Versatile Adjustment of LDPE Properties via Specific Treatments to Design Optical Components for Display Technologies
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Characterization
3. Results
3.1. Analyses of LDPE Films for ORF Applications
3.1.1. Dichroic ATR-FTIR Spectroscopy
3.1.2. Morphology Investigation
3.1.3. Transparency and Birefringence Dispersion
3.1.4. Optical Retardation
3.2. Analyses of LDPE Films for BPF Applications
3.2.1. Morphology Investigation
3.2.2. Colorimetry Investigation
3.2.3. UV-VIS Spectroscopy Investigation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khaha, H.M.; Soleimani, O. Review Article: Properties and Applications of Polymers: A Mini Review. J. Chem. Rev. 2023, 5, 204–220. [Google Scholar] [CrossRef]
- Kosmalska-Olańska, A.; Olszewski, J.; Masek, A. A brief review of optical polymers in material engineering. Express Polym. Lett. 2024, 18, 1291–1326. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, N. Advances in transparent polymer nanocomposites and their applications: A comprehensive review. Polym. Technol. Mater. 2022, 61, 937–974. [Google Scholar] [CrossRef]
- El-Bashir, S.M.; Yahia, I.S.; Binhussain, M.A.; AlSalhi, M.S. Designing of PVA/Rose Bengal long-pass optical window applications. Results Phys. 2017, 7, 1238–1244. [Google Scholar] [CrossRef]
- Hulubei, C.; Albu, R.M.; Lisa, G.; Nicolescu, A.; Hamciuc, E.; Hamciuc, C.; Barzic, A.I. Antagonistic effects in structural design of sulfur-based polyimides as shielding layers for solar cells. Sol. Energy Mater. Sol. Cells 2019, 193, 219–230. [Google Scholar] [CrossRef]
- Ma, M.; Mont, F.W.; Yan, X.; Cho, J.; Schubert, E.F.; Kim, G.B.; Sone, C. Effects of the refractive index of the encapsulant on the light-extraction efficiency of light-emitting diodes. Opt. Express 2011, 19, A1135. [Google Scholar] [CrossRef]
- Shaker, L.M.; Al-Azzawi, W.K.; Al-Amiery, A.; Takriff, M.S.; Wan Isahak, W.N.R. Highly transparent antibacterial hydrogel-polymeric contact lenses doped with silver nanoparticles. J. Vinyl Addit. Technol. 2023, 29, 1023–1035. [Google Scholar] [CrossRef]
- Tran, M.H.; Hur, J. Direct, simple, rapid, and real-time monitoring of ultraviolet B level in sunlight using a self-powered and flexible photodetector. EcoMat 2023, 5, e12301. [Google Scholar] [CrossRef]
- Higashihara, T.; Ueda, M. Recent Progress in High Refractive Index Polymers. Macromolecules 2015, 48, 1915–1929. [Google Scholar] [CrossRef]
- Medhat, M.; El-Zaiat, S.Y.; Ramadan, H.; Abdelghaffar, M. Effect of thermal annealing on the linear birefringence of polystyrene, polypropylene and cellulose acetate polymers. Optik 2017, 131, 490–496. [Google Scholar] [CrossRef]
- Yan, J.; Jiao, M.; Rao, L.; Wu, S.-T. Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite. Opt. Express 2010, 18, 11450. [Google Scholar] [CrossRef] [PubMed]
- Kouderis, C.; Tsigoias, S.; Siafarika, P.; Kalampounias, A.G. Acoustically induced birefringence in polymer aqueous solutions: The case of polyvinyl alcohol. Phys. B Condens. Matter 2022, 643, 414189. [Google Scholar] [CrossRef]
- Barzic, A.I.; Sava, I.; Albu, R.M.; Ursu, C.; Lisa, G.; Stoica, I. Polyimide-Derived Supramolecular Systems Containing Various Amounts of Azochromophore for Optical Storage Uses. Polymers 2023, 15, 1056. [Google Scholar] [CrossRef] [PubMed]
- Eremin, A.; Murad, A.; Alaasar, M. Shear-induced birefringence in an optically isotropic cubic liquid crystalline phase. Soft Matter 2022, 18, 8315–8319. [Google Scholar] [CrossRef] [PubMed]
- Postolache, M.; Dimitriu, D.G.; Nechifor, C.D.; Condurache Bota, S.; Closca, V.; Dorohoi, D.O. Birefringence of Thin Uniaxial Polymer Films Estimated Using the Light Polarization Ellipse. Polymers 2022, 14, 1063. [Google Scholar] [CrossRef]
- Inoue, T. Strain-Induced Birefringence of Amorphous Polymers and Molecular Design of Optical Polymers. ACS Appl. Polym. Mater. 2021, 3, 2264–2273. [Google Scholar] [CrossRef]
- Shiu, K.P.; Qin, Z.; Yang, Z. Relaxation times and energy barriers of rubbing-induced birefringence in glass-forming polymers. Eur. Phys. J. E 2008, 27, 413–420. [Google Scholar] [CrossRef]
- Epure, E.-L.; Stoica, I.; Albu, R.M.; Hulubei, C.; Barzic, A.I. New Strategy for Inducing Surface Anisotropy in Polyimide Films for Nematics Orientation in Display Applications. Nanomaterials 2021, 11, 3107. [Google Scholar] [CrossRef]
- Nechifor, C.D.; Postolache, M.; Albu, R.M.; Barzic, A.I.; Dorohoi, D.O. Induced birefringence of rubbed and stretched polyvinyl alcohol foils as alignment layers for nematic molecules. Polym. Adv. Technol. 2019, 30, 2143–2152. [Google Scholar] [CrossRef]
- Kahl, R.T.; Erhardt, A.; Krauss, G.; Seibold, F.; Dolynchuk, O.; Thelakkat, M.; Thurn-Albrecht, T. Effect of Chemical Modification on Molecular Ordering in Polydiketopyrrolopyrrole Copolymers: From Liquid Crystalline to Crystalline. Macromolecules 2024, 57, 5243–5252. [Google Scholar] [CrossRef]
- Drevenšek-Olenik, I.; Čopič, M.; Sousa, M.E.; Crawford, G.P. Optical retardation of in-plane switched polymer dispersed liquid crystals. J. Appl. Phys. 2006, 100, 033515. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, M.; Wang, H.S.; Song, K. Optical retardation of UV-curable reactive mesogen with vertical alignment. Opt. Mater. Express 2017, 7, 4225. [Google Scholar] [CrossRef]
- Ryu, H.J.; Hwang, J.; Kim, J.; Lee, J.-H. Dependence of the birefringence of polystyrene film on the stretching conditions. Appl. Opt. 2018, 57, 268. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, Y. Optical Compensation Films and Polarizers. In Handbook of Visual Display Technology; Chen, J., Cranton, W., Fihn, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 2277–2290. [Google Scholar]
- Yang, S.; Lee, H.; Lee, J.-H. Negative dispersion retarder with a wide viewing angle made by stacking reactive mesogen on a polymethylmethacrylate film. Opt. Eng. 2016, 55, 027106. [Google Scholar] [CrossRef]
- Uchiyama, A.; Ono, Y.; Ikeda, Y.; Shuto, H.; Yahata, K. Copolycarbonate optical films developed using birefringence dispersion control. Polym. J. 2012, 44, 995–1008. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Yang, S.; Lee, J.-H. Negative dispersion retarder using two negative birefringence films. Opt. Express 2015, 23, 13108. [Google Scholar] [CrossRef]
- Songsurang, K.; Miyagawa, A.; Manaf, M.E.A.; Phulkerd, P.; Nobukawa, S.; Yamaguchi, M. Optical anisotropy in solution-cast film of cellulose triacetate. Cellulose 2013, 20, 83–96. [Google Scholar] [CrossRef]
- Kim, J.-H.; Rosenblatt, C. Optical retardation of rub-induced scratches in a polyimide-treated substrate. Appl. Phys. Lett. 1998, 72, 1917–1919. [Google Scholar] [CrossRef]
- Sang Park, M.; Jung, S.; Jeong Heo, S.; Geol Lee, S. Investigation on the stress behavior of cellulose acetate and the development of highly moisture-resistant optical films for display devices. J. Polym. Sci. Part B Polym. Phys. 2017, 55, 1470–1479. [Google Scholar] [CrossRef]
- Barzic, A.I.; Albu, R.M.; Stoica, I.; Nechifor, C.; Avadanei, M.I.; Dimitriu, D.G.; Dorohoi, D.O. Birefringent polyvinyl alcohol layers as retardation components for display devices. Polym. Adv. Technol. 2024, 35, 6196. [Google Scholar] [CrossRef]
- Honda, S.; Ishinabe, T.; Shibata, Y.; Fujikake, H. Evaluation of phase retardation of curved thin polycarbonate substrates for wide-viewing angle flexible liquid crystal displays. IEICE Trans. Electron. 2017, E100C, 992–997. [Google Scholar] [CrossRef]
- He, Q.; Wang, M.; Du, Y.; Qin, Q.; Qiu, W. Quantitative Characterization of the Anisotropy of the Stress-Optical Properties of Polyethylene Terephthalate Films Based on the Photoelastic Method. Polymers 2022, 14, 3257. [Google Scholar] [CrossRef] [PubMed]
- Avadanei, M.I.; Dimitriu, D.G.; Dorohoi, D.O. Optical Anisotropy of Polyethylene Terephthalate Films Characterized by Spectral Means. Polymers 2024, 16, 850. [Google Scholar] [CrossRef] [PubMed]
- Emam-Ismail, M. Birefringence dispersion of polyethylene and cellulose triacetate sheets used as photonic wave retarders. Opt. Eng. 2013, 52, 058001. [Google Scholar] [CrossRef]
- Guzzi, F.; Parrotta, E.; Zaccone, S.; Limongi, T.; Cuda, G.; Perozziello, G. Materials. In Microfluidics for Cellular Applications; Elsevier: Amsterdam, The Netherlands, 2023; pp. 119–187. [Google Scholar]
- Moreno, D.D.P.; Saron, C. Influence of compatibilizer on the properties of low-density polyethylene/polyamide 6 blends obtained by mechanical recycling of multilayer film waste. Waste Manag. Res. J. Sustain. Circ. Econ. 2018, 36, 729–736. [Google Scholar] [CrossRef]
- Qian, X.; Kravchenko, O.G.; Pedrazzoli, D.; Manas-Zloczower, I. Effect of polycarbonate film surface morphology and oxygen plasma treatment on mode I and II fracture toughness of interleaved composite laminates. Compos. Part A Appl. Sci. Manuf. 2018, 105, 138–149. [Google Scholar] [CrossRef]
- Krala, G.; Ubowska, A.; Kowalczyk, K. Mechanical and thermal analysis of injection molded poly (methyl methacrylate) modified with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) fire retarder. Polym. Eng. Sci. 2014, 54, 1030–1037. [Google Scholar] [CrossRef]
- Stein, R.S. The X-ray diffraction, birefringence, and infrared dichroism of stretched polyethylene. III. Biaxial orientation. J. Polym. Sci. 1958, 31, 335–343. [Google Scholar] [CrossRef]
- Shimada, H.; Nobukawa, S.; Hattori, T.; Yamaguchi, M. Wavelength dispersion of birefringence of oriented polyethylene films. Appl. Opt. 2017, 56, 3806. [Google Scholar] [CrossRef]
- Nagib, N.N.; Khodeir, S.A.; Abd-El-Megeed, A.A.; Soliman, H.A. Effect of γ-radiation on the birefringence of stretched polyethylene films. Opt. Laser Technol. 2004, 36, 361–364. [Google Scholar] [CrossRef]
- Nagib, N.N.; Khodier, S.A.; Sidki, H.M.; Abd El Megeed, A.A. Polymeric sheets as phase retardation elements. Meas. Sci. Technol. 2001, 12, 1714–1717. [Google Scholar] [CrossRef]
- Jen, Y.-J.; Lin, M.-J. Design and Fabrication of a Narrow Bandpass Filter with Low Dependence on Angle of Incidence. Coatings 2018, 8, 231. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, C.; Yang, Y.; Ma, H.; Sun, Y. Improving the color gamut of a liquid-crystal display by using a bandpass filter. Curr. Opt. Photonics 2019, 3, 590–596. [Google Scholar] [CrossRef]
- Dorohoi, D.O.; Postolache, M.; Nechifor, C.D.; Dimitriu, D.G.; Albu, R.M.; Stoica, I.; Barzic, A.I. Review on Optical Methods Used to Characterize the Linear Birefringence of Polymer Materials for Various Applications. Molecules 2023, 28, 2955. [Google Scholar] [CrossRef]
- Shribak, M.I.; Oldenbourg, R. Mapping Polymer Birefringence in 3D Using a Polarizing Microscope with Oblique Illumination. In Proceedings of the Biophotonics Micro-and Nano-Imaging, Strasbourg, France, 28 April 2004; Anselmetti, D., Ed.; SPIE: Bellingham, WA, USA; 2004; p. 57. [Google Scholar]
- Soroceanu, M.; Barzic, A.I.; Stoica, I.; Sacarescu, L.; Harabagiu, V. The influence of polysilane chemical structure on optical properties, rubbed film morphology and LC alignment. Express Polym. Lett. 2015, 9, 456–468. [Google Scholar] [CrossRef]
- Albu, R.M.; Stoica, I.; Nica, S.L.; Soroceanu, M.; Barzic, A.I. Tailoring Optical Performance of Polyvinyl Alcohol/Crystal Violet Band-Pass Filters via Solvent Features. Polymers 2024, 16, 3288. [Google Scholar] [CrossRef]
- Ajji, A.; Zhang, X.; Elkoun, S. Biaxial orientation in HDPE films: Comparison of infrared spectroscopy, X-ray pole figures and birefringence techniques. Polymer 2005, 46, 3838–3846. [Google Scholar] [CrossRef]
- Siesler, H.W. Rheo-optical fourier-transform infrared spectroscopy of polymers, 15. Orientational and modificational changes during uniaxial elongation of high-, low- and linear low-density polyethylenes. Die Makromol. Chem. 1989, 190, 2653–2663. [Google Scholar] [CrossRef]
- Kaito, A.; Nakayama, K.; Kanetsuna, H. Infrared dichroism and visible-ultraviolet dichroism studies on roller-drawn polypropylene and polyethylene sheets. J. Macromol. Sci. Part B 1987, 26, 281–306. [Google Scholar] [CrossRef]
- McRae, M.A.; Maddams, W.F. Infrared spectroscopic studies on polyethylene, 4. The examination of drawn specimens of varying stress crack resistance. Die Makromol. Chem. 1976, 177, 473–484. [Google Scholar] [CrossRef]
- Hagemann, H.; Snyder, R.G.; Peacock, A.J.; Mandelkern, L. Quantitative infrared methods for the measurement of crystallinity and its temperature dependence: Polyethylene. Macromolecules 1989, 22, 3600–3606. [Google Scholar] [CrossRef]
- Buffeteau, T.; Lagugné Labarthet, F.; Sourisseau, C.; Kostromine, S.; Bieringer, T. Biaxial Orientation Induced in a Photoaddressable Azopolymer Thin Film as Evidenced by Polarized UV−Visible, Infrared, and Raman Spectra. Macromolecules 2004, 37, 2880–2889. [Google Scholar] [CrossRef]
- Ameen, F.; Moslem, M.; Hadi, S.; Al-Sabri, A.E. Biodegradation of Low Density Polyethylene (Ldpe) by Mangrove Fungi from the Red Sea Coast. Prog. Rubber Plast. Recycl. Technol. 2015, 31, 125–143. [Google Scholar] [CrossRef]
- Sakdapipanich, J.; Rodgerd, P.; Sakdapipanich, N. A Low-Density Polyethylene (LDPE)/Macca Carbon Advanced Composite Film with Functional Properties for Packaging Materials. Polymers 2022, 14, 1794. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Zhou, L.; Wang, X.; He, L.; Yang, X. Effect of Crystallinity of Polyethylene with Different Densities on Breakdown Strength and Conductance Property. Materials 2019, 12, 1746. [Google Scholar] [CrossRef] [PubMed]
- Christmann, J.; Gardette, J.-L.; Pichon, G.; Bouchut, B.; Therias, S. Photostabilization of polyethylene by a hindered amine light stabilizer in blooming conditions and impact of MDO processing. Polym. Degrad. Stab. 2021, 191, 109683. [Google Scholar] [CrossRef]
- Bafna, A.; McFaddin, D.; Beaucage, G.; Merrick-Mack, J.; Mirabella, F.M. Integrated mechanism for the morphological structure development in HDPE melt-blown and machine-direction-oriented films. J. Polym. Sci. Part B Polym. Phys. 2007, 45, 1834–1844. [Google Scholar] [CrossRef]
- Li, X.X.; Xia, M.; Dong, X.; Long, R.; Liu, Y.; Huang, Y.; Long, S.; Hu, C.; Li, X.X. High Mechanical Properties of Stretching Oriented Poly (butylene succinate) with Two-Step Chain Extension. Polymers 2022, 14, 1876. [Google Scholar] [CrossRef]
- Barzic, A.I.; Albu, R.M.; Stoica, I. Surface alteration implications on potential use of semi-alicyclic polyimide as biomedical materials. Appl. Surf. Sci. 2021, 540, 148377. [Google Scholar] [CrossRef]
- Larena, A.; Millán, F.; Pérez, G.; Pinto, G. Effect of surface roughness on the optical properties of multilayer polymer films. Appl. Surf. Sci. 2002, 187, 339–346. [Google Scholar] [CrossRef]
- Lin, Y.; Bilotti, E.; Bastiaansen, C.W.M.; Peijs, T. Transparent semi-crystalline polymeric materials and their nanocomposites: A review. Polym. Eng. Sci. 2020, 60, 2351–2376. [Google Scholar] [CrossRef]
- Maruhashi, Y.; Iida, S. Transparency of polymer blends. Polym. Eng. Sci. 2001, 41, 1987–1995. [Google Scholar] [CrossRef]
- Ouchi, I. Anisotropic Absorption and Reflection Spectra of Poly (ethylene terephthalate) Films in Ultraviolet Region. Polym. J. 1983, 15, 225–243. [Google Scholar] [CrossRef]
- Choudhury, A.K.R. Using Instruments to Quantify Colour. In Principles of Colour and Appearance Measurement; Elsevier: Amsterdam, The Netherlands, 2014; pp. 270–317. [Google Scholar]
- Haryński, Ł.; Olejnik, A.; Grochowska, K.; Siuzdak, K. A facile method for Tauc exponent and corresponding electronic transitions determination in semiconductors directly from UV–Vis spectroscopy data. Opt. Mater. 2022, 127, 112205. [Google Scholar] [CrossRef]
- Al-Kadhemy, M.F.H.; Abass, W.H. Optical properties of crystal violet doped PMMA films. Res. Rev. Polym. 2013, 4, 45–51. [Google Scholar]
- El-Gamal, S.; Ismail, A.M. Electrical and optical properties of novel brilliant cresyl blue dye-doped poly (methyl methacrylate) as selective cut-off laser filters. Polym. Int. 2020, 69, 1308–1318. [Google Scholar] [CrossRef]
Sample Acronym | Thickness, µm | Width, cm | Length, cm | Rs |
---|---|---|---|---|
LDPE 0 | 70 | 1.1 | 6.4 | 1.0 |
LDPE 1 | 60 | 0.9 | 10.0 | 1.6 |
LDPE 2 | 40 | 0.7 | 15.3 | 2.4 |
LDPE 3 | 30 | 0.6 | 20.1 | 3.1 |
LDPE 4 | 20 | 0.4 | 25.6 | 4.0 |
3D AFM Texture Parameters | Samples | |||
---|---|---|---|---|
LDPE 0 | LDPE 0-R | LDPE 4-NR | LDPE 4 | |
Morphology analysis | ||||
Root mean square roughness, Sq (nm) | 38.1 | 55.0 | 90.9 | 141.2 |
Surface area ratio, Sdr (%) | 2.463 | 2.500 | 2.755 | 7.615 |
Furrows analysis | ||||
Maximum depth of furrows | 164.4 | 195.2 | 285.2 | 482.4 |
Mean depth of furrows | 56.8 | 84.26 | 122.4 | 217.8 |
3D AFM Texture Parameters | Samples | |||
---|---|---|---|---|
LDPE 0 | LDPE 0-R | LDPE 4-NR | LDPE 4 | |
Functional analysis | ||||
Peak material volume, Vmp (nm3/nm2) | 1.78 | 2.00 | 5.74 | 4.09 |
Core material volume, Vmc (nm3/nm2) | 34.03 | 47.77 | 100.80 | 134.80 |
Core void volume, Vvc (nm3/nm2) | 44.00 | 54.40 | 88.67 | 184.70 |
Valley void volume, Vvv (nm3/nm2) | 4.66 | 8.8 | 11.59 | 13.87 |
Spatial analysis | ||||
Texture direction index of the surface, Stdi | 0.626 | 0.242 | 0.246 | 0.167 |
Sample | Refractive Index | Wavelength, nm | |||
---|---|---|---|---|---|
486 | 589 | 656 | 670 | ||
LDPE 0 | nx | 1.5204 | 1.5182 | 1.5170 | 1.5131 |
ny | 1.5173 | 1.5160 | 1.5152 | 1.5119 | |
nz | 1.5196 | 1.5178 | 1.5167 | 1.5129 | |
LDPE 0-R | nx | 1.5266 | 1.5251 | 1.5237 | 1.5129 |
ny | 1.5230 | 1.5226 | 1.5216 | 1.5111 | |
nz | 1.5257 | 1.5242 | 1.5224 | 1.5126 | |
LDPE 1 | nx | 1.5275 | 1.5225 | 1.5192 | 1.5162 |
ny | 1.5124 | 1.5095 | 1.5067 | 1.5055 | |
nz | 1.5179 | 1.5164 | 1.5135 | 1.5111 | |
LDPE 2 | nx | 1.5489 | 1.5349 | 1.5328 | 1.5232 |
ny | 1.5067 | 1.4990 | 1.4978 | 1.4918 | |
nz | 1.5176 | 1.5098 | 1.5078 | 1.5017 | |
LDPE 3 | nx | 1.5568 | 1.5442 | 1.5409 | 1.5337 |
ny | 1.5016 | 1.4924 | 1.4914 | 1.4851 | |
nz | 1.5168 | 1.5049 | 1.5036 | 1.4970 | |
LDPE 4-NR | nx | 1.5624 | 1.5492 | 1.5480 | 1.5457 |
ny | 1.4976 | 1.4855 | 1.4851 | 1.4836 | |
nz | 1.5117 | 1.4985 | 1.4958 | 1.4945 | |
LDPE 4 | nx | 1.5673 | 1.5554 | 1.5540 | 1.5471 |
ny | 1.4941 | 1.4858 | 1.4849 | 1.4783 | |
nz | 1.5162 | 1.5045 | 1.5033 | 1.4964 |
Sample | Angle, ° | |||
---|---|---|---|---|
486 nm | 589 nm | 656 nm | 670 nm | |
LDPE 0 | 60.9847 | 50.4307 | 48.1517 | 48.1824 |
LDPE 1 | 105.3437 | 86.1041 | 84.5978 | 87.0176 |
LDPE 2 | 117.8654 | 112.5384 | 114.4775 | 123.2490 |
LDPE 3 | 114.9909 | 119.8952 | 119.2537 | 119.4861 |
LDPE 4 | 111.4419 | 115.8032 | 116.1297 | 116.5516 |
System | CW, nm | PT, % | FWHM, nm | WAB, nm | Reference |
---|---|---|---|---|---|
LDPE 0_CV | 429 | 70.2 | 349–480 | 200–300 480–660 | This work |
PVA_CV | 413 | 88.3 | 316–496 | 243–259 294–312 506–633 | [49] |
PMMA_CV | 424 | 81.0 | up to 510 | 531–622 | [69] |
PMMA_BCB | 478 | 46.1 | 455–532 | 200–400 538–669 | [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barzic, A.I.; Stoica, I.; Avadanei, M.I.; Albu, R.M.; Dimitriu, D.-G.; Dorohoi, D.-O. Versatile Adjustment of LDPE Properties via Specific Treatments to Design Optical Components for Display Technologies. Polymers 2025, 17, 578. https://doi.org/10.3390/polym17050578
Barzic AI, Stoica I, Avadanei MI, Albu RM, Dimitriu D-G, Dorohoi D-O. Versatile Adjustment of LDPE Properties via Specific Treatments to Design Optical Components for Display Technologies. Polymers. 2025; 17(5):578. https://doi.org/10.3390/polym17050578
Chicago/Turabian StyleBarzic, Andreea Irina, Iuliana Stoica, Mihaela Iuliana Avadanei, Raluca Marinica Albu, Dan-Gheorghe Dimitriu, and Dana-Ortansa Dorohoi. 2025. "Versatile Adjustment of LDPE Properties via Specific Treatments to Design Optical Components for Display Technologies" Polymers 17, no. 5: 578. https://doi.org/10.3390/polym17050578
APA StyleBarzic, A. I., Stoica, I., Avadanei, M. I., Albu, R. M., Dimitriu, D.-G., & Dorohoi, D.-O. (2025). Versatile Adjustment of LDPE Properties via Specific Treatments to Design Optical Components for Display Technologies. Polymers, 17(5), 578. https://doi.org/10.3390/polym17050578