Synthesis and Characterization of Innovative Double-Network Hydrogels with Potential as Adsorbent Materials for Wastewater Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the PDMAEMA Network
2.3. Preparation of the Supramolecular Structure
2.4. Synthesis of DN Gels
2.5. Characterization by Fourier Transform Infrared Spectroscopy
2.6. Thermal Properties
2.7. Morphological Properties
2.8. Swelling Degree
- Wd—weight of dry samples;
- Ws—weight of wet samples.
2.9. Adsorption Study
- C0 represents the concentration of the stock anionic dye solution (mg L−1);
- Ce represents the concentration of the dye solution at equilibrium (mg L−1).
- qe represents the adsorption ability (mg g−1) of the adsorbent at equilibrium (mg g−1);
- M represents the dose of adsorbent (mg);
- V represents the volume of the dye solution (L).
- qe is the quantity of adsorbed dye at equilibrium (mg g−1);
- qt represents the quantity of adsorbed dye at specific intervals (mg g−1);
- k1 represents the pseudo-first-order sorption rate constant (h−1);
- k2 represents the pseudo-second-order sorption rate constant (g mg−1 h−1).
- qt represents the quantity of dye sorption at specific intervals (mg g−1);
- kp represents the intraparticle diffusion rate constant (mg g−1 h−1/2);
- C represents the intercept.
2.10. Reusability Study
2.11. Statistical Analysis
3. Results
3.1. DN Gel Structural Characterization by Fourier Transform Infrared Spectroscopy
3.2. Thermal Stability Study
3.3. Morphological Study
3.4. Swelling Degree Behavior
3.5. Dye Adsorption Study
3.5.1. Effect of Adsorbent Dose
3.5.2. Effect of pH
3.5.3. Effect of Contact Time
3.5.4. Effect of Concentration
3.6. Regeneration Process
3.7. Kinetic Study of Anionic Dye Adsorption
3.8. Adsorption Isothermal Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DMAEMA | 2-(dimethylamino)ethyl methacrylate |
PDMAEMA | poly(N,N-dimethylaminoethyl methacrylate) |
FTIR | Fourier transform infrared spectroscopy |
SEM | Scanning electron microscopy |
TGA | Thermogravimetric analysis |
Fmoc | Fluorenyl methoxycarbonyl protecting group |
S1 | Supramolecular system based on Fmoc-Lys(Fmoc)-OH and Fmoc-Gly-Gly-Gly-OH |
M1 | Fmoc-Lys(Fmoc)-OH |
M2 | Fmoc-Gly-Gly-Gly-OH |
DMSO | Dimethyl sulfoxide |
DN | Double network |
NaOH | Sodium hydroxide |
PBS | Phosphate buffer solution |
APS | Ammonium persulfate |
TEMED | N,N,N′,N′-tetramethyl ethylenediamine |
MBAAm | N,N′-methylene-bis-acrylamide |
PFO | Pseudo-first-order model |
PSO | Pseudo-second-order model |
IPD | Intraparticle diffusion model |
References
- Kumar, V.; Bilal, M.; Ferreira, L.F.R. Editorial: Recent Trends in Integrated Wastewater Treatment for Sustainable Development. Front. Microbiol. 2022, 13, 846503. [Google Scholar] [CrossRef] [PubMed]
- Hansen, É.; De Aquim, P.M.; Gutterres, M. Environmental assessment of water, chemicals and effluents in leather post-tanning process: A review. Environ. Impact Assess. Rev. 2021, 89, 106597. [Google Scholar] [CrossRef]
- Thomasset, A.; Benayoun, S. Review: Leather sustainability, an industrial ecology in process. J. Ind. Ecol. 2024, 28, 1842–1856. [Google Scholar] [CrossRef]
- COTANCE. European Leather Industry. Available online: https://www.euroleather.com/about-us/european-leather-industry (accessed on 29 January 2025).
- Buljan, J.; Kral, I. Introduction of Treatment of Tannery Effluents; UNIDO: Vienna, Austria, 2011. [Google Scholar]
- Alemu, L.G.; Kefale, G.Y.; Hailu, R.; Tilahun, A.; Minbale, E.; Eyasu, A. Toward Sustainable Leather Processing: A Comprehensive Review of Cleaner Production Strategies and Environmental Impacts. Adv. Mater. Sci. Eng. 2024, 2024, 8117915. [Google Scholar] [CrossRef]
- Hansen, É.; De Aquim, P.M.; Hansen, A.W.; Cardoso, J.K.; Ziulkoski, A.L.; Gutterres, M. Impact of post-tanning chemicals on the pollution load of tannery wastewater. J. Environ. Manag. 2020, 269, 110787. [Google Scholar] [CrossRef] [PubMed]
- Mella, B.; Puchana-Rosero, M.J.; Costa, D.E.S.; Gutterres, M. Utilization of tannery solid waste as an alternative biosorbent for acid dyes in wastewater treatment. J. Mol. Liq. 2017, 242, 137–145. [Google Scholar] [CrossRef]
- Ortiz-Monsalve, S.; Valente, P.; Poll, E.; Jaramillo-García, V.; Henriques, J.A.P.; Gutterres, M. Biodecolourization and biodetoxification of dye-containing wastewaters from leather dyeing by the native fungal strain Trametes villosa SCS-10. Biochem. Eng. J. 2019, 141, 19–28. [Google Scholar] [CrossRef]
- Halepoto, H.; Gong, T.; Memon, H. Current status and research trends of textile wastewater treatments—A bibliometric-based study. Front. Environ. Sci. 2022, 10, 1042256. [Google Scholar] [CrossRef]
- Spiridon, I.; Apostol, I.; Anghel, N.C.; Zaltariov, M.F. Equilibrium, kinetic, and thermodynamic studies of new materials based on xanthan gum and cobalt ferrite for dye adsorption. Appl. Organomet. Chem. 2022, 36, e6670. [Google Scholar] [CrossRef]
- Worch, E. Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modeling; De Gruyter: Berlin, Germany; Boston, MA, USA, 2012. [Google Scholar]
- Dutta, K.; De, S. Smart responsive materials for water purification: An overview. J. Mater. Chem. A 2017, 5, 22095–22112. [Google Scholar] [CrossRef]
- Martis, L.J.; Parushuram, N.; Sangappa, Y. Preparation, characterization, and methylene blue dye adsorption study of silk fibroin–graphene oxide nanocomposites. Environ. Sci. Adv. 2022, 1, 285–296. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M.; Roy, P.; Bonilla-Petriciolet, A.; Badawi, M.; Ganachari, S.V.; Shetti, N.P.; Aminabhavi, T.M. Polymeric hydrogels-based materials for wastewater treatment. Chemosphere 2023, 331, 138743. [Google Scholar] [CrossRef] [PubMed]
- Van Tran, V.; Park, D.; Lee, Y.-C. Hydrogel applications for adsorption of contaminants in water and wastewater treatment. Environ. Sci. Pollut. Res. 2018, 25, 24569–24599. [Google Scholar] [CrossRef] [PubMed]
- Abousalman-Rezvani, Z.; Roghani-Mamaqani, H.; Riazi, H.; Abousalman-Rezvani, O. Water treatment using stimuli-responsive polymers. Polym. Chem. 2022, 13, 5940–5964. [Google Scholar] [CrossRef]
- Kocak, G.; Tuncer, C.; Bütün, V. pH-Responsive polymers. Polym. Chem. 2017, 8, 144–176. [Google Scholar] [CrossRef]
- Luo, J.; Maier, R.M.; Yu, D.; Liu, B.; Zhu, N.; Amy, G.L.; Crittenden, J.C. Double-Network Hydrogel: A Potential Practical Adsorbent for Critical Metals Extraction and Recovery from Water. Environ. Sci. Technol. 2022, 56, 4715–4717. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Chen, H.; Zhu, L.; Zheng, J. Fundamentals of double network hydrogels. J. Mater. Chem. B 2015, 3, 3654–3676. [Google Scholar] [CrossRef]
- Liang, S.; Tang, J.; Yao, S.; Zhu, W. Removal characteristics of two anionic dyes by a polyethylenimine/poly(N,N-dimethylaminoethyl methacrylate) gel. RSC Adv. 2019, 9, 22907–22920. [Google Scholar] [CrossRef] [PubMed]
- Puri, N.; Gupta, A.; Mishra, A. Recent advances on nano-adsorbents and nanomembranes for the remediation of water. J. Clean. Prod. 2021, 322, 129051. [Google Scholar] [CrossRef]
- Liu, S.; Liu, L.; Su, G.; Zhao, L.; Peng, H.; Xue, J.; Tang, A. Enhanced adsorption performance, separation, and recyclability of magnetic core-shell Fe3O4@PGMA-g-TETA-CSSNa microspheres for heavy metal removal. React. Funct. Polym. 2022, 170, 105127. [Google Scholar] [CrossRef]
- Moktadir, M.A.; Maliha, M.; Tujjohra, F.; Munmun, S.A.; Alam, M.S.; Islam, M.A.; Rahman, M.M. Treatment of tannery wastewater by different membrane bioreactors: A critical review. Environ. Adv. 2024, 15, 100478. [Google Scholar] [CrossRef]
- Durai, G.; Rajasimman, M. Biological Treatment of Tannery Wastewater—A Review. J. Environ. Sci. Technol. 2010, 4, 1–17. [Google Scholar] [CrossRef]
- Mella, B.; Barcellos, B.S.D.C.; Da Silva Costa, D.E.; Gutterres, M. Treatment of Leather Dyeing Wastewater with Associated Process of Coagulation-Flocculation/Adsorption/Ozonation. Ozone Sci. Eng. 2018, 40, 133–140. [Google Scholar] [CrossRef]
- Rafaqat, S.; Ali, N.; Torres, C.; Rittmann, B. Recent progress in treatment of dyes wastewater using microbial-electro-Fenton technology. RSC Adv. 2022, 12, 17104–17137. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Yang, P.; Yang, Z.; Zhang, X.; Ma, J. Double-network hydrogel adsorbents for environmental applications. Chem. Eng. J. 2021, 426, 131900. [Google Scholar] [CrossRef]
- Mondal, A.K.; Wu, S.; Xu, D.; Zou, Q.; Chen, L.; Huang, L.; Huang, F.; Ni, Y. Preparation of lignosulfonate ionic hydrogels for supercapacitors, sensors and dye adsorbent applications. Int. J. Biol. Macromol. 2021, 187, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Croitoriu, A.; Chiriac, A.P.; Rusu, A.G.; Ghilan, A.; Ciolacu, D.E.; Stoica, I.; Nita, L.E. Morphological Evaluation of Supramolecular Soft Materials Obtained through Co-Assembly Processes. Gels 2023, 9, 886. [Google Scholar] [CrossRef]
- Zhang, Y.-R.; Wang, S.-Q.; Shen, S.-L.; Zhao, B.-X. A novel water treatment magnetic nanomaterial for removal of anionic and cationic dyes under severe condition. Chem. Eng. J. 2013, 233, 258–264. [Google Scholar] [CrossRef]
- Zhang, Y.-R.; Shen, S.-L.; Wang, S.-Q.; Huang, J.; Su, P.; Wang, Q.-R.; Zhao, B.-X. A dual function magnetic nanomaterial modified with lysine for removal of organic dyes from water solution. Chem. Eng. J. 2014, 239, 250–256. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. 1963, 89, 31–59. [Google Scholar] [CrossRef]
- Ghilan, A.; Croitoriu, A.; Chiriac, A.P.; Nita, L.E.; Bercea, M.; Rusu, A.G. Injectable Networks Based on a Hybrid Synthetic/Natural Polymer Gel and Self-Assembling Peptides Functioning as Reinforcing Fillers. Polymers 2023, 15, 636. [Google Scholar] [CrossRef] [PubMed]
- Jian, H.; Wang, M.; Dong, Q.; Li, J.; Wang, A.; Li, X.; Ren, P.; Bai, S. Dipeptide Self-Assembled Hydrogels with Tunable Mechanical Properties and Degradability for 3D Bioprinting. ACS Appl. Mater. Interfaces 2019, 11, 46419–46426. [Google Scholar] [CrossRef]
- Abdellaoui-Arous, N.; Djadoun, S. Poly[2-(N,N-Dimethylamino) Ethyl Methacrylate]/Poly(Styrene-Co-Methacrylic Acid) Interpolymer Complexes. Macromol. Symp. 2011, 303, 123–133. [Google Scholar] [CrossRef]
- Stawski, D.; Nowak, A. Thermal properties of poly(N,N-dimethylaminoethyl methacrylate). PLoS ONE 2019, 14, e0217441. [Google Scholar] [CrossRef]
- De Ávila Gonçalves, S.; Da Fonsêca, J.H.L.; d’Ávila, M.A.; Vieira, R.P. Synthesis of thermally and pH-responsive poly(2-(dimethylamino)ethyl methacrylate)-based hydrogel reinforced with cellulose nanocrystals for sustained drug release. Int. J. Biol. Macromol. 2024, 277, 134168. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.G.; Bauri, K.; Pal, S.; Goswami, A.; Madras, G.; De, P. Synthesis, characterization and thermal degradation of dual temperature- and pH-sensitive RAFT-made copolymers of N, N-(dimethylamino)ethyl methacrylate and methyl methacrylate. Polym. Int. 2013, 62, 463–473. [Google Scholar] [CrossRef]
- Ehlers, G.F.L.; Fisch, K.R.; Powell, W.R. Thermal degradation of polymers with phenylene units in the chain. IV. Aromatic polyamides and polyimides. J. Polym. Sci. A-1 Polym. Chem. 1970, 8, 3511–3527. [Google Scholar] [CrossRef]
- Weiss, I.M.; Muth, C.; Drumm, R.; Kirchner, H.O.K. Thermal decomposition of the amino acids glycine, cysteine, aspartic acid, asparagine, glutamic acid, glutamine, arginine and histidine. BMC Biophys. 2018, 11, 2. [Google Scholar] [CrossRef] [PubMed]
- Croitoriu, A.; Nita, L.E.; Rusu, A.G.; Ghilan, A.; Bercea, M.; Chiriac, A.P. New Fmoc-Amino Acids/Peptides-Based Supramolecular Gels Obtained through Co-Assembly Process: Preparation and Characterization. Polymers 2022, 14, 3354. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Y.; Wang, F.; Xiao, S.; He, J.; Zhang, Z. One-Step Fabrication of Bioinspired Lubricant-Regenerable Icephobic Slippery Liquid-Infused Porous Surfaces. ACS Omega 2018, 3, 10139–10144. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Gubbins, K.E. Fast Method for Computing Pore Size Distributions of Model Materials. Langmuir 2006, 22, 7726–7731. [Google Scholar] [CrossRef] [PubMed]
- Van De Wetering, P.; Cherng, J.-Y.; Talsma, H.; Crommelin, D.J.A.; Hennink, W.E. 2-(dimethylamino)ethyl methacrylate based (co)polymers as gene transfer agents. J. Control. Release 1998, 53, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Samsonova, O.; Pfeiffer, C.; Hellmund, M.; Merkel, O.M.; Kissel, T. Low Molecular Weight pDMAEMA-block-pHEMA Block-Copolymers Synthesized via RAFT-Polymerization: Potential Non-Viral Gene Delivery Agents? Polymers 2011, 3, 693–718. [Google Scholar] [CrossRef]
- Zanata, D.D.M.; Felisberti, M.I. Thermo- and pH-responsive POEGMA-b-PDMAEMA-b-POEGMA triblock copolymers. Eur. Polym. J. 2022, 167, 111069. [Google Scholar] [CrossRef]
- Hu, X.; Wang, C.; Yu, H. Study on water-absorbing behaviors of superabsorbent polymer enhanced by 1,2,3,4-butane tetracarboxylic acid cross-linker. React. Funct. Polym. 2024, 194, 105776. [Google Scholar] [CrossRef]
- Wang, W.-R.; Chen, P.-Y.; Deng, J.; Chen, Y.; Liu, H.-J. Carbon-dot hydrogels as superior carbonaceous adsorbents for removing perfluorooctane sulfonate from water. Chem. Eng. J. 2022, 435, 135021. [Google Scholar] [CrossRef]
- Wang, F.; Yang, B.; Wang, H.; Song, Q.; Tan, F.; Cao, Y. Removal of ciprofloxacin from aqueous solution by a magnetic chitosan grafted graphene oxide composite. J. Mol. Liq. 2016, 222, 188–194. [Google Scholar] [CrossRef]
- Krishnappa, P.B.; Badalamoole, V. Karaya gum-graft-poly(2-(dimethylamino)ethyl methacrylate) gel: An efficient adsorbent for removal of ionic dyes from water. Int. J. Biol. Macromol. 2019, 122, 997–1007. [Google Scholar] [CrossRef]
- Li, C.; Zhu, H.; She, X.; Wang, T.; She, F.; Kong, L. Selective removal of anionic dyes using poly(N,N-dimethyl amino ethylmethacrylate) functionalized graphene oxide. RSC Adv. 2016, 6, 67242–67251. [Google Scholar] [CrossRef]
- Salama, A.; Shukry, N.; El-Sakhawy, M. Carboxymethyl cellulose-g-poly(2-(dimethylamino) ethyl methacrylate) hydrogel as adsorbent for dye removal. Int. J. Biol. Macromol. 2015, 73, 72–75. [Google Scholar] [CrossRef] [PubMed]
- Karthika, J.S.; Vishalakshi, B. Novel stimuli responsive gellan gum-graft-poly(DMAEMA) hydrogel as adsorbent for anionic dye. Int. J. Biol. Macromol. 2015, 81, 648–655. [Google Scholar] [CrossRef]
- Iftekhar, S.; Srivastava, V.; Sillanpää, M. Synthesis of hybrid bionanocomposites and their application for the removal of rare-earth elements from synthetic wastewater. In Advanced Water Treatment; Elsevier: Amsterdam, The Netherlands, 2020; pp. 505–564. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Q.; Liu, X.; Liu, R. Adsorption characteristics of methyl blue onto magnetic Mn0.5Co0.5Fe2O4 nanoparticles prepared via a rapid combustion process. Environ. Prog. Sustain. Energy 2019, 38 (Suppl. 1), S277–S287. [Google Scholar] [CrossRef]
- Ojedokun, A.T.; Bello, O.S. Kinetic modeling of liquid-phase adsorption of Congo red dye using guava leaf-based activated carbon. Appl. Water Sci. 2017, 7, 1965–1977. [Google Scholar] [CrossRef]
Sample Appearance | ||||||
---|---|---|---|---|---|---|
Control | DN gels | |||||
PDMAEMA | PDMAEMA_(S1 1:1) | PDMAEMA_(S1 1:3) | ||||
Composition of 7 mL of gel | ||||||
Sample | DMAEMA Mmol | MBAAm mmol | APS mmol | TEMED mmol | M1 mmol | M2 mmol |
PDMAEMA | 2.9 | 0.32 | 0.021 | 0.066 | - | - |
PDMAEMA_(S1 1:1) | 2.9 | 0.32 | 0.021 | 0.066 | 0.033 | 0.048 |
PDMAEMA_(S1 1:3) | 2.9 | 0.32 | 0.021 | 0.066 | 0.016 | 0.072 |
Condition | |||
---|---|---|---|
Adsorbent Dose mg | pH * | Time Minutes | Dye Concentration mg L−1 |
5 | 3 | 0–1440 | 1–500 |
10 | 4 | ||
20 | 5 |
Control | Stage | Tonset (°C) | Tpeak (°C) | T20 (°C) | T50 (°C) | W (%) | Residual Mass (%) |
---|---|---|---|---|---|---|---|
PDMAEMA | I | 275 | 298 | 257 | 312 | 55.04 | 3.37 |
II | 387 | 425 | 41.59 | ||||
DN system | Stage | Tonset (°C) | Tpeak (°C) | T20 (°C) | T50 (°C) | W (%) | Residual mass (%) |
PDMAEMA_(S1 1:3) | I | 36.5 | 156 | 166 | 294 | 32.75 | 7.07 |
II | 268 | 294 | 33.69 | ||||
III | 366 | 418 | 26.49 |
Calculated Values of Different Adsorption Kinetic Models | ||||
---|---|---|---|---|
Adsorption Kinetics Model | Linear Form | Constant | Calculated Value | |
PDMAEMA | PDMAEMA_(S1 1:3) | |||
Pseudo-first order | qe | 395.18 | 607.85 | |
K1 | −1.35 × 10−9 | −6.52 × 10−10 | ||
R2 | 0.981 | 0.986 | ||
SD | 0.000387 | 0.000303 | ||
Pseudo-second order | qe | 625 | 632.91 | |
K2 | 0.000402 | 0.000241 | ||
R2 | 0.996 | 0.994 | ||
SD | 1.515504 | 1.508638 | ||
Intraparticle diffusivity | C | 163.44 | 120.72 | |
Kdiff | 16.237 | 13.41 | ||
R2 | 0.996 | 0.994 |
PDMAEMA-Based Material | Dye Molecule | Qm (mg g−1) | Reference |
---|---|---|---|
Karaya gum-graft-poly(2-(dimethylamino)ethyl methacrylate) gel | methylene blue | 89.28 | [50] |
indigo carmine | 101.42 | ||
GO-PDMAEMA nanocomposite | orange G | 609.8 | [51] |
PEI/PDMAEMA gel | amaranth | 757 | [20] |
sunset yellow | 744 | ||
Carboxymethyl cellulose-g-poly(2-(dimethylamino) ethyl methacrylate) hydrogel | methyl orange | 1825 | [52] |
Gellan gum-graft-poly(DMAEMA) hydrogel | methyl orange | 25.8 | [53] |
Calculated Values of Different Adsorption Isotherm Models | ||||
---|---|---|---|---|
Adsorption Isotherm Model | Linear Form | Constant | Calculated Value | |
PDMAEMA | PDMAEMA_(S1 1:3) | |||
Langmuir | qmax | −158.73 | −119.18 | |
KL | −0.012 | −0.085 | ||
RL | 2.67 | −0.303 | ||
R2 | 0.8942 | 0.8702 | ||
Freundlich | n | 1.048 | 2.401 | |
1/n | 0.953 | 0.416 | ||
KF | 2.594 | 3.73 | ||
R2 | 0.9434 | 0.9015 | ||
Temkin | BT | 166.81 | 243.70 | |
KT | 14.71 | 10.06 | ||
R2 | 0.8522 | 0.9820 | ||
Dubinin–Radushkevich | qm | 403.42 | 148.41 | |
β | 136.45 | 688.87 | ||
E | 0.0605 | 0.0269 | ||
R2 | 0.3161 | 0.4072 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vieru, A.; Yilmaz, O.; Rusu, A.G.; Yilmaz, C.N.; Ghilan, A.; Nita, L.E. Synthesis and Characterization of Innovative Double-Network Hydrogels with Potential as Adsorbent Materials for Wastewater Treatment. Polymers 2025, 17, 463. https://doi.org/10.3390/polym17040463
Vieru A, Yilmaz O, Rusu AG, Yilmaz CN, Ghilan A, Nita LE. Synthesis and Characterization of Innovative Double-Network Hydrogels with Potential as Adsorbent Materials for Wastewater Treatment. Polymers. 2025; 17(4):463. https://doi.org/10.3390/polym17040463
Chicago/Turabian StyleVieru, Alexandra, Onur Yilmaz, Alina Gabriela Rusu, Cătălina Natalia Yilmaz, Alina Ghilan, and Loredana Elena Nita. 2025. "Synthesis and Characterization of Innovative Double-Network Hydrogels with Potential as Adsorbent Materials for Wastewater Treatment" Polymers 17, no. 4: 463. https://doi.org/10.3390/polym17040463
APA StyleVieru, A., Yilmaz, O., Rusu, A. G., Yilmaz, C. N., Ghilan, A., & Nita, L. E. (2025). Synthesis and Characterization of Innovative Double-Network Hydrogels with Potential as Adsorbent Materials for Wastewater Treatment. Polymers, 17(4), 463. https://doi.org/10.3390/polym17040463