Harnessing Photon Density Wave Spectroscopy for the Inline Monitoring of up to 100 L Vinyl Acetate—Versa® 10 Polymerization: Insights into Dispersion Dynamics and Mixing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Photon Density Wave Spectroscopy
2.2. Microwave Analyser
2.3. Dynamic Light Scattering
3. Results and Discussion
3.1. Inline Process Analysis of PDW Spectroscopy Intensity Data
3.2. Inline Analysis of Optical Coefficients—Initial Particle Nucleation and Growth
3.3. Offline Dispersion Analysis
3.4. Comparative Analysis Across Reaction Scales
3.5. 100 L Synthesis Inline Analysis by PDW Spectroscopy—Effect of Mixing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brodhagen, A.; Grünewald, M.; Kleiner, M.; Lier, S. Erhöhung der Wirtschaftlichkeit durch beschleunigte Produkt- und Prozessentwicklung mit Hilfe modularer und skalierbarer Apparate. Chem. Ing. Tech. 2012, 84, 624–632. [Google Scholar] [CrossRef]
- Kammona, O.; Chatzi, E.G.; Kiparissides, C. Recent Developments in Hardware Sensors For the On-Line Monitoring of Polymerization Reactions. J. Macromol. Sci. Part C Polym. Rev. 1999, 39, 57–134. [Google Scholar] [CrossRef]
- Hamzehlou, S.; Asua, J.M. On-line monitoring and control of emulsion polymerization reactors. In Advances in Polymer Reaction Engineering; Elsevier: Cambridge, MA, USA, 2020; pp. 31–57. ISBN 9780128206454. [Google Scholar]
- Flory, P.J. The mechanism of vinyl polymerizations1. J. Am. Chem. Soc. 1937, 59, 241–253. [Google Scholar] [CrossRef]
- Mardare, D.; Matyjaszewski, K. “Living” radical polymerization of vinyl acetate. Macromolecules 1994, 27, 645–649. [Google Scholar] [CrossRef]
- Samide, A.; Tutunaru, B.; Merişanu, C.; Cioateră, N. Thermal analysis: An effective characterization method of polyvinyl acetate films applied in corrosion inhibition field. J. Therm. Anal. Calorim. 2020, 142, 1825–1834. [Google Scholar] [CrossRef]
- Berber, H.; Tamer, Y.; Yildirim, H. The effects of feeding ratio on final properties of vinyl acetate-based latexes via semi-continuous emulsion copolymerization. Colloid. Polym. Sci. 2018, 296, 211–221. [Google Scholar] [CrossRef]
- Horkay, F.; Burchard, W.; Hecht, A.M.; Geissler, E. Scattering properties of poly (vinyl acetate) gels in different solvents. Macromolecules 1993, 26, 4203–4207. [Google Scholar] [CrossRef]
- Abad, C.; De La Cal, J.C.; Asua, J.M. Emulsion copolymerization of vinyl esters in continuous reactors: Comparison between loop and continuous stirred tank reactors. J. Appl. Polym. Sci. 1995, 56, 419–424. [Google Scholar] [CrossRef]
- Fischer, D.; Sahre, K.; Abdelrhim, M.; Voit, B.; Sadhu, V.B.; Pionteck, J.; Komber, H.; Hutschenreuter, J. Process monitoring of polymers by in-line ATR-IR, NIR and Raman spectroscopy and ultrasonic measurements. C. R. Chim. 2006, 9, 1419–1424. [Google Scholar] [CrossRef]
- Haven, J.J.; Junkers, T. Online Monitoring of Polymerizations: Current Status. Eur. J. Org. Chem. 2017, 2017, 6474–6482. [Google Scholar] [CrossRef]
- Pasquale, A.J.; Long, T.E. Real-Time Monitoring of the Stable Free Radical Polymerization of Styrene via in-Situ Mid-Infrared Spectroscopy. Macromolecules 1999, 32, 7954–7957. [Google Scholar] [CrossRef]
- Araújo, P.H.H.; De La Cal, J.C.; Asua, J.M.; Pinto, J.C. Modeling Particle Size Distribution (PSD) in Emulsion Copolymerization Reactions in a Continuous Loop Reactor. Macromol. Theory Simul. 2001, 10, 769–779. [Google Scholar] [CrossRef]
- Monsalve-Bravo, G.M.; Moscoso-Vasquez, H.M.; Alvarez, H. Scaleup of Batch Reactors Using Phenomenological-Based Models. Ind. Eng. Chem. Res. 2014, 53, 9439–9453. [Google Scholar] [CrossRef]
- Fortuny, M.; Graillat, C.; McKenna, T.F.; Araújo, P.H.H.; Pinto, J.C. Modeling the nucleation stage during batch emulsion polymerization. AIChE J. 2005, 51, 2521–2533. [Google Scholar] [CrossRef]
- Kemmere, M.F.; Meuldijk, J.; Drinkenburg, A.A.H.; German, A.L. Colloidal stability of high-solids polystyrene and polyvinyl acetate latices. J. Appl. Polym. Sci. 1999, 74, 1780–1791. [Google Scholar] [CrossRef]
- Verwey, E.J.W. Theory of the stability of lyophobic colloids. J. Phys. Chem. 1947, 51, 631–636. [Google Scholar] [CrossRef]
- Melis, S.; Kemmere, M.; Meuldijk, J.; Storti, G.; Morbidelli, M. A model for the coagulation of polyvinyl acetate particles in emulsion. Chem. Eng. Sci. 2000, 55, 3101–3111. [Google Scholar] [CrossRef]
- Baade, W.; Moritz, H.U.; Reichert, K.H. Kinetics of high conversion polymerization of vinyl acetate. Effects of mixing and reactor type on polymer properties. J. Appl. Polym. Sci. 1982, 27, 2249–2267. [Google Scholar] [CrossRef]
- Schlappa, S.; Brenker, L.J.; Bressel, L.; Hass, R.; Münzberg, M. Process Characterization of Polyvinyl Acetate Emulsions Applying Inline Photon Density Wave Spectroscopy at High Solid Contents. Polymers 2021, 13, 669. [Google Scholar] [CrossRef]
- Aspiazu, U.O.; Gómez, S.; Paulis, M.; Leiza, J.R. Real-Time Monitoring of Particle Size in Emulsion Polymerization: Simultaneous Turbidity and Photon Density Wave Spectroscopy. Macromol. Rapid Commun. 2024, 45, e2400374. [Google Scholar] [CrossRef]
- Jacob, L.I.; Pauer, W. In-line monitoring of latex-particle size during emulsion polymerizations with a high polymer content of more than 60. RSC Adv. 2020, 10, 26528–26534. [Google Scholar] [CrossRef] [PubMed]
- Jacob, L.I.; Pauer, W. Scale-up of Emulsion Polymerisation up to 100 L and with a Polymer Content of up to 67 wt%, Monitored by Photon Density Wave Spectroscopy. Polymers 2022, 14, 1574. [Google Scholar] [CrossRef] [PubMed]
- Ishibe, T.; Kaneko, T.; Uematsu, Y.; Sato-Akaba, H.; Komura, M.; Iyoda, T.; Nakamura, Y. Tunable Thermal Switch via Order-Order Transition in Liquid Crystalline Block Copolymer. Nano Lett. 2022, 22, 6105–6111. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Cai, K.; Wang, J.; Shen, S. Influence of polymerization method on the thermoelectric properties of multi-walled carbon nanotubes/polypyrrole composites. Synth. Met. 2016, 211, 58–65. [Google Scholar] [CrossRef]
- Pohn, J.; Heniche, M.; Fradette, L.; Cunningham, M.; McKenna, T. Computational Analysis of Mixing and Scale-Up in Emulsion Polymerization Reactors. Macromol. Symp. 2011, 302, 133–141. [Google Scholar] [CrossRef]
- Gustin, J.-L.; Laganier, F. Understanding Vinyl Acetate Polymerization Accidents. Org. Process Res. Dev. 2005, 9, 962–975. [Google Scholar] [CrossRef]
- Azpeitia, M.; Leiza, J.R.; Asua, J.M. Safety in Emulsion Polymerization Reactors: An Experimental Study. Macromol. Mater. Eng. 2005, 290, 242–249. [Google Scholar] [CrossRef]
- Meyer, T. Scale-Up of Polymerization Process: A Practical Example. Org. Process Res. Dev. 2003, 7, 297–302. [Google Scholar] [CrossRef]
- Wang, Y.-W.; Mei, Y. Thermal runaway evaluation on batch polyvinyl acetate emulsion polymerization from calorimetric measurement. J. Therm. Anal. Calorim. 2023, 148, 4801–4810. [Google Scholar] [CrossRef]
- Chern, C.S.; Kuo, Y.N. Shear-induced coagulation kinetics of semibatch seeded emulsion polymerization. Chem. Eng. Sci. 1996, 51, 1079–1087. [Google Scholar] [CrossRef]
- Copelli, S.; Derudi, M.; Sempere, J.; Serra, E.; Lunghi, A.; Pasturenzi, C.; Rota, R. Emulsion polymerization of vinyl acetate: Safe optimization of a hazardous complex process. J. Hazard. Mater. 2011, 192, 8–17. [Google Scholar] [CrossRef]
- Elgebrandt, R.C.; Romagnoli, J.A.; Fletcher, D.F.; Gomes, V.G.; Gilbert, R.G. Analysis of shear-induced coagulation in an emulsion polymerisation reactor using computational fluid dynamics. Chem. Eng. Sci. 2005, 60, 2005–2015. [Google Scholar] [CrossRef]
- Asua, J.M. On-line control of emulsion polymerization reactors: A perspective. Can. J. Chem. Eng. 2023, 101, 4907–4913. [Google Scholar] [CrossRef]
- Cheng, D.; Ariafar, S.; Sheibat-Othman, N.; Pohn, J.; McKenna, T.F.L. Particle Coagulation of Emulsion Polymers: A Review of Experimental and Modelling Studies. Polym. Rev. 2018, 58, 717–759. [Google Scholar] [CrossRef]
- Chern, C.S. Emulsion polymerization mechanisms and kinetics. Prog. Polym. Sci. 2006, 31, 443–486. [Google Scholar] [CrossRef]
- Aguirre, M.; Ballard, N.; Gonzalez, E.; Hamzehlou, S.; Sardon, H.; Calderon, M.; Paulis, M.; Tomovska, R.; Dupin, D.; Bean, R.H.; et al. Polymer Colloids: Current Challenges, Emerging Applications, and New Developments. Macromolecules 2023, 56, 2579–2607. [Google Scholar] [CrossRef]
- Abeykoon, C. Sensing technologies for process monitoring in polymer extrusion: A comprehensive review on past, present and future aspects. Meas. Sens. 2022, 22, 100381. [Google Scholar] [CrossRef]
- Chen, Y.; Jahanzad, F.; Sajjadi, S. Semicontinuous monomer-starved emulsion polymerization as a means to produce nanolatexes: Analysis of nucleation stage. Langmuir 2013, 29, 5650–5658. [Google Scholar] [CrossRef]
- Agirre, A.; Calvo, I.; Weitzel, H.-P.; Hergeth, W.-D.; Asua, J.M. Semicontinuous Emulsion Co-polymerization of Vinyl Acetate and VeoVa10. Ind. Eng. Chem. Res. 2014, 53, 9282–9295. [Google Scholar] [CrossRef]
- Agirre, A.; Weitzel, H.-P.; Hergeth, W.-D.; Asua, J.M. Process intensification of VAc–VeoVa10 latex production. Chem. Eng. J. 2015, 266, 34–47. [Google Scholar] [CrossRef]
- Chai, X.-S.; Schork, F.J.; DeCinque, A.; Wilson, K. Measurement of the Solubilities of Vinylic Monomers in Water. Ind. Eng. Chem. Res. 2005, 44, 5256–5258. [Google Scholar] [CrossRef]
- Britton, D.; Heatley, F.; Lovell, P.A. Effect of Monomer Feed Rate on Chain Transfer to Polymer in Semibatch Emulsion Polymerization of Vinyl Acetate Studied by NMR Spectroscopy. Macromolecules 2000, 33, 5048–5052. [Google Scholar] [CrossRef]
- Bressel, L. Bedeutung der abhaengigen Streuung für die optischen Eigenschaften hochkonzentrierter Dispersionen. Ph.D. Thesis, University of Potsdam, Potsdam, Germany, 2016. [Google Scholar]
- Reich, O. Photonendichtewellenspektroskopie mit intensitätsmodulierten Diodenlasern (Photon Density Wave Spectroscopy with Intensity-Modulated Diode Lasers). Ph.D. Thesis, University of Potsdam, Potsdam, Germany, 2005. [Google Scholar]
- Schlappa, S.; Bressel, L.; Reich, O.; Münzberg, M. Advanced Particle Size Analysis in High-Solid-Content Polymer Dispersions Using Photon Density Wave Spectroscopy. Polymers 2023, 15, 3181. [Google Scholar] [CrossRef] [PubMed]
- Hass, R.; Reich, O. Photon density wave spectroscopy for dilution-free sizing of highly concentrated nanoparticles during starved-feed polymerization. Chemphyschem 2011, 12, 2572–2575. [Google Scholar] [CrossRef]
- Bressel, K.; Müller, W.; Leser, M.E.; Reich, O.; Hass, R.; Wooster, T.J. Depletion-Induced Flocculation of Concentrated Emulsions Probed by Photon Density Wave Spectroscopy. Langmuir 2020, 36, 3504–3513. [Google Scholar] [CrossRef]
- Hass, R.; Münzberg, M.; Bressel, L.; Reich, O. Industrial applications of photon density wave spectroscopy for in-line particle sizing Invited. Appl. Opt. 2013, 52, 1423–1431. [Google Scholar] [CrossRef]
- Zimmermann, S.; Reich, O.; Bressel, L. Exploitation of inline photon density wave spectroscopy for titania particle syntheses. J. Am. Ceram. Soc. 2023, 106, 671–680. [Google Scholar] [CrossRef]
- Aspiazu, U.O.; Paulis, M.; Leiza, J.R. Photon Density Wave spectroscopy to monitor the particle size in seeded semibatch emulsion copolymerization reactions. Chem. Eng. J. 2024, 483, 149292. [Google Scholar] [CrossRef]
- Bressel, L.; Hass, R.; Reich, O. Particle sizing in highly turbid dispersions by Photon Density Wave spectroscopy. J. Quant. Spectrosc. Radiat. Transf. 2013, 126, 122–129. [Google Scholar] [CrossRef]
- Johnston, L.J.; Schepp, N.P. Reactivities of radical cations: Characterization of styrene radical cations and measurements of their reactivity toward nucleophiles. J. Am. Chem. Soc. 1993, 115, 6564–6571. [Google Scholar] [CrossRef]
Reaction Volume VR | WateriC /g | Stabilizing Agent Mowiol 4-88®iC /g | Monomer Mixture 9:1 VAc:Versa® 10 Total /g | Feed-Rate Monomer Mixture /g min−1 | Initiator Redox Pair Ascorbic Acid (3.4% aq) TBHP (3.4% aq) /g | Feed-Rate Redox Initiators /mL h−1 |
---|---|---|---|---|---|---|
1 L | 385 | 19.7 | 819 | 1.2 | 31.9 | 10 |
10 L | 2442 | 123 | 4543.4 | 12 | 374.2 | 25 |
100 L | 27,503 | 1383.4 | 60,017 | 120 | 4013.4 | 530.4 |
Component | Density ρ at T = 20 °C/gcm−3 | Refractive Index n at λ = 638 nm at T = 20 °C | Refractive Index n at λ = 855 nm at T = 20 °C |
---|---|---|---|
Dispersion Medium | 0.997 | 1.3315 | 1.3272 |
PVAc/Versa® 10 copolymer particle | 1.214 | 1.4849 | 1.4769 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schlappa, S.; Pauer, W.; Reich, O.; Münzberg, M. Harnessing Photon Density Wave Spectroscopy for the Inline Monitoring of up to 100 L Vinyl Acetate—Versa® 10 Polymerization: Insights into Dispersion Dynamics and Mixing. Polymers 2025, 17, 629. https://doi.org/10.3390/polym17050629
Schlappa S, Pauer W, Reich O, Münzberg M. Harnessing Photon Density Wave Spectroscopy for the Inline Monitoring of up to 100 L Vinyl Acetate—Versa® 10 Polymerization: Insights into Dispersion Dynamics and Mixing. Polymers. 2025; 17(5):629. https://doi.org/10.3390/polym17050629
Chicago/Turabian StyleSchlappa, Stephanie, Werner Pauer, Oliver Reich, and Marvin Münzberg. 2025. "Harnessing Photon Density Wave Spectroscopy for the Inline Monitoring of up to 100 L Vinyl Acetate—Versa® 10 Polymerization: Insights into Dispersion Dynamics and Mixing" Polymers 17, no. 5: 629. https://doi.org/10.3390/polym17050629
APA StyleSchlappa, S., Pauer, W., Reich, O., & Münzberg, M. (2025). Harnessing Photon Density Wave Spectroscopy for the Inline Monitoring of up to 100 L Vinyl Acetate—Versa® 10 Polymerization: Insights into Dispersion Dynamics and Mixing. Polymers, 17(5), 629. https://doi.org/10.3390/polym17050629