Using Polymeric Carbon Nitride/ZrO2 Nanocomposite for Low Salinity Water Flooding in Carbonate Porous Media at Real Reservoir Conditions
Abstract
:1. Introduction
2. Materials and Procedures
3. Result and Discussion
4. Conclusions
- The ZrO2/g-C3N4 nanocomposite’s specific surface area increased to 88.16 m2/g from 49.27 m2/g for the pure ZrO2.
- The optimal concentrations for the ZrO2 and ZrO2/g-C3N4 nanomaterials were 40 and 30 ppm, respectively, based on the IFT, CA, and zeta potential findings (among several tested concentrations, which ranged from 10 to 60 ppm).
- The IFT, zeta potential, and CA were (11.47 mN/m, −30.14 mV, and 49.49° at 30 ppm), (15.69 mN/m, −27.12 mV, and 61.00° at 40 ppm) for the ZrO2/g-C3N4 and ZrO2, respectively.
- The ZrO2/g-C3N4 nanocomposites were chosen to perform the LSWF at 30 ppm due to their superior performance in the obtained EOR parameters.
- The results showed the lowest interfacial tensions at 1000 ppm for CaCl2 + SW + 30 ppm ZrO2/g-C3N4, MgCl2 + SW + 30 ppm ZrO2/g-C3N4, and MgSO4 + SW + 30 ppm ZrO2/g-C3N4, and the interfacial tension and contact angle followed the order as follows: MgCl2 + SW + 30 ppm ZrO2/g-C3N4> CaCl2+ SW + 30 ppm ZrO2/g-C3N4 > MgSO4 + SW + 30 ppm ZrO2/g-C3N4.
- The MgCl2 + SW + 30 ppm ZrO2/g-C3N4 had the highest stability of any of the brine solutions, measuring −31.25 mV at 1000 ppm.
- The recovery factor following a 21-day test was 49.39% for MgCl2 + SW + 30 ppm ZrO2/g-C3N4, 41.85% for CaCl2 + SW + 30 ppm ZrO2/g-C3N4, and 36.32% for MgSO4 + 10 SW + 30 ppm ZrO2/g-C3N4.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kalantari, F.; Farahbod, F. Mixing of crude oil with organic ZnO nano-particles from rice bran to improve physical properties of crude oil: A novel agent for enhanced oil recovery. Nat. Resour. Res. 2019, 28, 1183–1196. [Google Scholar] [CrossRef]
- Panchal, H.; Patel, H.; Patel, J.; Shah, M. A systematic review on nanotechnology in enhanced oil recovery. Pet. Res. 2019, 6, 204–212. [Google Scholar] [CrossRef]
- Shayan Nasr, M.; Shayan Nasr, H.; Karimian, M.; Esmaeilnezhad, E. Application of artificial intelligence to predict enhanced oil recovery using silica nanofluids. Nat. Resour. Res. 2021, 30, 2529–2542. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, D.; Shi, L.; Wu, H.; Cao, Y.; He, Y.; Xie, T. Properties of nanofluids and their applications in enhanced oil recovery: A comprehensive review. Energy Fuels 2020, 34, 1202–1218. [Google Scholar] [CrossRef]
- Lashari, N.; Ganat, T. Emerging applications of nanomaterials in chemical enhanced oil recovery: Progress and perspective. Chin. J. Chem. Eng. 2020, 28, 1995–2009. [Google Scholar] [CrossRef]
- Druetta, P.; Picchioni, F. Polymer and nanoparticles flooding as a new method for Enhanced Oil Recovery. J. Pet. Sci. Eng. 2019, 177, 479–495. [Google Scholar] [CrossRef]
- Song, C.; Yoo, H.; Lee, J. Effects of nano-smart water on enhanced oil recovery in carbonate reservoirs: Interfacial tension reduction and wettability alteration, Colloids Surfaces A Physicochem. Eng. Asp. 2024, 696, 134362. [Google Scholar] [CrossRef]
- Moradi, B.; Pourafshary, P.; Jalali, F.; Mohammadi, M.; Emadi, M.A. Experimental study of water-based nanofluid alternating gas injection as a novel enhanced oil-recovery method in oil-wet carbonate reservoirs. J. Nat. Gas. Sci. Eng. 2015, 27, 64–73. [Google Scholar] [CrossRef]
- Medina, O.E.; Olmos, C.; Lopera, S.H.; Cortés, F.B.; Franco, C.A. Nanotechnology applied to thermal enhanced oil recovery processes: A review. Energies 2019, 12, 4671. [Google Scholar] [CrossRef]
- Aminnaji, M.; Fazeli, H.; Bahramian, A.; Gerami, S.; Ghojavand, H. Wettability alteration of reservoir rocks from liquid wetting to gas wetting using nanofluid. Transp. Porous Media 2015, 109, 201–216. [Google Scholar] [CrossRef]
- Qing, Y.; Yang, M.; Li, L.; Jiang, W.; Zhao, Y. Effect of organically modified nanosilica on the viscosity and rheological behavior of karamay heavy crude oil. Energy Fuels 2019, 34, 65–73. [Google Scholar] [CrossRef]
- Maaref, S. Sweep Efficiency Improvement Using Oil Based Nanofluids in Oil-Wet Media. Doctoral Thesis, University of Calgary, Calgary, AB, Canada, 2020. [Google Scholar]
- Liu, R.; Lu, J.; Pu, W.; Xie, Q.; Lu, Y.; Du, D.; Yang, X. Synergetic effect between in-situ mobility control and micro-displacement for chemical enhanced oil recovery (CEOR) of a surface-active nanofluid. J. Pet. Sci. Eng. 2021, 205, 108983. [Google Scholar] [CrossRef]
- Kumar, R.S.; Narukulla, R.; Sharma, T. Comparative effectiveness of thermal stability and rheological properties of nanofluid of SiO2–TiO2 nanocomposites for oil field applications. Ind. Eng. Chem. Res. 2020, 59, 15768–15783. [Google Scholar] [CrossRef]
- Jiang, R.; Li, K.; Horne, R. A mechanism study of wettability and interfacial tension for EOR using silica nanoparticles. In SPE Annual Technical Conference and Exhibition? SPE: Richardson, TX, USA, 2017; p. D031S046R003. [Google Scholar]
- Esmaeilzadeh, P.; Sadeghi, M.T.; Bahramian, A. Production improvement in gas condensate reservoirs by wettability alteration, using superamphiphobic titanium oxide nanofluid. Oil Gas Sci. Technol. Rev. IFP Energ. Nouv. 2018, 73, 46. [Google Scholar]
- Ali, J.A.; Kolo, K.; Manshad, A.K.; Mohammadi, A.H. Recent advances in application of nanotechnology in chemical enhanced oil recovery: Effects of nanoparticles on wettability alteration, interfacial tension reduction, and flooding. Egypt. J. Pet. 2018, 27, 1371–1383. [Google Scholar] [CrossRef]
- Daryayehsalameh, B.; Ayari, M.A.; Tounsi, A.; Khandakar, A.; Vaferi, B. Differentiation among stability regimes of alumina-water nanofluids using smart classifiers. Adv. Nano Res. 2022, 12, 489–499. [Google Scholar]
- Jafarbeigi, E.; Kamari, E.; Salimi, F.; Mohammadidoust, A. Experimental study of the effects of a novel nanoparticle on enhanced oil recovery in carbonate porous media. J. Pet. Sci. Eng. 2020, 195, 107602. [Google Scholar] [CrossRef]
- Kundu, P.; Arora, K.; Gu, Y.; Kumar, V.; Mishra, I.M. Formation and stability of water-in-oil nano-emulsions with mixed surfactant using in-situ combined condensation-dispersion method. Can. J. Chem. Eng. 2019, 97, 2039–2049. [Google Scholar] [CrossRef]
- Xiaofei, S.; Yanyu, Z.; Chen, G.; Geong, G. Application of Nanoparticles in EOR: A critical review of Recent progress. Energies 2019, 10, 345. [Google Scholar]
- Mogghadom, R.N.; Bahramian, A.; Fakhroueian, Z.; Karimi, A.; Arya, S. Comparative study of nanoparticles for enhanced oil recovery: Wettability alteration of carbonate rock. Energy Fuel 2015, 29, 2111–2119. [Google Scholar] [CrossRef]
- Fakoya, M.F.; Shah, S.N. Emergence of nanotechnology: Emphasis on the application of the silica Nano particles. Petroleum 2017, 3, 391–405. [Google Scholar] [CrossRef]
- Karimi, A.; Fakhroueian, Z.; Bahramian, A.; Pour Khiabani, N.; Darabad, J.B.; Azin, R.; Arya, S. Wettability Alteration in Carbonates using Zirconium Oxide Nanofluids: EOR Implications. Energy Fuels 2012, 26, 1028–1036. [Google Scholar] [CrossRef]
- Dordzie, G.; Dejam, M. Enhanced oil recovery from fractured carbonate reservoirs using nanoparticles with low salinity water and surfactant: A review on experimental and simulation studies. Adv. Colloid. Interface Sci. 2021, 293, 102449. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, U.S.; Awan, F.U.R.; Ali, M.; Aftab, A.; Keshavarz, A.; Iglauer, S. Physicochemical Characterization of Zirconia Nanoparticle-Based Sodium Alginate Polymer Suspension for Enhanced Oil Recovery. Energy Fuel 2021, 35, 19389–19398. [Google Scholar] [CrossRef]
- Salem, K.G.; Salem, A.M.; Tantawy, M.A.; Gawish, A.A.; Gomaa, S.; El-Hoshoudy, A.N. A Comprehensive Investigation of Nanocomposite Polymer Flooding at Reservoir Conditions: New Insights into Enhanced Oil Recovery. J. Polym. Environ. 2024, 32, 5915–5935. [Google Scholar] [CrossRef]
- Ahmadi, Y.; Mansouri, M. Using New Synthesis Zirconia-Based Nanocomposites for Improving Water Alternative Associated Gas Tests Considering Interfacial Tension and Contact Angle Measurements. Energy Fuel 2021, 35, 16724–16734. [Google Scholar] [CrossRef]
- Mahmood, B.S.; Ali, J.; Nazhat, S.B.; Devlin, D.A. Sensitivity study on low salinity water flooding, Mod. Environ. Sci. Eng. 2017, 4, 231–236. [Google Scholar]
- Mahani, H.; Keya, A.L.; Berg, S.; Bartels, W.B.; Nasralla, R.; Rossen, W.R. Insights into the mechanism of wettability alteration by low-salinity flooding (LSF) in carbonates. Energy Fuels 2015, 29, 1352–1367. [Google Scholar] [CrossRef]
- Xie, Q.; Saeedi, A.; Pooryousefy, E. Extended DLVO-based estimates of surface force in low salinity water flooding. J. Mol. Liq. 2016, 221, 658–665. [Google Scholar] [CrossRef]
- Lashkarbolooki, M.; Riazi, M.; Ayatollahi, S. Investigation of effects of salinity, temperature, pressure, and crude oil type on the dynamic interfacial tensions. Chem. Eng. Res. Des. 2016, 115, 53–65. [Google Scholar] [CrossRef]
- Lashkarbolooki, M.; Ayatollahi, S.; Riazi, M. The impacts of aqueous ions on interfacial tension and wettability of an Asphaltenic_Acidic crude oil reservoir during smart water injection. J. Chem. Eng. Data. 2014, 59, 3624–3634. [Google Scholar] [CrossRef]
- Austad, T.; Shariatpanahi, S.F.; Strand, S.; Black, C.J.J.; Webb, K.J. Conditions for alow-salinity enhanced oil recovery (EOR) effect in carbonate oil reservoirs. Energy Fuel 2012, 26, 569–575. [Google Scholar] [CrossRef]
- Yousef, A.A.; Al-Saleh, S.; Al-Kaabi, A.; Al-Jawfi, M.S. Laboratory investigation of the impact of injection-water salinity and ionic content on oil recovery from carbonate reservoirs. SPE Reserv. Eval. Eng. 2011, 14, 578–593. [Google Scholar]
- Yousef, A.A.; Al-Saleh, S.; Al-Jawfi, M.S. Improved/enhanced oil recovery from carbonate reservoirs by tuning injection water salinity and ionic content. In Proceedings of the SPE Improved Oil Recovery Symposium, Tulsa, OK, USA, 14–18 April 2012; p. 154076. [Google Scholar]
- Kumar, H.; Rani, R. Structural and Optical Characterization of ZnO Nanoparticles Synthesized by Microemulsion Route. Int. Lett. Chem. 2013, 19, 26–36. [Google Scholar] [CrossRef]
- Kumar, S.; Ojha, A.K. Oxygen vacancy induced photoluminescence properties and enhanced photocatalytic activity of ferromagnetic ZrO2 nanostructures on methylene blue dye under ultra-violet radiation. J. Alloys Compd. 2015, 644, 654–662. [Google Scholar] [CrossRef]
- Lin, B.; Li, H.; An, H.; Hao, W.; Wei, J.; Dai, Y.; Ma, C.; Yang, G. Preparation of 2D/2D g-C3N4 nanosheet@ZnIn2S4 nanoleaf heterojunctions with well-designed high-speed charge transfer nanochannels towards high efficiency photocatalytic hydrogen evolution. Appl. Catal. B Environ. 2018, 220, 542–552. [Google Scholar] [CrossRef]
- Tanzifi, M.; Jahanshahi, M.; Peyravi, M.; Khalili, S. A morphological decoration of g-C3N4/ZrO2 heterojunctions as a visible light activated photocatalyst for degradation of various organic pollutants. J. Environ. Chem. Eng. 2022, 10, 108600. [Google Scholar] [CrossRef]
- Jiang, D.; Wang, T.; Xu, Q.; Li, D.; Meng, S.; Chen, M. Perovskite oxide ultrathin nanosheets/g-C3N4 2D–2D heterojunction photocatalysts with significantly enhanced photocatalytic activity towards the photodegradation of tetracycline. Appl. Catal. B Environ. 2017, 201, 617–628. [Google Scholar] [CrossRef]
- Zeng, Z.; Li, K.; Yan, L.; Dai, Y.; Guo, H.; Huo, M.; Guo, Y. Fabrication of carbon nitride nanotubes by a simple water-induced morphological transformation process and their efficient visible-light photocatalytic activity. RSC Adv. 2014, 4, 59513–59518. [Google Scholar] [CrossRef]
- Rostami, P.; Mehraban, M.F.; Sharifi, M.; Dejam, M.; Ayatollahi, S. Effect of water salinity on oil/brine interfacial behaviour during low salinity waterflooding: A mechanistic study. Petroleum 2019, 5, 367–374. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and zeta potential–what they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Lashkarbolooki, M.; Ayatollahi, S. Investigating injection of low salinity brine in carbonate rock with the assist of works of cohesion and adhesion and spreading coefficient calculations. J. Pet. Sci. Eng. 2018, 161, 381–389. [Google Scholar] [CrossRef]
- Ahmadi, Y.; Javadi, F.; Kikhavandi, T. Effect of different salinity on low permeability carbonate reservoir recovery using a new green polymeric nanocomposites. Energy Sour. Part A Recov. Util. Environ. Effects 2023, 45, 1091–1103. [Google Scholar] [CrossRef]
- Han, S.; Lee, Y. Optimizing nanoparticle selection for enhanced oil recovery in carbonate rock using hybrid low salinity water flooding. J. Pet. Explor. Prod. Technol. 2025, 15, 19. [Google Scholar] [CrossRef]
- Zhao, M.; Lv, W.; Li, Y.; Dai, C.; Wang, X.; Zhou, H.; Wu, Y. Study on the synergy between silica nanoparticles and surfactants for enhanced oil recovery during spontaneous imbibition. J. Mol. Liq. 2018, 261, 373–378. [Google Scholar] [CrossRef]
- Xu, D.; Bai, B.; Wu, H.; Hou, J.; Meng, Z.; Sun, R.; Kang, W. Mechanisms of imbibition enhanced oil recovery in low permeability reservoirs: Effect of IFT reduction and wettability alteration. Fuel 2019, 244, 110–119. [Google Scholar] [CrossRef]
- Tajmiri, M.; Ehsani, M.R.; Mousavi, S.M.; Roayaei, E.; Emadi, A. The effect of ZnO nanoparticles on improved oil recovery in spontaneous imbibition mechanism of heavy oil production. AIP Conf. Proc. 2015, 1669, 020024. [Google Scholar]
- Keykhosravi, A.; Simjoo, M. Enhancement of capillary imbibition by Gamma-Alumina nanoparticles in carbonate rocks: Underlying mechanisms and scaling analysis. J. Pet. Sci. Eng. 2020, 187, 106802. [Google Scholar] [CrossRef]
Sample | Surface Area (m2/g) | Pore Diameter (nm) | Total Pore Volume (cm3/g) |
---|---|---|---|
ZrO2 | 49.27 | 7.99 | 0.0985 |
ZrO2/g-C3N4 nanocomposite | 88.16 | 30.99 | 0.6832 |
Salt Type | Salt Concentration (ppm) | ZrO2/g-C3N4 Concentration (ppm) | ZP (mV) | CA (°) |
---|---|---|---|---|
CaCl2 + SW | 1000 | 30 | −30.12 | 50.50 |
MgCl2 + SW | 1000 | 30 | −31.25 | 38.12 |
MgSO4 + SW | 1000 | 30 | −28.89 | 68.33 |
Nanoparticles | Permeability (mD) | Oil Recovery (%) | References |
---|---|---|---|
MgCl2 + SW + 30 ppm ZrO2/g-C3N4 | 10.78 | 49.39 | Current study |
CaCl2+ SW + 30 ppm ZrO2/g-C3N4 | 10.78 | 41.85 | Current study |
MgSO4 + SW + 30 ppm ZrO2/g-C3N4 | 10.78 | 36.32 | Current study |
Polymeric ZnO/SiO2 | 10.45 | 34.10 | [46] |
Silica | 5.00 | 16.00 | [47] |
Deionized/Alumina | 35.99 | 43.81 | [48] |
Silica | 0.21 | 16.00 | [49] |
Zinc oxide | 0.309 | 8.89 | [50] |
Gamma-Alumina | 46–68 | 11.50 | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadi, Y.; Tanzifi, M. Using Polymeric Carbon Nitride/ZrO2 Nanocomposite for Low Salinity Water Flooding in Carbonate Porous Media at Real Reservoir Conditions. Polymers 2025, 17, 649. https://doi.org/10.3390/polym17050649
Ahmadi Y, Tanzifi M. Using Polymeric Carbon Nitride/ZrO2 Nanocomposite for Low Salinity Water Flooding in Carbonate Porous Media at Real Reservoir Conditions. Polymers. 2025; 17(5):649. https://doi.org/10.3390/polym17050649
Chicago/Turabian StyleAhmadi, Yaser, and Marjan Tanzifi. 2025. "Using Polymeric Carbon Nitride/ZrO2 Nanocomposite for Low Salinity Water Flooding in Carbonate Porous Media at Real Reservoir Conditions" Polymers 17, no. 5: 649. https://doi.org/10.3390/polym17050649
APA StyleAhmadi, Y., & Tanzifi, M. (2025). Using Polymeric Carbon Nitride/ZrO2 Nanocomposite for Low Salinity Water Flooding in Carbonate Porous Media at Real Reservoir Conditions. Polymers, 17(5), 649. https://doi.org/10.3390/polym17050649