Effect of Surface Treatments and Thermal Aging on Bond Strength Between Veneering Resin and CAD/CAM Provisional Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimens’ Preparation and Grouping
2.2. Bonding Procedures and Aging Protocol
2.3. Shear Bond Strength (SBS) Testing
2.4. Scanning Electron Microscopy (SEM)
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- C-Temp exhibited higher SBS values without surface treatment (13.11 ± 0.55 MPa), whereas PEEK showed higher SBS values after diamond bur roughening and air particle abrasion (10.87 ± 1.02 MPa, and 14.37 ± 0.98 MPa, respectively);
- CAD-Temp recorded the lowest SBS values, which are below the clinically accepted value (10 MPa) in all groups except for the SB group (12.86 ± 0.75 MPa);
- Thermocycling significantly reduced bond strength in all materials except for PEEK material in the air particle abrasion group (12.92 ± 0.97 MPa);
- The results of the current study suggest that C-Temp and PEEK can be recommended as promising provisional materials due to their appropriate bond strength values after thermal aging. Suitable surface treatments and the selection of suitable provisional material could improve the adhesive properties for these materials to be used for long-term applications.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAD/CAM | Computed Aided Design/Computed Aided Manufacturing |
SBS | Shear Bond Strength |
SEM | Scanning Electron Microscopy |
PEEK | Polyether Ether Ketone |
FPDs | Fixed Partial Dentures |
LED light | Light Emitting Diode light |
PMMA | Poly Methyl Methacrylate resin |
MPa | Mega Pascal |
ISO | International Organization for Standardization |
References
- Burns, D.R.; Beck, D.A.; Nelson, S.K. Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. A review of selected dental literature on contemporary provisional fixed prosthodontic treatment: Report of the Committee on Research in Fixed Prosthodontics of the Academy of Fixed Prosthodontics. J. Prosthet. Dent. 2003, 90, 474–497. [Google Scholar]
- Stawarczyk, B.; Ender, A.; Trottmann, A.; Özcan, M.; Fischer, J.; Hämmerle, C.H.F. Load-bearing capacity of CAD/CAM milled polymeric three-unit fixed dental prostheses: Effect of aging regimens. Clin. Oral Investig. 2012, 16, 1669–1677. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, O.M.; Badawi, M.F.; Soliman, T.A. Bonding durability and remineralizing efficiency of orthodontic adhesive containing titanium tetrafluoride: An invitro study. BMC Oral Health 2023, 23, 340. [Google Scholar] [CrossRef]
- Soliman, T.A.; Ghorab, S.; Baeshen, H. Effect of surface treatments and flash free adhesive on the shear bond strength of ceramic orthodontic brackets to CAD/CAM provisional materials. Clin. Oral Investig. 2022, 26, 481–492. [Google Scholar] [CrossRef]
- Yu, H.; Yao, J.; Du, Z.; Guo, J.; Lei, W. Comparative Evaluation of Mechanical Properties and Color Stability of Dental Resin Composites for Chairside Provisional Restorations. Polymers 2024, 16, 2089. [Google Scholar] [CrossRef] [PubMed]
- Sadek, H.M.A.; El-Banna, A. Biaxial flexural strength of different provisional restorative materials under chemo-mechanical aging: An in vitro study. J. Prosthodont. 2024, 33, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Strasding, M.; Marchand, L.; Merino, E.; Zarauz, C.; Pitta, J. Material and abutment selection for CAD/CAM implant-supported fixed dental prostheses in partially edentulous patients—A narrative review. Clin. Oral Implant. Res. 2024, 35, 984–999. [Google Scholar] [CrossRef] [PubMed]
- Yoon, G.W.; Park, E.J. Fracture Strength of Six-Unit Anterior Fixed Provisional Restorations Fabricated Using Various Dental CAD/CAM Systems. Int. J. Prosthodont. 2024, 37, 49–54. [Google Scholar] [CrossRef]
- Santosa, R.E. Provisional restoration options in implant dentistry. Aust. Dent. J. 2007, 52, 234–242. [Google Scholar] [CrossRef]
- ELSyad, M.A.; Soliman, T.A.; Khalifa, A.K. Retention and Stability of rigid telescopic and Milled Bar Attachments for Implant-Supported Maxillary Overdentures: An in Vitro Study. Int. J. Oral Maxillofac. Implant. 2018, 33, e127–e133. [Google Scholar] [CrossRef] [PubMed]
- Alp, G.; Murat, S.; Yilmaz, B. Comparison of flexural strength of different CAD/CAM PMMA-based polymers. J. Prosthodont. 2019, 28, e491–e495. [Google Scholar] [CrossRef]
- Şişmanoğlu, S.; Gürcan, A.T.; Yıldırım-Bilmez, Z.; Turunç-Oğuzman, R.; Gümüştaş, B. Effect of surface treatments and universal adhesive application on the microshear bond strength of CAD/CAM materials. J. Adv. Prosthodont. 2020, 12, 22–32. [Google Scholar] [CrossRef]
- Stawarczyk, B.; Trottmann, A.; Hämmerle, C.H.F.; Özcan, M. Adhesion of veneering resins to polymethylmethacrylate-based CAD/CAM polymers after various surface conditioning methods. Acta Odontol. Scand. 2013, 71, 1142–1148. [Google Scholar] [CrossRef]
- Keul, C.; Müller-Hahl, M.; Eichberger, M.; Liebermann, A.; Roos, M.; Edelhoff, D.; Stawarczyk, B. Impact of different adhesives on work of adhesion between CAD/CAM polymers and resin composite cements. J. Dent. 2014, 42, 1105–1114. [Google Scholar] [CrossRef]
- Yao, J.; Li, J.; Wang, Y.; Huang, H. Comparison of the flexural strength and marginal accuracy of traditional and CAD/CAM interim materials before and after thermal cycling. J. Prosthet. Dent. 2014, 112, 649–657. [Google Scholar] [CrossRef] [PubMed]
- Soliman, T.A.; Raffat, E.M.; Farahat, D.S. Evaluation of mechanical behavior of CAD/CAM polymers for long-term interim restoration following Artificial Aging. Eur. J. Prosthodont. Restor. Dent. 2023, 31, 22–30. [Google Scholar]
- Wiegand, A.; Stucki, L.; Hoffmann, R.; Attin, T.; Stawarczyk, B. Repairability of CAD/ CAM high-density PMMA- and composite-based polymers. Clin. Oral Investig. 2015, 19, 2007–2013. [Google Scholar] [CrossRef]
- Liebermann, A.; Wimmer, T.; Schmidlin, P.R.; Scherer, H.; Löffler, P.; Roos, M.; Stawarczyk, B. Physicomechanical characterization of polyetheretherketone and current esthetic dental CAD/CAM polymers after aging in different storage media. J. Prosthet. Dent. 2016, 115, 321–328e2. [Google Scholar] [CrossRef]
- Gouveia, D.D.N.M.; Razzoog, M.E.; Sierraalta, M.; Alfaro, M.F. Effect of surface treatment and manufacturing process on the shear bond strength of veneering composite resin to polyetherketoneketone (PEKK) and polyetheretherketone (PEEK). J. Prosthet. Dent. 2022, 128, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Caglar, I.; Ates, S.M.; Duymus, Z.Y. An in vitro evaluation of the effect of various adhesives and surface treatments on bond strength of resin cement to polyetheretherketone. J. Prosthodont. 2018, 28, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Ates, S.M.; Caglar, I.; Duymus, Z.Y. The effect of different surface pretreatments on the bond strength of veneering resin to polyetheretherketone. J. Adhes. Sci. Technol. 2018, 32, 1–12. [Google Scholar] [CrossRef]
- Soliman, T.A.; Robaian, A.; Al-Gerny, Y.; Raffat, E.M. Influence of surface treatment on repair bond strength of CAD/CAM long-term provisional restorative materials: An in vitro study. BMC Oral Health 2023, 23, 342. [Google Scholar] [CrossRef]
- Al-Gerny, Y.A.; Ghorab, S.M.; Soliman, T.A. Bond strength and elemental analysis of oxidized dentin bonded to resin modified glass ionomer based restorative material. J. Clin. Exp. Dent. 2019, 11, e250–e256. [Google Scholar] [CrossRef] [PubMed]
- Visio.lign® Manual, Composite Processing Techniques. Available online: https://www.bredent.co.uk/wpcontent/uploads/2017/02/visiolign-Manual-1.pdf (accessed on 14 February 2025).
- Everest, C. Temp Provisional Restoration (2016) KaVo Elements for KaVo ARCTICA and KaVo Everest. The Foundation for Reliable Long-Term Temporary Applications: C-Temp. IOP Publishing Physics Web. Available online: http://dinamed.by/media/Instrukcii2014/ARCTICA_en_Material.pdf (accessed on 29 August 2020).
- PEEK; BIOHPP. Bredent UK. The New Class of Materials in Prosthetics. 2013. Available online: https://www.bredent.co.uk/wp-content/uploads/2017/02/BioHPP-2013.pdf (accessed on 10 July 2021).
- CAD-Temp Provisional Restoration. Available online: https://www.vita-zahnfabrik.com/en/VITA-CAD-Temp-multiColor 25330,27568.html (accessed on 3 January 2025).
- Zhou, L.; Qian, Y.; Zhu, Y.; Liu, H.; Gan, K.; Guo, J. The effect of different surface treatments on the bond strength of PEEK composite materials. Dent. Mater. 2014, 30, 209–215. [Google Scholar] [CrossRef]
- Schmidlin, P.R.; Stawarczyk, B.; Wieland, M. Effect of different surface pretreatments and luting materials on shear bond strength to PEEK. Dent. Mater. 2010, 26, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Chay, S.H.; Wong, S.L.; Mohamed, N.; Chia, A.; Yap, A.U.J. Effects of surface treatment and aging on the bond strength of orthodontic brackets to provisional materials. Am. J. Orthod. Dentofac. Orthop. 2007, 132, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Peumans, M.; Hikita, K.; De Munck, J.; Van Landuyt, K.; Poitevin, A.; Lambrechts, P.; Van Meerbeek, B. Effects of ceramic surface treatments on the bond strength of an adhesive luting agent to CAD-CAM ceramic. J. Dent. 2007, 35, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Bonstein, T.; Garlapo, D.; Donarummo, J.; Bush, P.J. Evaluation of varied repair protocols applied to aged composite resin. J. Adhes. Dent. 2005, 7, 41–49. [Google Scholar]
- Papacchini, F.; Dall’Oca, S.; Chieffi, N.; Goracci, C.; Sadek, F.T.; I Suh, B.; Tay, F.R.; Ferrari, M. Composite-to-composite microtensile bond strength in the repair of a microfilled hybrid resin: Effect of surface treatment and oxygen inhibition. J. Adhes. Dent. 2007, 9, 25–31. [Google Scholar] [PubMed]
- Barcellos, D.C.; Santos, V.M.; Niu, L.N.; Pashley, D.H.; Tay, F.R.; Pucci, C.R. Repair of composites: Effect of laser and different surface treatments. Int. J. Adhes. Adhes. 2015, 59, 1–6. [Google Scholar] [CrossRef]
- Brendeke, J.; Ozcan, M. Effect of physicochemical aging conditions on the composite-composite repair bond strength. J. Adhes. Dent. 2007, 9, 399–406. [Google Scholar] [PubMed]
- Stawarczyk, B.; Basler, T.; Ender, A.; Roos, M.; Özcan, M.; Hämmerle, C. Effect of surface conditioning with airborne-particle abrasion on the tensile strength of polymeric CAD/CAM crowns luted with self-adhesive and conventional resin cements. J. Prosthet. Dent. 2012, 107, 94–101. [Google Scholar] [CrossRef]
- Reeponmaha, T.; Angwaravong, O.; Angwarawong, T. Comparison of fracture strength after thermo-mechanical aging between provisional crowns made with CAD/CAM and conventional method. J. Adv. Prosthodont. 2020, 12, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.S.; Azam, M.T.; Khan, M.; Mian, S.A.; Ur Rehman, I. An update on glass fiber dental restorative composites: A systematic review. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 47, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Niem, T.; Youssef, N.; Wöstmann, B. Influence of accelerated ageing on the physical properties of CAD/CAM restorative materials. Clin. Oral Investig. 2020, 24, 2415–2425. [Google Scholar] [CrossRef]
- Tezvergil, A.; Lassila, L.V.; Vallittu, P.K. Composite-composite repair bond strength: Effect of different adhesion primers. J. Dent. 2003, 31, 521–525. [Google Scholar] [CrossRef]
- Astudillo-Rubio, D.; Delgado-Gaete, A.; Bellot-Arcís, C.; Montiel-Company, J.M.; Pascual-Moscardó, A.; Almerich-Silla, J.M. Mechanical properties of provisional dental materials: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0193162. [Google Scholar]
- ISO 10477; Dentistry-Polymer-Based Crown and Veneering Materials. International Organization for Standardization: Geneva, Switzerland, 2020. Available online: https://www.iso.org/standard/80007.html (accessed on 1 January 2025).
- Behr, M.; Rosentritt, M.; Gröger, G.; Handel, G. Adhesive bond of veneering composites on various metal surfaces using silicoating, titanium-coating or functional monomers. J. Dent. 2003, 31, 33–42. [Google Scholar] [CrossRef]
Product | Composition/Manufacturer | Indication | Lot. No. |
---|---|---|---|
CAD-Temp |
| Multi-unit, fully or partially anatomical long-term temporary bridges with up to 2 pontics. | 38590 |
Everest C-Temp |
| Long-term temporary restoration up to 6 units. | 6946 |
Bre CAM Bio HPP |
| 4-part posterior bridge up to two pontics. | 56654456 |
Visio. Link Primer |
| Universal, light-curing PMMA and composite primer. | 153141 |
Crea.lign Dentine Paste |
| Permanent resin veneering material. | N160407 |
Groups | Provisional Restorative Materials | ||
---|---|---|---|
CAD Temp Mean ± SD | C-Temp Mean ± SD | PEEK Mean ± SD | |
C | 4.60 ± 0.54 Bc | 13.11± 0.55 Ac | 5.9 ± 0.55 Bd |
DB | 8.84 ± 0.55 Bb | 16.92 ± 0.70 Ab | 10.87 ± 1.02 Bb |
DB + TC | 6.04 ± 0.76 Cc | 11.18 ± 0.92 Ac | 8.26 ± 1.07 Bc |
SB | 12.86 ± 0.75 Ba | 20.38 ± 1.04 Aa | 14.37 ± 0.98 Ba |
SB + TC | 8.82 ± 0.86 Bb | 15.56 ± 0.87 Ab | 12.92 ± 0.97 Aa |
Source of Variations | Sum of Squares | df | Mean Squares | F | p Value |
---|---|---|---|---|---|
Corrected model | 2719.531 | 14 | 194.252 | 279.932 | p < 0.001 |
Intercept | 15,187.369 | 1 | 15,187.369 | 21,886.146 | p < 0.001 |
Materials | 986.794 | 2 | 493.397 | 711.023 | p < 0.001 |
Surface treatments | 1173.509 | 2 | 586.754 | 845.557 | p < 0.001 |
Aging | 507.174 | 1 | 507.174 | 730.876 | p < 0.001 |
Material × surface treatment | 36.263 | 4 | 9.066 | 13.064 | p = 0.001 |
Material × aging | 153.790 | 2 | 76.895 | 110.811 | p = 0.004 |
Surface treatment × aging | 9.633 | 1 | 9.633 | 13.882 | p < 0.001 |
Material × surface treatment × aging | 4.860 | 2 | 3.502 | p = 0.033 | |
Error | 93.680 | 135 | 2.430 | ||
Total | 20,679.429 | 150 | 0.694 | ||
Corrected total | 2813.211 | 149 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robaian, A.; Alshehri, A.M.; Alqhtani, N.R.; Almudahi, A.; Alanazi, K.K.; Abuelqomsan, M.A.S.; Raffat, E.M.; Elkaffas, A.; Hashem, Q.; Soliman, T.A. Effect of Surface Treatments and Thermal Aging on Bond Strength Between Veneering Resin and CAD/CAM Provisional Materials. Polymers 2025, 17, 563. https://doi.org/10.3390/polym17050563
Robaian A, Alshehri AM, Alqhtani NR, Almudahi A, Alanazi KK, Abuelqomsan MAS, Raffat EM, Elkaffas A, Hashem Q, Soliman TA. Effect of Surface Treatments and Thermal Aging on Bond Strength Between Veneering Resin and CAD/CAM Provisional Materials. Polymers. 2025; 17(5):563. https://doi.org/10.3390/polym17050563
Chicago/Turabian StyleRobaian, Ali, Abdullah Mohammed Alshehri, Nasser Raqe Alqhtani, Abdulellah Almudahi, Khalid K. Alanazi, Mohammed A. S. Abuelqomsan, Eman Mohamed Raffat, Ali Elkaffas, Qamar Hashem, and Tarek Ahmed Soliman. 2025. "Effect of Surface Treatments and Thermal Aging on Bond Strength Between Veneering Resin and CAD/CAM Provisional Materials" Polymers 17, no. 5: 563. https://doi.org/10.3390/polym17050563
APA StyleRobaian, A., Alshehri, A. M., Alqhtani, N. R., Almudahi, A., Alanazi, K. K., Abuelqomsan, M. A. S., Raffat, E. M., Elkaffas, A., Hashem, Q., & Soliman, T. A. (2025). Effect of Surface Treatments and Thermal Aging on Bond Strength Between Veneering Resin and CAD/CAM Provisional Materials. Polymers, 17(5), 563. https://doi.org/10.3390/polym17050563