Numerical Modeling and Optimization Design of Embedded Rubber Waterstops in Tunnel Lining
Abstract
:1. Introduction
2. The Establishment of the Rubber Waterstop–Concrete Numerical Model
2.1. Constitutive Model of the Rubber Waterstop
2.2. Contact Model
2.3. Failure Criteria for the Rubber Waterstop
2.4. Element Types and Boundary Conditions
2.5. Numerical Model and Simulation Conditions
2.6. Tensile Test of the Watersop and Verification of the Numerical Model
2.6.1. Tensile Test of the Waterstop
2.6.2. Verification of the Numerical Model
3. Numerical Analysis of Structural Parameters
3.1. Parameters of the Central Hole
3.1.1. Fixed Inner Diameter of the Central Hole
3.1.2. Fixed Outer Diameter of the Central Hole
3.1.3. Fixed Thickness of the Central Hole
3.2. Parameters of the Rib
3.2.1. The Number and Placement of the Ribs
3.2.2. The Dimensions of the Ribs
3.2.3. The Distance Between the Ribs and the Center Hole
3.3. Parameters of the Flange
3.3.1. The Thickness of the Flange
3.3.2. The Length of the Flange
3.3.3. The Shape of the Flange End
4. Parametric Analysis
4.1. Deformation Stress Influence Rate
4.2. Influence of Central Hole Parameters on Deformation
4.3. Optimization of the Central Hole Cross-Section
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gong, C.; Cheng, M.; Ge, Y.; Song, J.; Zhou, Z. Leakage mechanisms of an operational underwater shield tunnel and countermeasures: A case study. Tunn. Undergr. Space Technol. 2024, 152, 105892. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, J.; Lu, Z.; Yao, H. Study on waterproof and drainage technology of mountain tunnel in high-pressure and water-rich region. Eur. J. Environ. Civ. Eng. 2023, 28, 2200–2216. [Google Scholar] [CrossRef]
- Guo, J.-Y.; Fang, J.-H.; Shi, B.; Zhang, C.-C.; Liu, L. High-sensitivity water leakage detection and localization in tunnels using novel ultra-weak fiber Bragg grating sensing technology. Tunn. Undergr. Space Technol. 2024, 144, 105574. [Google Scholar] [CrossRef]
- Zhao, J.; Tan, Z.; Zhou, Z. Discussion on the Waterproof and Drainage System of the Coastal Tunnel and Analysis of Water Pressure Law Outside Lining: A Case Study of the Gongbei Tunnel. Adv. Civ. Eng. 2021, 2021, 610601. [Google Scholar] [CrossRef]
- Yang, W.; Tang, Z.; Wu, W.; Zhang, K.; Yuan, J.; Li, H.; Feng, Z. Effect of different fibers on impermeability of steam cured recycled concrete. Constr. Build. Mater. 2022, 328, 12706. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Z.; Wang, B.; Huang, W. Study on impermeability of reinforced concrete wall with horizontal construction joints. Constr. Build. Mater. 2024, 438, 137220. [Google Scholar] [CrossRef]
- Dvorkin, L.; Bordiuzhenko, O.; Mierzwiński, D.; Tracz, T.; Sitarz, M. Water Impermeability of Self-Compacting Fly-Ash-Containing Concrete. Appl. Sci. 2024, 14, 5373. [Google Scholar] [CrossRef]
- Tan, B.; Qu, L.; Xia, Y.; Yang, X.; Su, B.; Wu, J.; Xiao, M. Experimental Study on Improving the Impermeability of Concrete under High-Pressure Water Environments Using a Polymer Coating. Appl. Sci. 2024, 14, 8507. [Google Scholar] [CrossRef]
- Liu, X.; Chen, H.; Zhou, X.; Zhuang, Y.; Deng, J.; Xu, Q. Influence of Waterproof and Drainage Layer Design Patterns on the Lining Water Pressure and Drainage Volume in Mountain Tunnels. Int. J. Civ. Eng. 2024, 18. [Google Scholar] [CrossRef]
- Luciani, A.; Todaro, C.; Martinelli, D.; Peila, D. Long-term durability assessment of PVC-P waterproofing geomembranes through laboratory tests. Tunn. Undergr. Space Technol. 2020, 103, 103499. [Google Scholar] [CrossRef]
- Qin, Y.; Lai, J.; Li, C.; Fan, F.; Liu, T. Negative pressure testing standard for welded scar airtightness of waterproofing sheet for tunnels: Experimental and numerical investigation. Tunn. Undergr. Space Technol. 2023, 133, 104930. [Google Scholar] [CrossRef]
- Jivan-Coteti, A.; Sakowski, A. Optimization of the selection of research methods for the performances of plasticized polyvinyl chloride waterstops in the context of use in bridge constructions. Ochr. Przed Koroz. 2021, 64, 177–185. [Google Scholar]
- Gong, C.; Xie, C.; Zhu, H.; Ding, W.; Song, J.; Ge, Y. Prediction on the time-varying behavior of tunnel segment gaskets under compression. Constr. Build. Mater. 2024, 441, 16. [Google Scholar] [CrossRef]
- Huang, M.; Huang, M.; Yang, Z.; Song, Y.; Zhang, Z. Large-scale model test study on the water pressure resistance of construction joints of karst tunnel linings. Front. Struct. Civ. Eng. 2023, 17, 1249–1263. [Google Scholar] [CrossRef]
- Cho, B.H.; Nam, B.H.; Seo, S.; Kim, J.; An, J.; Youn, H. Waterproofing performance of waterstop with adhesive bonding used at joints of underground concrete structures. Constr. Build. Mater. 2019, 221, 491–500. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, H.; Chu, D.; Feng, S.; Zhang, J.; Wu, H. Failure Mechanism Analysis and Optimization Analysis of Tunnel Joint Waterstop Considering Bonding and Extrusion. Appl. Sci. 2022, 12, 5737. [Google Scholar] [CrossRef]
- Wang, L.; Guan, C.; Wu, Y. Impact Analysis and Optimization of Key Material Parameters of Embedded Water-Stop in Tunnels. Appl. Sci. 2023, 13, 8468. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, H.; Gong, C.; Huang, L. Numerical Investigation of Key Structural Parameters for Middle-Buried Rubber Waterstops. Mathematics 2023, 11, 3546. [Google Scholar] [CrossRef]
- Zhai, C.; Shi, R.; Xi, P.; Cai, G. Study of the Leakage Mechanism of a Utility Tunnel Waterstop Based on a Fluid–Solid Coupled Method. J. Pipeline Syst. Eng. Pract. 2024, 15, 05023005. [Google Scholar] [CrossRef]
- GB50010-2010; Code for Design of Concrete Structures. China Building Industry Press: Beijing, China, 2015.
- Gong, C.; Xie, C.; Zhu, H.; Ding, W.; Song, J.; Ge, Y. Time-varying compressive properties and constitutive model of EPDM rubber materials for tunnel gasketed joint. Constr. Build. Mater. 2024, 433, 136734. [Google Scholar] [CrossRef]
- Hu, X.; Yang, X.; Jiang, X.; Song, K. Constitutive Model for Thermal-Oxygen-Aged EPDM Rubber Based on the Arrhenius Law. Polymers 2024, 16, 2608. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Xie, Z. A Modified Constitutive Model for Isotropic Hyperelastic Polymeric Materials and Its Parameter Identification. Polymers 2023, 15, 3172. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Wang, Z.; Ma, L. Ability of Constitutive Models to Characterize the Temperature Dependence of Rubber Hyperelasticity and to Predict the Stress-Strain Behavior of Filled Rubber under Different Deformation States. Polymers 2021, 13, 369. [Google Scholar] [CrossRef]
- Rivlin, R.S. Large Elastic Deformations of Isotropic Materials, Large Elastic Deformations of Isotropic Materials; The Royal Society: London, UK, 1948. [Google Scholar]
- Yeoh, O.H. Some forms of the strain energy function for rubber. Rubber Chem. Technol. 1993, 65, 754–771. [Google Scholar] [CrossRef]
- Ogden, R.W. Large deformation isotropic elasticity—On the correlation of theory and experiment for incompressible rubberlike solids. Proc. R. Soc. Lond. 1972, A326, 565–584. [Google Scholar] [CrossRef]
- Arruda, E.M.; Boyce, M.C. A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J. Mech. Phys. Solids 1993, 41, 389–412. [Google Scholar] [CrossRef]
- Gent, A.N. (Ed.) Engineering with Rubber: How to Design Rubber Components, 3rd ed.; Hanser Publishers: Munich, Germany; Cincinnati, OH, USA, 2012; ISBN 978-3-446-42764-8. [Google Scholar]
- Hoss, L.; Rogerio, J.M. A new constitutive model for rubber-like materials. In Proceedings of the 20th International Congress of Mechanical Engineering, Gramado, Brazil, 15–20 November 2009; Volume 29, pp. 2759–2773. [Google Scholar]
- ASTM D412; Standard Test Methods for Vulcanized Rubber and Thermoplastic Elastomers-Tension. ASTM International: West Conshohocken, PA, USA, 2006.
- Gong, C.; Cheng, M.; Peng, Y.; Ding, W. Seepage propagation simulation of a tunnel gasketed joint using the cohesive zone model. Tunn. Undergr. Space Technol. 2024, 147, 105726. [Google Scholar] [CrossRef]
- Moës, N.; Belytschko, T. Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 2002, 69, 813–833. [Google Scholar] [CrossRef]
- Park, K.; Paulino, G.H. Cohesive Zone Models: A Critical Review of Traction-Separation Relationships Across Fracture Surfaces. Appl. Mech. Rev. 2011, 64, 20. [Google Scholar] [CrossRef]
- Gu, G. Mechanical Analysis of Rubber Waterstop and Plastic Waterstop; Chinese Society of Hydroelectric Engineering: Beijing, China, 2004; pp. 399–406. [Google Scholar]
- Schneider, H. Durability test and prediction of Geotextiles and related products. In Proceedings of the 4th International Conference on Geotextiles, Geomembranes and Related Products, Hague, The Netherlands, 28 May–1 June 1990; A.A. Balkema: Rotterdam, The Netherlands, 1990. [Google Scholar]
Waterstop Structure | Structural Parameters | Simulated Working Condition | Deformation |
---|---|---|---|
Central hole | Fixed inner diameter ( = 7 mm) | Outer diameter (mm): 12, 14, 16, 18, 20, 22 | Tensile deformation, compression deformation, settlement deformation |
Fixed outer diameter ( = 12 mm) | Inner diameter (mm): 0, 1, 3, 5, 7, 9 | ||
Fixed thickness ( = 5 mm) | Inner diameter (mm): 1, 3, 5, 7, 9, 11 | ||
Rib | Number and position | 1 or 2 or 3 ribs, with different positions | |
Dimensions (a, b) | = 0, 5, 10, 15, = 1, 3, 5, 7 | ||
Distance to the central hole (S/mm) | 20, 25, 30, 35, 40, 45, 50 mm | ||
Flange | Thickness (t/mm) | 3, 6, 9, 12, 15 |
Number of the Sample | 1 | 2 | 3 |
---|---|---|---|
Force when stretching 20 mm (kN) | 0.252 | 0.250 | 0.244 |
Overall tensile deformation (mm) | 38.63 | 41.60 | 40.26 |
Number | Outer Diameter | Hole Opening Ratio | Cross-Sectional Area (mm2) | |
---|---|---|---|---|
Fixed inner diameter (r = 7 mm) | 1 | 12 | 0.34 | 3229.3 |
2 | 14 | 0.25 | 3368.58 | |
3 | 16 | 0.191 | 3532.98 | |
4 | 18 | 0.151 | 3722.5 | |
5 | 20 | 0.122 | 3937.14 | |
6 | 22 | 0.101 | 4176.9 | |
Number | Inner diameter | Hole opening ratio | Cross-sectional area (mm2) | |
Fixed outer diameter ( = 12 mm) | 7 | 0 | 0 | 3383.16 |
8 | 1 | 0.007 | 3380.02 | |
9 | 3 | 0.063 | 3354.9 | |
10 | 5 | 0.174 | 3304.66 | |
1 | 7 | 0.34 | 3229.3 | |
11 | 9 | 0.563 | 3128.82 | |
Number | Inner diameter | Hole opening ratio | Cross-sectional area (mm2) | |
Fixed thickness of central hole ( mm) | 12 | 1 | 0.028 | 3112.9 |
13 | 3 | 0.141 | 3151.7 | |
14 | 5 | 0.25 | 3190.5 | |
1 | 7 | 0.34 | 3229.3 | |
15 | 9 | 0.413 | 3268.1 | |
16 | 11 | 0.473 | 3306.9 |
Tensile Deformation | Compression Deformation | Settlement Deformation | |
---|---|---|---|
Fixed inner diameter of the central hole | 37.62% | 4.25% | 51.40% |
Fixed outer diameter of the central hole | 45.70% | 81.78% | 23.78% |
Fixed thickness of the central hole | 39.10% | 76.45% | 45.94% |
The number and placement of ribs | 46.93% | 19.92% | 35.23% |
The dimension of the rib | 57.03% | 31.58% | 39.42% |
The distance from the central hole to the rib | 32.99% | 1.63% | 32.83% |
The thickness of the flange | 31.06% | 30.33% | 39.51% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, X.; Wang, H.; Xie, C.; Lei, M.; Gong, C. Numerical Modeling and Optimization Design of Embedded Rubber Waterstops in Tunnel Lining. Polymers 2025, 17, 421. https://doi.org/10.3390/polym17030421
Fan X, Wang H, Xie C, Lei M, Gong C. Numerical Modeling and Optimization Design of Embedded Rubber Waterstops in Tunnel Lining. Polymers. 2025; 17(3):421. https://doi.org/10.3390/polym17030421
Chicago/Turabian StyleFan, Xuan, Hailin Wang, Chaoran Xie, Mingfeng Lei, and Chenjie Gong. 2025. "Numerical Modeling and Optimization Design of Embedded Rubber Waterstops in Tunnel Lining" Polymers 17, no. 3: 421. https://doi.org/10.3390/polym17030421
APA StyleFan, X., Wang, H., Xie, C., Lei, M., & Gong, C. (2025). Numerical Modeling and Optimization Design of Embedded Rubber Waterstops in Tunnel Lining. Polymers, 17(3), 421. https://doi.org/10.3390/polym17030421