian, Z.-J.; Liu, Y.; Lei, H.-T.; Sun, Y.-M.; Xu, Z.-L. Development of a Highly Sensitive and Selective Electrochemical Immunosensor for Controlling of Rhodamine B Abuse in Food Samples. Food Control 2022, 133, 108662. [Google Scholar] [CrossRef]
- Qin, C.; Guo, W.; Liu, Y.; Liu, Z.; Qiu, J.; Peng, J. A Novel Electrochemical Sensor Based on Graphene Oxide Decorated with Silver Nanoparticles-Molecular Imprinted Polymers for Determination of Sunset Yellow in Soft Drinks. Food Anal. Methods 2017, 10, 2293–2301. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, C.; Liu, F.; Zou, X.; Xu, Y.; Xu, X. A Smart-Phone-Based Electrochemical Platform with Programmable Solid-State-Microwave Flow Digestion for Determination of Heavy Metals in Liquid Food. Food Chem. 2020, 303, 125378. [Google Scholar] [CrossRef]
- Song, C.; Guo, J.; Wang, Y.; Xiang, H.; Yang, Y. Electrochemical Glucose Sensors: Classification, Catalyst Innovation, and Sampling Mode Evolution. Biotechnol. J. 2024, 19, e202400349. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, W.; Shi, J.; Zou, X.; Li, Z.; Zhu, Y. Microfabricated Interdigitated Au Electrode for Voltammetric Determination of Lead and Cadmium in Chinese Mitten Crab (Eriocheir sinensis). Food Chem. 2016, 201, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhao, X.; Gu, C.; Xu, F.; Zhang, W.; Huang, X.; Qian, J. Fabrication of a Versatile Aptasensing Chip for Aflatoxin B1 in Photothermal and Electrochemical Dual Modes. Food Anal. Methods 2022, 15, 3390–3399. [Google Scholar] [CrossRef]
- Yang, Z.; Zhai, X.; Zhang, C.; Shi, J.; Huang, X.; Li, Z.; Zou, X.; Gong, Y.; Holmes, M.; Povey, M.; et al. Agar/TiO2/Radish Anthocyanin/Neem Essential Oil Bionanocomposite Bilayer Films with Improved Bioactive Capability and Electrochemical Writing Property for Banana Preservation. Food Hydrocoll. 2022, 123, 107187. [Google Scholar] [CrossRef]
- Motia, S.; Bouchikhi, B.; El Bari, N. An Electrochemical Molecularly Imprinted Sensor Based on Chitosan Capped with Gold Nanoparticles and Its Application for Highly Sensitive Butylated Hydroxyanisole Analysis in Foodstuff Products. Talanta 2021, 223, 121689. [Google Scholar] [CrossRef]
- Guan, H.; Du, S.; Zhang, Y.; Tang, S. Trimetallic Fe3O4@Au/Mof Nanopolyhedrons with Peroxidase-Like Catalytic Activity for the Electrochemical Detection of Tert-Butyl Hydroquinone as a Pollutant in Edible Oil. New J. Chem. 2024, 48, 10189–10200. [Google Scholar] [CrossRef]
- Zheng, S.; Fan, J.; Yin, F.; Chen, J.; Hui, Z.; Tang, J.; Wang, X.; Guo, J. Electrochemical Determination of Tert-Butylhydroquinone by Zif-67@TiO2 Derived Hierarchical TiO2/Co/Ncnts. New J. Chem. 2023, 47, 15569–15578. [Google Scholar] [CrossRef]
- Adhikari, J.; Rizwan, M.; Koh, D.; Keasberry, N.A.; Ahmed, M.U. Electrochemical Study of Dimensional Specific Carbon Nanomaterials Modified Glassy Carbon Electrode for Highly Sensitive Label-Free Detection of Immunoglobulin A. Curr. Anal. Chem. 2020, 16, 833–842. [Google Scholar] [CrossRef]
- Du, X.; Du, W.; Sun, J.; Jiang, D. Self-Powered Photoelectrochemical Sensor for Chlorpyrifos Detection in Fruit and Vegetables Based on Metal-Ligand Charge Transfer Effect by Ti3C2 Based Schottky Junction. Food Chem. 2022, 385, 132731. [Google Scholar] [CrossRef]
- Sharma, A.S.; Ali, S.; Sabarinathan, D.; Murugavelu, M.; Li, H.; Chen, Q. Recent Progress on Graphene Quantum Dots-Based Fluorescence Sensors for Food Safety and Quality Assessment Applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5765–5801. [Google Scholar] [CrossRef]
- Feng, J.; Wang, H.; Liu, Y.; Liu, W.; Lin, X. Zirconium-Based Metal-Organic Framework and Functionalized Carbon Black Composite for Simultaneous Electrochemical Detection of Tert-Butylhydroquinone and Butylhydroxyanisole. Appl. Organomet. Chem. 2024, 38, e7600. [Google Scholar] [CrossRef]
- Balram, D.; Lian, K.-Y.; Sebastian, N.; Al-Mubaddel, F.S.; Noman, M.T. Al-Mubaddel, and Muhammad Tayyab Noman. A Sensitive and Economical Electrochemical Platform for Detection of Food Additive Tert-Butylhydroquinone Based on Porous Co3O4 Nanorods Embellished Chemically Oxidized Carbon Black. Food Control 2022, 136, 108844. [Google Scholar] [CrossRef]
- Palakollu, V.N.; Chen, D.; Tang, J.-N.; Wang, L.; Liu, C. Recent Advancements in Metal-Organic Frameworks Composites Based Electrochemical (Bio)Sensors. Microchim. Acta 2022, 189, 161. [Google Scholar] [CrossRef]
- Li, C.; Shen, J.; Wu, K.; Yang, N. Metal Centers and Organic Ligands Determine Electrochemistry of Metal-Organic Frameworks. Small 2022, 18, 2106607. [Google Scholar] [CrossRef]
- Aldoori, B.; Selvi, C.K.; Kursunlu, A.N.; Erden, P.E.; Kucukkolbasi, S.; Kılıç, E. Development of an Electrochemical Sensor Based on Platinum Nanoparticles/Iron-Based Metal-Organic Framework Composite for Efficient Determination of Butylated Hydroxyanisole. Microchem. J. 2024, 205, 111314. [Google Scholar] [CrossRef]
- Cruz-Navarro, J.A.; Hernández-García, F.; Mendoza-Huizar, L.H.; Salazar-Pereda, V.; Cobos-Murcia, J.Á.; Colorado-Peralta, R.; Álvarez-Romero, G.A. Recent Advances in the Use of Transition-Metal Porphyrin and Phthalocyanine Complexes as Electro-Catalyst Materials on Modified Electrodes for Electroanalytical Sensing Applications. Solids 2021, 2, 212–231. [Google Scholar] [CrossRef]
- Gu, H.; Huang, X.; Chen, Q.; Sun, Y. Rapid Assessment of Total Polar Material in Used Frying Oils Using Manganese Tetraphenylporphyrin Fluorescent Sensor with Enhanced Sensitivity. Food Anal. Methods 2020, 13, 2080–2086. [Google Scholar] [CrossRef]
- Gu, H.; Gu, H.; Dong, Y.; Dong, Y.; Lv, R.; Huang, X.; Huang, X.; Chen, Q.; Chen, Q. Rapid Quantification of Acid Value in Frying Oil Using Iron Tetraphenylporphyrin Fluorescent Sensor Coupled with Density Functional Theory and Multivariate Analysis. Food Qual. Saf. 2022, 6, fyac046. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, X.; Shi, J.; Zou, X.; Huang, X.; Tahir, H.E. Preparation of Conducting Polyaniline/Protoporphyrin Composites and Their Application for Sensing Vocs. Food Chem. 2019, 276, 291–297. [Google Scholar] [CrossRef] [PubMed]
- La, D.D.; Khong, H.M.; Nguyen, X.Q.; Dang, T.-D.; Bui, X.T.; Nguyen, M.K.; Ngo, H.H.; Nguyen, D.D. A Review on Advances in Graphene and Porphyrin-Based Electrochemical Sensors for Pollutant Detection. Sustain. Chem. One World 2024, 3, 100017. [Google Scholar]
- Chaurasia, P.K.; Bharati, S.L.; Singh, S.; Yadava, S. An Insight on the Potential of Manganese Porphyrins in Cancer Treatment. Mini-Rev. Org. Chem. 2023, 20, 483–493. [Google Scholar] [CrossRef]
- Zakharov, M.S.; Tertyshnaya, Y.V. Structure and Properties of Synthetic Porphyrins and Porphyrin-Polymer Systems. Russ. J. Org. Chem. 2023, 59, 1083–1101. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, C.; Jiang, Y.; Jiang, Y.; Shen, J.; Han, E. Structure-Switching Electrochemical Aptasensor for Single-Step and Specific Detection of Trace Mercury in Dairy Products. J. Agric. Food Chem. 2018, 66, 10106–10112. [Google Scholar] [CrossRef]
- Liu, S.; Meng, S.; Wang, M.; Li, W.; Dong, N.; Liu, D.; Li, Y.; You, T. In-Depth Interpretation of Aptamer-Based Sensing on Electrode: Dual-Mode Electrochemical-Photoelectrochemical Sensor for the Ratiometric Detection of Patulin. Food Chem. 2023, 410, 135450. [Google Scholar] [CrossRef]
- Li, W.; Shi, Y.; Zhang, X.; Hu, X.; Huang, X.; Liang, N.; Shen, T.; Zou, X.; Shi, J. A DNA Tetrahedral Scaffolds-Based Electrochemical Biosensor for Simultaneous Detection of Afb1 and Ota. Food Chem. 2024, 442, 138312. [Google Scholar] [CrossRef]
- Guo, Y.; Li, C.; Guo, W.; Zhang, X.; Wang, L.; Zhang, W.; Zou, X.; Sun, Z. Advanced Electrochemical Biosensing toward Staphylococcus Aureus Based on the Rpa-Crispr/Cas12a System and Conductive Nanocomposite. J. Agric. Food Chem. 2024, 72, 22918–22925. [Google Scholar] [CrossRef]
- Gu, S.; Marianov, A.N.; Lu, T.; Zhong, J. A Review of the Development of Porphyrin-Based Catalysts for Electrochemical CO2 Reduction. Chem. Eng. J. 2023, 470, 144249. [Google Scholar] [CrossRef]
- Abdinejad, M.; Yuan, T.; Tang, K.; Duangdangchote, S.; Farzi, A.; van Montfort, H.I.; Li, M.; Middelkoop, J.; Wolff, M.; Seifitokaldani, A.; et al. Electroreduction of Carbon Dioxide to Acetate Using Heterogenized Hydrophilic Manganese Porphyrins. Chem. A Eur. J. 2023, 29, e202203977. [Google Scholar] [CrossRef]
- Kaur, H.; Sharma, S.; Goel, N. Boosting the Efficiency and Selectivity of Electrocatalytic Reduction of Co2 to C1 Products by Mn-Porphyrin Via Axial Ligation. J. Phys. Chem. C 2024, 128, 17399–17409. [Google Scholar] [CrossRef]
- Corrêa, G.A.; Kuźniarska-Biernacka, I.; Fernandes, D.M.; Rebelo, S.L.H. Polarized Bimetallic Site Synergy in Ionic Structures of Cu(Ii), Fe(Iii), and Mn(Iii) Porphyrins: Electrochemistry and Catalytic Hydrogenation of Nitroaromatics. Inorg. Chem. 2024, 63, 22865–22879. [Google Scholar] [CrossRef] [PubMed]
- Boakye, A.; Yu, K.; Asinyo, B.K.; Chai, H.; Raza, T.; Xu, T.; Zhang, G.; Qu, L. A Portable Electrochemical Sensor Based on Manganese Porphyrin-Functionalized Carbon Cloth for Highly Sensitive Detection of Nitroaromatics and Gaseous Phenol. Langmuir 2022, 38, 12058–12069. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Ji, H.; Tang, J.; Tao, F.; Zhang, X.; Yao, Z.; Song, H.; Li, C.; Wang, F. Electrochemical Activation and Renewal of Pyrrole Nitrogen Sites in Porphyrin-Based Conjugated Polymer for Simultaneous Determination of Uric Acid and Adrenaline. J. Electroanal. Chem. 2021, 884, 115055. [Google Scholar] [CrossRef]
- Chu, Y.; Yin, D.; Wang, Z.; Li, G.; Wang, Y.; Liu, Q.; Yue, K. Porphyrin Modified ZNCO2O4 Nanospheres as the Excellent Peroxidase/Oxidase Dual Nanozymes for Colorimetric Sensing of Cholesterol. Colloids Surf. A Physicochem. Eng. Asp. 2025, 705, 135685. [Google Scholar] [CrossRef]
- Xu, H.; Li, M.; Zang, M.; Sun, J.; Jia, D.; Hou, C.; Liu, J. Iron-Porphyrin-Based Covalent Assembly with Peroxidase-Like Activity and High Efficiency for Cr(Vi) Colorimetric Detection. Macromol. Chem. Phys. 2023, 224, 2200405. [Google Scholar] [CrossRef]
- Dai, H.; Li, H.; Yang, Q. Construction of COF–COF heterojunctions for visible-light driven alcohol oxidation. Microporous Mesoporous Mater. 2022, 342, 112121. [Google Scholar] [CrossRef]
- Wang, S.; Liang, N.; Hu, X.; Li, W.; Guo, Z.; Zhang, X.; Huang, X.; Li, Z.; Zou, X.; Shi, J. Carbon Dots and Covalent Organic Frameworks Based Fret Immunosensor for Sensitive Detection of Escherichia coli O157:H7. Food Chem. 2024, 447, 138663. [Google Scholar] [CrossRef]
- Gavara, R.; Royuela, S.; Zamora, F. A Minireview on Covalent Organic Frameworks as Stationary Phases in Chromatography. Front. Chem. 2024, 12, 1384025. [Google Scholar] [CrossRef] [PubMed]
- Feng, T.; Shi, J.; Yue, K.; Xia, J.; Yan, L.; Suo, H.; Zou, B. Covalent Organic Framework Immobilized Lipase for Efficient Green Synthesis of 1, 3-Dioleoyl-2-Palmitoylglycerol. Mol. Catal. 2024, 552, 113671. [Google Scholar] [CrossRef]
- Feng, T.; Shi, J.; Xia, J.; Ren, X.; Adesanya, O.I.; Suo, H.; Zou, B. Lipase in-Situ Immobilized in Covalent Organic Framework: Enzymatic Properties and Application in the Preparation of 1, 3-Dioleoyl-2-Palmitoylglycerol. Colloids Surf. B Biointerfaces 2024, 238, 113873. [Google Scholar] [CrossRef]
- Cote, A.P.; Benin, A.I.; Ockwig, N.W.; O’Keeffe, M.; Matzger, A.J.; Yaghi, O.M. Porous, Crystalline, Covalent Organic Frameworks. Science 2005, 310, 1166–1170. [Google Scholar] [CrossRef]
- Bai, Y.; Gao, W.; Wang, Q.; Yu, B.; Wei, J.; Gao, C.; Zhu, P.; Yu, J. Porphyrin-Based Covalent Organic Framework with Self-Accelerated M-N4 Bimetallic Active Sites for Enhanced Electrochemical Detection of Trace Hydrogen Peroxide. Sens. Actuators B Chem. 2023, 394, 134435. [Google Scholar] [CrossRef]
- Ma, B.; Guo, H.; Wang, M.; Wang, Q.; Yang, W.; Wang, Y.; Yang, W. Electrocatalysis and Simultaneous Determination of Hydroquinone and Acetaminophen Using Pnecof/Graphene Oxide Modified Electrode. Microchem. J. 2020, 155, 104776. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, C.; Liu, J.; Liu, L.; Tuo, W.; Zhu, H.; Lu, S.; Li, X.; Stang, P.J. Self-Assembly of Porphyrin-Based Metallacages into Octahedra. J. Am. Chem. Soc. 2020, 142, 17903–17907. [Google Scholar] [CrossRef] [PubMed]
- Sudhakar, K.; Mahammed, A.; Fridman, N.; Gross, Z. Trifluoromethylation for Affecting the Structural, Electronic and Redox Properties of Cobalt Corroles. Dalton Trans. 2019, 48, 4798–4810. [Google Scholar] [CrossRef]
- Issaka, E.; Adams, M.; Baffoe, J.; Danso-Boateng, E.; Melville, L.; Fazal, A. Covalent Organic Frameworks: A Review of Synthesis Methods, Properties and Applications for Per- and Poly-Fluoroalkyl Substances Removal. Clean Technol. Environ. Policy 2024. [Google Scholar] [CrossRef]
- Liang, H.; Luo, Y.; Xiao, Y.; Xiong, J.; Chen, R.; Song, Y.; Wang, L. Immunosensing of Neuron-Specific Enolase Based on Dual Signal Amplification Strategy Via Electrocatalytic Oxygen Reduction by Iron-Porphyrin Covalent Organic Framework. Chem. Eng. J. 2023, 460, 141740. [Google Scholar] [CrossRef]
- Huang, D.; Li, X.; Chen, M.; Chen, F.; Wan, Z.; Rui, R.; Wang, R.; Fan, S.; Wu, H. An Electrochemical Sensor Based on a Porphyrin Dye-Functionalized Multi-Walled Carbon Nanotubes Hybrid for the Sensitive Determination of Ascorbic Acid. J. Electroanal. Chem. 2019, 841, 101–106. [Google Scholar] [CrossRef]
- Zeng, K.; Wei, W.; Jiang, L.; Zhu, F.; Du, D. Use of Carbon Nanotubes as a Solid Support to Establish Quantitative (Centrifugation) and Qualitative (Filtration) Immunoassays to Detect Gentamicin Contamination in Commercial Milk. J. Agric. Food Chem. 2016, 64, 7874–7881. [Google Scholar] [CrossRef]
- Sun, J.; Liu, Y.; Wu, G.; Zhang, Y.; Zhang, R.; Li, X.J. A Fusion Parameter Method for Classifying Freshness of Fish Based on Electrochemical Impedance Spectroscopy. J. Food Qual. 2021, 2021, 6664291. [Google Scholar] [CrossRef]
- Bai, Y.; Miao, J.; Bian, X.; Wang, Q.; Gao, W.; Xue, Y.; Yang, G.; Zhu, P.; Yu, J. In Situ Growth of a Cobalt Porphyrin-Based Covalent Organic Framework on Multi-Walled Carbon Nanotubes for Ultrasensitive Real-Time Monitoring of Living Cell-Released Nitric Oxide. Analyst 2023, 148, 4219–4226. [Google Scholar] [CrossRef]
- Srinivas, S.; Sekar, M.; Thirumurugan, K.; Kumar, A.S. Hemozoin Anchored Mwcnts for Mediated Reduction of Hydrogen Peroxide and Real-Time Intracellular Oxidative Stress Monitoring in Colon Cancer Cells. J. Mater. Chem. B 2024. [Google Scholar] [CrossRef]
- Ma, R.; Cui, X.; Wang, Y.; Xiao, Z.; Luo, R.; Gao, L.; Wei, Z.; Yang, Y. Pyrolysis-Free Synthesis of Single-Atom Cobalt Catalysts for Efficient Oxygen Reduction. J. Mater. Chem. A 2022, 10, 5918–5924. [Google Scholar] [CrossRef]
- Basova, T.V.; Polyakov, M.S. Hybrid Materials Based on Carbon Nanotubes and Polyaromatic Molecules: Methods of Functionalization and Sensor Properties. Macroheterocycles 2020, 13, 91–112. [Google Scholar] [CrossRef]
Name | Tert-Butylhydroquinone | Butylated Hydroxyanisole | 2,6-Di-tert-butyl-p-cresol | Propyl Gallate |
---|---|---|---|---|
Chemical constitution | ||||
Abbreviation | TBHQ | BHA | BHT | PG |
Chemical formula | C10H14O2 | C11H16O2 | C15H24O | C10H12O5 |
Molecular weight | 166.217 | 180.244 | 220.35 | 212.21 |
Cas number | 1948-33-0 | 25013-16-5 | 128-37-0 | 121-79-9 |
Melting point | 127~129 °C | 48~63 °C | 69~71 °C | 146~150 °C |
Boiling point | 291.4 °C | 264~270 °C | 265 °C | 448.6 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, L.; Lin, Z.; Liu, F.; Kong, F.; Zhang, Y.; Ni, X.; Zhang, X.; Zhao, Y.; Lu, Q.; Zou, B. Research Progress on the Application of Metal Porphyrin Electrochemical Sensors in the Detection of Phenolic Antioxidants in Food. Polymers 2025, 17, 789. https://doi.org/10.3390/polym17060789
Qu L, Lin Z, Liu F, Kong F, Zhang Y, Ni X, Zhang X, Zhao Y, Lu Q, Zou B. Research Progress on the Application of Metal Porphyrin Electrochemical Sensors in the Detection of Phenolic Antioxidants in Food. Polymers. 2025; 17(6):789. https://doi.org/10.3390/polym17060789
Chicago/Turabian StyleQu, Liang, Zhiyuan Lin, Feng Liu, Fanzhuo Kong, Yuyang Zhang, Xing Ni, Xue Zhang, Yani Zhao, Qiongya Lu, and Bin Zou. 2025. "Research Progress on the Application of Metal Porphyrin Electrochemical Sensors in the Detection of Phenolic Antioxidants in Food" Polymers 17, no. 6: 789. https://doi.org/10.3390/polym17060789
APA StyleQu, L., Lin, Z., Liu, F., Kong, F., Zhang, Y., Ni, X., Zhang, X., Zhao, Y., Lu, Q., & Zou, B. (2025). Research Progress on the Application of Metal Porphyrin Electrochemical Sensors in the Detection of Phenolic Antioxidants in Food. Polymers, 17(6), 789. https://doi.org/10.3390/polym17060789