Biofilm Formation on Three High-Performance Polymeric CAD/CAM Composites: An In Vitro Study
Abstract
:1. Introduction
- No differences in surface roughness or wettability exist among the three HPP composites.
- No differences in the biofilm adhesion ability of S. mutans on the three HPP composites.
2. Materials and Methods
2.1. Specimen Preparation
2.2. Surface Roughness
2.3. Wettability (Contact Angle Measurements)
2.4. Scanning Electron Microscopy (SEM)
2.5. Bacterial Cell Growth Conditions
2.5.1. In Vitro Biofilm Adhesion Assay
2.5.2. Surface Analysis Confocal Laser
2.6. Statistical Analysis
3. Results
3.1. Surface Properties
3.2. Colony-Forming Units
3.3. Surface Analysis by SEM and CLSM
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HPP | High-performance polymer |
CAD/CAM | Computer-aided design/computer-aided manufacturing |
CFU | Colony-forming unit |
CLSM | Confocal laser scanning microscope |
References
- Zhao, A.; Sun, J.; Liu, Y. Understanding bacterial biofilms: From definition to treatment strategies. Front. Cell. Infect. Microbiol. 2023, 13, 1137947. [Google Scholar] [CrossRef] [PubMed]
- Donlan, R.M. Biofilms: Microbial Life on Surfaces. Emerg. Infect. Dis. 2002, 8, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Mohler, J.; Mahajan, S.D.; Schwartz, S.A.; Bruggemann, L.; Aalinkeel, R. Microbial biofilm: A review on formation, infection, antibiotic resistance, control measures, and innovative treatment. Microorganisms 2023, 11, 1614. [Google Scholar] [CrossRef] [PubMed]
- Sterzenbach, T.; Helbig, R.; Hannig, C.; Hannig, M. Bioadhesion in the oral cavity and approaches for biofilm management by surface modifications. Clin. Oral Investig. 2020, 24, 4237–4260. [Google Scholar] [CrossRef]
- Sbordone, L.; Bortolaia, C. Oral microbial biofilms and plaque-related diseases: Microbial communities and their role in the shift from oral health to disease. Clin. Oral Investig. 2003, 7, 181–188. [Google Scholar] [CrossRef]
- Cazzaniga, G.; Ottobelli, M.; Ionescu, A.; Garcia-Godoy, F.; Brambilla, E. Surface properties of resin-based composite materials and biofilm formation: A review of the current literature. Am. J. Dent. 2015, 28, 311–320. [Google Scholar]
- Lemos, J.A.; Palmer, S.R.; Zeng, L.; Wen, Z.T.; Kajfasz, J.K.; Freires, I.A.; Abranches, J.; Brady, L.J. The biology of Streptococcus mutans. Microbiol. Spectr. 2019, 7, 10–1128. [Google Scholar] [CrossRef]
- Sugai, K.; Kawada-Matsuo, M.; Le, M.N.-T.; Sugawara, Y.; Hisatsune, J.; Fujiki, J.; Iwano, H.; Tanimoto, K.; Sugai, M.; Komatsuzawa, H. Isolation of Streptococcus mutans temperate bacteriophage with broad killing activity to S. mutans clinical isolates. iScience 2023, 26, 108465. [Google Scholar] [CrossRef]
- Zheng, S.; Bawazir, M.; Dhall, A.; Kim, H.E.; He, L.; Heo, J.; Hwang, G. Implication of surface properties, bacterial motility, and hydrodynamic conditions on bacterial surface sensing and their initial adhesion. Front. Bioeng. Biotechnol. 2021, 9, 643722. [Google Scholar] [CrossRef]
- Bollenl, C.M.; Lambrechts, P.; Quirynen, M. Comparison of surface roughness of oral hard materials to the threshold surface roughness for bacterial plaque retention: A review of the literature. Dent. Mater. 1997, 13, 258–269. [Google Scholar] [CrossRef]
- Poker, B.d.C.; Oliveira, V.d.C.; Macedo, A.P.; Gonçalves, M.; Ramos, A.P.; Silva-Lovato, C.H. Evaluation of surface roughness, wettability and adhesion of multispecies biofilm on 3D-printed resins for the base and teeth of complete dentures. Appl. Oral Sci. 2024, 32, e20230326. [Google Scholar] [CrossRef] [PubMed]
- Hahnel, S.; Wieser, A.; Lang, R.; Rosentritt, M. Biofilm formation on the surface of modern implant abutment materials. Clin. Oral Implant. Res. 2015, 26, 1297–1301. [Google Scholar] [CrossRef] [PubMed]
- Ganji, K.K.; Toumeh, T.T.; Sghaireen, M.G.; Mathew, M.; Nagy, A.I.; Rao, K. A review on biofilm and biomaterials: Prosthodontics and periodontics perspective. J. Int. Oral Health 2020, 12, 504–511. [Google Scholar] [CrossRef]
- Buergers, R.; Schneider-Brachert, W.; Hahnel, S.; Rosentritt, M.; Handel, G. Streptococcal adhesion to novel low-shrink silorane-based restorative. Dent. Mater. 2009, 25, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Hahnel, S.; Rosentritt, M.; Bürgers, R.; Handel, G. Surface properties and in vitro Streptococcus mutans adhesion to dental resin polymers. J. Mater. Sci. Mater. Med. 2008, 19, 2619–2627. [Google Scholar] [CrossRef]
- Vulović, S.; Nikolić-Jakoba, N.; Radunović, M.; Petrović, S.; Popovac, A.; Todorović, M.; Milić-Lemić, A. Biofilm formation on the surfaces of CAD/CAM dental polymers. Polymers 2023, 15, 2140. [Google Scholar] [CrossRef]
- Azam, M.T.; Khan, A.S.; Muzzafar, D.; Faryal, R.; Siddiqi, S.A.; Ahmad, R.; Chauhdry, A.A.; Rehman, I.U. Structural, surface, in vitro bacterial adhesion and biofilm formation analysis of three dental restorative composites. Materials 2015, 8, 3221–3237. [Google Scholar] [CrossRef]
- Hu, C.; Lin, Y.Q.; Yang, Y.J.; Wang, L.L.; Liang, H.M.; Wu, J.R.; He, G.X.; Shao, L.Q. High-performance dental composites based on hierarchical reinforcements. J. Dent. Res. 2022, 101, 912–920. [Google Scholar] [CrossRef]
- Zafar, M.S. Prosthodontic applications of polymethyl methacrylate (PMMA): An update. Polymers 2020, 12, 2299. [Google Scholar] [CrossRef]
- Babaier, R.; Watts, D.C.; Silikas, N. Effects of three food-simulating liquids on the roughness and hardness of CAD/CAM poly-mer composites. Dent. Mater. 2022, 38, 874–885. [Google Scholar] [CrossRef]
- Babaier, R.S.; Haider, J.; Alshabib, A.; Silikas, N.; Watts, D.C. Mechanical behaviour of prosthodontic CAD/CAM polymer compo-sites aged in three food-simulating liquids. Dent. Mater. 2022, 38, 1492–1506. [Google Scholar] [CrossRef] [PubMed]
- Schwitalla, A.D.; Spintig, T.; Kallage, I.; Müller, W.-D. Flexural behavior of PEEK materials for dental application. Dent. Mater. 2015, 31, 1377–1384. [Google Scholar] [CrossRef] [PubMed]
- Kurtz, S.M.; Devine, J.N. PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 2007, 28, 4845–4869. [Google Scholar] [CrossRef] [PubMed]
- Suzaki, N.; Yamaguchi, S.; Hirose, N.; Tanaka, R.; Takahashi, Y.; Imazato, S.; Hayashi, M. Evaluation of physical properties of fi-ber-reinforced composite resin. Dent. Mater. 2020, 36, 987–996. [Google Scholar] [CrossRef]
- ISO 25178-1:2017; Surface Texture: Areal—Part 71: Software Measurement Standards. ISO: Geneva, Switzerland, 2017.
- ASTM D7334-08 (2022); Standard Practice for Surface Wettability of Coatings, Substrates and Pigments by Advancing Contact Angle Measurement. ASTM: West Conshohocken, PA, USA, 2022.
- Daabash, R.; Alqahtani, M.Q.; Price, R.B.; Alshabib, A.; Niazy, A.; Alshaafi, M.M. Surface properties and Streptococcus mutans biofilm adhesion of ion-releasing resin-based composite materials. J. Dent. 2023, 134, 104549. [Google Scholar] [CrossRef]
- Batak, B.; Çakmak, G.; Johnston, W.M.; Yilmaz, B. Surface roughness of high-performance polymers used for fixed implant-supported prostheses. J. Prosthet. Dent. 2021, 126, 254.e1–254.e6. [Google Scholar] [CrossRef]
- Montanaro, L.; Campoccia, D.; Rizzi, S.; Donati, M.E.; Breschi, L.; Prati, C.; Arciola, C.R. Evaluation of bacterial adhesion of Streptococcus mutans on dental restorative materials. Biomaterials 2004, 25, 4457–4463. [Google Scholar] [CrossRef]
- Szczesio-Wlodarczyk, A.; Sokolowski, J.; Kleczewska, J.; Bociong, K. Ageing of dental composites based on methacrylate resins—A critical review of the causes and method of assessment. Polymers 2020, 12, 882. [Google Scholar] [CrossRef]
- Bunz, O.; Diekamp, M.; Bizhang, M.; Testrich, H.; Piwowarczyk, A. Surface roughness associated with bacterial adhesion on dental resin-based materials. Dent. Mater. J. 2024, 43, 621–628. [Google Scholar] [CrossRef]
- Almogbel, L.; Sadid-Zadeh, R.; Örgev, A.; Çakmak, G.; Li, R. Flexural strength, surface roughness, and biofilm formation of ce-ramic-reinforced PEEK: An in vitro comparative study. J. Prosthodont. 2023, 34, 189–195. [Google Scholar] [CrossRef]
- Vogler, E.A. Structure and reactivity of water at biomaterial surfaces. Adv. Colloid Interface Sci. 1998, 74, 69–117. [Google Scholar] [CrossRef] [PubMed]
- Chandra, J.; Patel, J.D.; Li, J.; Zhou, G.; Mukherjee, P.K.; McCormick, T.S.; Anderson, J.M.; Ghannoum, M.A. Modification of surface properties of biomaterials in-fluences the ability of Candida albicans to form biofilms. Appl. Environ. Microbiol. 2005, 71, 8795–8801. [Google Scholar] [CrossRef] [PubMed]
- Mei, L.; Busscher, H.J.; Van Der Mei, H.C.; Chen, Y.; De Vries, J.; Ren, Y. Oral bacterial adhesion forces to biomaterial surfaces con-stituting the bracket–adhesive–enamel junction in orthodontic treatment. Eur. J. Oral Sci. 2009, 117, 419–426. [Google Scholar] [CrossRef] [PubMed]
- Giti, R.; Dabiri, S.; Motamedifar, M.; Derafshi, R. Surface roughness, plaque accumulation, and cytotoxicity of provisional restorative materials fabricated by different methods. PLoS ONE 2021, 16, e0249551. [Google Scholar] [CrossRef]
- Vulović, S.; Popovac, A.; Radunović, M.; Petrović, S.; Todorović, M.; Milić-Lemić, A. Microbial adhesion and viability on novel CAD/CAM framework materials for implant-supported hybrid prostheses. Eur. J. Oral Sci. 2023, 131, e12911. [Google Scholar] [CrossRef]
- Ji, S.; Choi, Y.; Choi, Y. Bacterial invasion and persistence: Critical events in the pathogenesis of periodontitis? J. Periodontal Res. 2015, 50, 570–585. [Google Scholar] [CrossRef]
- Aldhuwayhi, S.; Alauddin, M.S.; Martin, N. The structural integrity and fracture behaviour of teeth restored with PEEK and lith-ium-disilicate glass ceramic crowns. Polymers 2022, 14, 1001. [Google Scholar] [CrossRef]
- Alamoush, R.A.; Silikas, N.; Salim, N.A.; Al-Nasrawi, S.; Satterthwaite, J.D. Effect of the composition of CAD/CAM composite blocks on mechanical properties. BioMed Res. Int. 2018, 2018, 4893143. [Google Scholar] [CrossRef]
- Corrêa, J.M.; Mori, M.; Sanches, H.L.; Cruz, A.D.D.; Poiate, E., Jr.; Poiate, I.A.V.P. Silver nanoparticles in dental biomaterials. Int. J. Biomater. 2015, 2015, 485275. [Google Scholar] [CrossRef]
- Melo, M.A.S.; Cheng, L.; Zhang, K.; Weir, M.D.; Rodrigues, L.K.; Xu, H.H. Novel dental adhesives containing nanoparticles of silver and amorphous calcium phosphate. Dent. Mater. 2013, 29, 199–210. [Google Scholar] [CrossRef]
- Bächle, J.; Merle, C.; Hahnel, S.; Rosentritt, M. Bacterial adhesion on dental polymers as a function of manufacturing techniques. Materials 2023, 16, 2373. [Google Scholar] [CrossRef]
- Aykent, F.; Yondem, I.; Ozyesil, A.G.; Gunal, S.K.; Avunduk, M.C.; Ozkan, S. Effect of different finishing techniques for restorative materials on surface roughness and bacterial adhesion. J. Prosthet. Dent. 2010, 103, 221–227. [Google Scholar] [CrossRef]
CAD/CAM Material | Code | Manufacturer |
---|---|---|
Carbon fiber-reinforced composite | CC | CarboCAD 3D Dream frame, DEI®italia, Torino, Italy |
Glass fiber-reinforced composite | TR | TRINIA, Bicon Europe, Ltd., Limerick, Ireland |
Ceramic-filled polyether ether ketone | PK | DENTOKEEP, NT-Trading, Karlsruhe, Germany |
Measurements | CC | TR | PK |
---|---|---|---|
Ra (µm) | 0.194 (0.03) a | 0.231 (0.06) b | 0.161 (0.03) c |
Rz (µm) | 0.107 (0.03) a | 0.359 (0.17) b | 0.055 (0.02) c |
Contact angle (°) | 91.03 (1.10) a | 70.59 (5.45) b | 51.36 (3.98) c |
S. mutans (Log10 CFU/mm2) | 2.986 (0.03) a | 2.859 (0.17) a | 1.963 (0.02) b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almuhayya, S.; Alshahrani, R.; Alsania, R.; Albassam, A.; Alnemari, H.; Babaier, R. Biofilm Formation on Three High-Performance Polymeric CAD/CAM Composites: An In Vitro Study. Polymers 2025, 17, 676. https://doi.org/10.3390/polym17050676
Almuhayya S, Alshahrani R, Alsania R, Albassam A, Alnemari H, Babaier R. Biofilm Formation on Three High-Performance Polymeric CAD/CAM Composites: An In Vitro Study. Polymers. 2025; 17(5):676. https://doi.org/10.3390/polym17050676
Chicago/Turabian StyleAlmuhayya, Sarah, Reema Alshahrani, Rehaf Alsania, Alhanoof Albassam, Hammad Alnemari, and Rua Babaier. 2025. "Biofilm Formation on Three High-Performance Polymeric CAD/CAM Composites: An In Vitro Study" Polymers 17, no. 5: 676. https://doi.org/10.3390/polym17050676
APA StyleAlmuhayya, S., Alshahrani, R., Alsania, R., Albassam, A., Alnemari, H., & Babaier, R. (2025). Biofilm Formation on Three High-Performance Polymeric CAD/CAM Composites: An In Vitro Study. Polymers, 17(5), 676. https://doi.org/10.3390/polym17050676