Synthesis of Acrylic–Urethane Hybrid Polymer Dispersions and Investigations on Their Properties as Binders in Leather Finishing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Polymerization Procedures
2.2.1. Preparation of PU Prepolymer and Aqueous PU Dispersion
2.2.2. Preparation of Acrylic Emulsion
2.2.3. Preparation of PU–AC Hybrids via Seeded Emulsion Polymerization
2.2.4. Preparation of PU–AC Hybrids via Miniemulsion Polymerization
2.3. Leather-Finishing Application
2.4. Characterization Methods
3. Results and Discussions
3.1. Particle Size of the Latexes
3.2. FTIR Analysis
3.3. DSC Analysis
3.4. Leather-Finishing Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheaburu-Yilmaz, C.N.; Yilmaz, O.; Darie-Nita, R.N. The Effect of Different Soft Core/Hard Shell Ratios on the Coating Performance of Acrylic Copolymer Latexes. Polymers 2021, 13, 3521. [Google Scholar] [CrossRef] [PubMed]
- Rajeckas, V. Leather Coatings. In Coating Technology Handbook, 3rd ed.; Tracton, A.A., Ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 100–107. [Google Scholar]
- Schindler, F. Properties Distinguishing Acrylic Polymers as Binders for Basecoats on Leather. J. Am. Leather Chem. Assoc. 2003, 98, 97–100. [Google Scholar]
- Ryu, Y.-S.; Lee, Y.-H.; Kim, J.-S.; Park, C.-C.; Kim, H.-D. Preparation and Properties of Emulsifier-/Solvent-Free Polyurethane-Acrylic Hybrid Emulsions for Binder Materials: Effect of the Glycidyl Methacrylate/Acrylonitrile Content. J. Appl. Polym. Sci. 2016, 134, 44497. [Google Scholar] [CrossRef]
- Liu, C.; Yin, Q.; Li, X.; Hao, L.; Zhang, W.; Bao, Y.; Ma, J. A Waterborne Polyurethane–Based Leather Finishing Agent with Excellent Room Temperature Self-Healing Properties and Wear-Resistance. Adv. Compos. Hybrid Mater. 2021, 4, 138–149. [Google Scholar] [CrossRef]
- Han, Y.; Hu, J.; Xin, Z. Facile Preparation of High Solid Content Waterborne Polyurethane and Its Application in Leather Surface Finishing. Prog. Org. Coat. 2019, 130, 8–16. [Google Scholar] [CrossRef]
- Krings, L.; Jimenez, M.; Oliveras, M.; Pont Pi, J.M. Acrylic-Urethane Hybrid Polymers: Materials with High Potential in Leather Finishing. J. Am. Leather Chem. Assoc. 2010, 105, 388–394. [Google Scholar]
- Wang, C.; Chu, F.; Graillat, C.; Guyot, A.; Gauthier, C.; Chapel, J.P. Hybrid Polymer Latexes: Acrylics–Polyurethane from Miniemulsion Polymerization: Properties of Hybrid Latexes Versus Blends. Polymer 2005, 46, 1113–1124. [Google Scholar] [CrossRef]
- Peruzzo, P.J.; Anbinder, P.S.; Pardini, O.R.; Vega, J.; Costa, C.A.; Galembeck, F.; Amalvy, J.I. Waterborne Polyurethane/Acrylate: Comparison of Hybrid and Blend Systems. Prog. Org. Coat. 2011, 72, 429–437. [Google Scholar] [CrossRef]
- Oprea, S.; Vlad, S.; Stanciu, A. Poly(Urethane-Methacrylate)s: Synthesis and Characterization. Polymer 2001, 42, 7257–7266. [Google Scholar] [CrossRef]
- Mehravar, S.; Ballard, N.; Tomovska, R.; Asua, J.M. Polyurethane/Acrylic Hybrid Waterborne Dispersions: Synthesis, Properties, and Applications. Ind. Eng. Chem. Res. 2019, 58, 20902–20922. [Google Scholar] [CrossRef]
- Udagama, R.; Degrandi-Contraires, E.; Creton, C.; Graillat, C.; McKenna, T.F.L.; Bourgeat-Lami, E. Synthesis of Acrylic–Polyurethane Hybrid Latexes by Miniemulsion Polymerization and Their Pressure-Sensitive Adhesive Applications. Macromolecules 2011, 44, 2632–2642. [Google Scholar] [CrossRef]
- Bizet, B.; Grau, E.; Cramail, H.; Asua, J.M. Volatile Organic Compound-Free Synthesis of Waterborne Poly(Hydroxy Urethane)-(Meth)Acrylic Hybrids by Miniemulsion Polymerization. ACS Appl. Polym. Mater. 2020, 2, 4016–4025. [Google Scholar] [CrossRef]
- Lopez, A.; Degrandi-Contraires, E.; Canetta, E.; Creton, C.; Keddie, J.L.; Asua, J.M. Waterborne Polyurethane-Acrylic Hybrid Nanoparticles by Miniemulsion Polymerization: Applications in Pressure-Sensitive Adhesives. Langmuir 2011, 27, 3878–3888. [Google Scholar] [CrossRef]
- Athawale, V.D.; Kulkarni, M.A. Preparation and Properties of Urethane/Acrylate Composite by Emulsion Polymerization Technique. Prog. Org. Coat. 2009, 65, 392–400. [Google Scholar] [CrossRef]
- Puyadena, M.; Etxeberria, I.; Martin, L.; Mugica, A.; Agirre, A.; Cobos, M.; Gonzalez, A.; Barrio, A.; Irusta, L. Polyurethane/Acrylic Hybrid Dispersions Containing Phosphorus Reactive Flame Retardants as Transparent Coatings for Wood. Prog. Org. Coat. 2022, 170, 107005. [Google Scholar] [CrossRef]
- Chai, S.L.; Zhang, Z.Y. Comparison of Finishing Applications for Aliphatic Polyurethane Dispersions and Polyurethane/Polyacrylate Composite Emulsions. J. Am. Leather Chem. Assoc. 2010, 105, 41–50. [Google Scholar]
- Liu, J.; Recupido, F.; Lama, G.C.; Oliviero, M.; Verdolotti, L.; Lavorgna, M. Recent Advances Concerning Polyurethane in Leather Applications: An Overview of Conventional and Greener Solutions. Collagen Leather 2023, 5, 8. [Google Scholar] [CrossRef]
- Landfester, K.; Schork, F.J.; Kusuma, V.A. Particle Size Distribution in Mini-Emulsion Polymerization. Comptes Rendus Chim. 2003, 6, 1337–1342. [Google Scholar] [CrossRef]
- Hartig, J.; Dargatz, M.; Fonseca, M.T.H.; Lohmeijer, B. Process for Preparing Polyurethane-Polyacrylate Hybrid Dispersions. US9127125B2, 8 September 2015. [Google Scholar]
- Tonhauser, C.; Roschmann, K.; Wulff, D.; Sanders, G.; Simancas, K.; Georgieva, K.; Licht, U.; Harrer, H. Aqueous Polymer Dispersion for Adhesive Compounds. WO2017102777A1, 22 June 2017. [Google Scholar]
- Zhao, L.; Sauca, S.N.; Berges, C. Aqueous Polyurethane Acrylate Hybrid Dispersions. EP3067399A1, 14 September 2016. [Google Scholar]
- ISO 5402-1:2022 | IULTCS/IUP 20; Leather—Determination of Flex Resistance Part 1: Flexometer Method, Edition 3, 2022. International Organization for Standardization: Geneva, Switzerland, 2022. Available online: https://www.iso.org/standard/75893.html (accessed on 25 November 2024).
- ISO 11640:2018 | IULTCS/IUF 450; Leather—Tests for Colour Fastness—Colour Fastness to Cycles of to-and-Fro Rubbing, Edition 3, 2018. International Organization for Standardization: Geneva, Switzerland, 2018. Available online: https://www.iso.org/standard/73372.html (accessed on 25 November 2024).
- ISO 15700:1998 | IULTCS/IUF 420; Leather—Tests for Colour Fastness—Colour Fastness to Water Spotting, Edition 1, 1998 Reviewed and Confirmed in 2022. International Organization for Standardization: Geneva, Switzerland, 1998. Available online: https://www.iso.org/standard/28704.html (accessed on 25 November 2024).
- ISO 3379:2024 | IULTCS/IUP 9; Leather—Determination of Distension and Strength of Surface (Ball Burst Method), Edition 3, 2024. International Organization for Standardization: Geneva, Switzerland, 2024. Available online: https://www.iso.org/standard/8670.html (accessed on 25 November 2024).
- ISO 105-A02:1993; Textiles—Tests for Colour Fastness. Part A02: Grey Scale for Assessing Change in Colour, Edition 4, 1993, Reviewed and Confirmed in 2020. International Organization for Standardization: Geneva, Switzerland, 1993. Available online: https://www.iso.org/standard/3785.html (accessed on 25 November 2024).
- ISO 105-A03:2019; Textiles—Tests for Colour Fastness. Part A03: Grey Scale for Assessing Staining, Edition 5, 2019. International Organization for Standardization: Geneva, Switzerland, 2019. Available online: https://www.iso.org/standard/75985.html (accessed on 25 November 2024).
- ISO 11644:2022 | IULTCS/IUF 470; Leather—Test for Adhesion of Finish, Edition 3, 2022. International Organization for Standardization: Geneva, Switzerland, 2022. Available online: https://www.iso.org/standard/81924.html (accessed on 25 November 2024).
- Alves, J.B.; Mangia, L.H.R.; Sousa-Batista, A.J.; Ferraz, H.C.; Pinto, J.C. Effects of Different Stabilizers on Miniemulsion Methyl Methacrylate Polymerizations. Macromol. Symp. 2020, 394, 2000143. [Google Scholar] [CrossRef]
- Asua, J.M. Miniemulsion polymerization. Prog. Polym. Sci. 2002, 27, 1283–1346. [Google Scholar] [CrossRef]
- Chern, S.C.; Liou, Y.C. Styrene Miniemulsion Polymerization Initiated by 2,2′-Azobis Isobutyronitrile. J. Polym. Sci. Part A Polym. Chem. 1999, 37, 2537–2547. [Google Scholar] [CrossRef]
- Chern, C.S.; Sheu, J.C. Effects of 2-Hydroxyalkyl Methacrylates on the Styrene Miniemulsion Polymerizations Stabilized by SDS and Alkyl Methacrylates. J. Polym. Sci. Part A Polym. Chem. 2000, 38, 3188–3199. [Google Scholar] [CrossRef]
- Chern, C.S.; Sheu, J.C. Effects of Carboxylic Monomers on the Styrene Miniemulsion Polymerizations Stabilized by SDS/Alkyl Methacrylates. Polymer 2001, 42, 2349–2357. [Google Scholar] [CrossRef]
- Shrivastava, S.; Sood, A. Secondary Nucleation in Emulsion Polymerization: A Review. Int. J. Res. Appl. Sci. Eng. Technol. 2020, 8, 1481–1487. [Google Scholar] [CrossRef]
- Peixoto, A.C.B.; Campos, I.M.F.; Ferraz, H.C.; Pinto, J.C. Use of Hydrophilic Monomers to Avoid Secondary Particle Nucleation in Miniemulsion Polymerizations of Methyl Meth-acrylate. J. Res. Updates Polym. Sci. 2016, 5, 60–71. [Google Scholar] [CrossRef]
- ASTM D Standard 4187-82; Zeta Potential of Colloids in Water and Waste Water. American Society for Testing and Materials: West Conshohocken, PA, USA, 1985.
- Kan, C.S. Role of Particle Size on Latex Deformation During Film Formation. J. Coat. Technol. 1999, 71, 89–97. [Google Scholar] [CrossRef]
Components | Amount (g) |
---|---|
PPGs | 12.74 |
H12MDI | 9.80 |
DMPA | 0.98 |
Catalyst | 0.01 |
DME | 6.72 |
Hydrazine | 0.84 |
Water | 68.90 |
Total | 100.00 |
Components | Amount (g) |
---|---|
PU dispersion (seed) | 31.31 |
BA | 9.57 |
MMA | 5.22 |
MAA | 0.87 |
Emulsogen EPN 287 | 1.30 |
Sulfopon® 101 UP | 1.63 |
NaHCO3 | 0.02 |
APS | 0.09 |
Water | 50.00 |
Total | 100.00 |
Components | Amount (g) |
---|---|
PU prepolymer | 6.02 |
BA | 7.36 |
MMA | 4.01 |
MAA | 0.67 |
HD | 0.94 |
Hydrazine | 0.15 |
Emulsogen EPN 287 | 1.00 |
Sulfopon® 101 UP | 1.25 |
NaHCO3 | 0.01 |
APS | 0.07 |
Water | 78.52 |
Total | 100.00 |
Sample | Technique | AC Content (Parts by Weight) | PU Content (Parts by Weight) | Total Solid Content (wt.%) | Final pH | Conversion (%) |
---|---|---|---|---|---|---|
PU | Urethane reaction + chain extension in water | - | 1 | 25 ± 1 | 8.0 ± 0.5 | >99.0 |
AC | Seeded emulsion polymerization | 1 | - | 25 ± 1 | 7.0 ± 0.5 | >99.0 |
S1 | Seeded emulsion polymerization | 4 | 1 | 25 ± 1 | 7.0 ± 0.5 | >98.5 |
S2 | Seeded emulsion polymerization | 3 | 1 | 25 ± 1 | 7.0 ± 0.5 | >98.0 |
S3 | Seeded emulsion polymerization | 2 | 1 | 25 ± 1 | 7.0 ± 0.5 | >98.0 |
M1 | Miniemulsion polymerization | 3 | 1 | 20 ± 1 | 7.0 ± 0.5 | >97.0 |
M2 | Miniemulsion polymerization | 2 | 1 | 20 ± 1 | 7.0 ± 0.5 | >97.5 |
Components | Application Steps | Descriptions | |
---|---|---|---|
Basecoat (I) (Parts) | Topcoat (II) (Parts) | ||
Water | 55 | 35 | Spray I × 3 times |
Pigment | 10 | - | Hot plate 90 °C/100 bar |
Wax | 5 | - | |
Polymer emulsion | 30 | - | Spray I × 2 times |
Isopropyl alcohol | 0.5 | - | Hot plate 90 °C/70 bar |
Aqueous NC lacquer | - | 15 | Spray II × 1 time |
Polymer Sample | Average Particle Diameter (nm) | Polydispersity Index (PDI) | Zeta Potential Values (mV) |
---|---|---|---|
PU | 66.11 ± 5.59 | 0.275 ± 0.070 | −53.70 ± 5.43 |
AC | 29.77 ± 6.06 | 0.075 ± 0.014 | −51.20 ± 9.73 |
S1 | 82.77 ± 6.22 | 0.134 ± 0.013 | −69.80 ± 5.49 |
S2 | 89.32 ± 5.77 | 0.068 ± 0.019 | −68.10 ± 7.79 |
S3 | 86.63 ± 1.58 | 0.118 ± 0.014 | −79.30 ± 6.16 |
M1 | 215.00 ± 1.19 | 0.133 ± 0.006 | −53.50 ± 9.14 |
M2 | 178.13 ± 2.12 | 0.125 ± 0.007 | −46.50 ± 13.70 |
Samples | Evaluated Parts | Gray Scale Values | |||
---|---|---|---|---|---|
Dry | Wet | ||||
100 Cycles | 500 Cycles | 25 Cycles | 50 Cycles | ||
AC | Leather | 3/4 | 3 | 3 | 1 |
Felt | 4/5 | 4 | 1 | 1 | |
PU | Leather | 4 | 3/4 | 4 | 1/2 |
Felt | 5 | 4 | 3 | 2 | |
S1 | Leather | 4/5 | 4 | 3/4 | 3/4 |
Felt | 5 | 5 | 4/5 | 4 | |
S2 | Leather | 4/5 | 4 | 4 | 3/4 |
Felt | 5 | 5 | 4/5 | 4/5 | |
S3 | Leather | 4/5 | 4 | 4 | 4 |
Felt | 5 | 5 | 5 | 4/5 | |
M1 | Leather | 2/3 | 1/2 | 3 | 1 |
Felt | 3/4 | 2 | 1/2 | 1 | |
M2 | Leather | 3/4 | 3 | 3 | 1/2 |
Felt | 4/5 | 4 | 2 | 1/2 |
Samples | Flexometer | |
---|---|---|
X 20.000 | X 50.000 | |
AC | Very light wrinkles | Light wrinkles |
PU | Light wrinkles | Deep wrinkles |
S1 | Light wrinkles | Deep wrinkles |
S2 | Light wrinkles | Deep wrinkles |
S3 | Light wrinkles | Deep wrinkles |
M1 | Light wrinkles | Deep wrinkles |
M2 | Light wrinkles | Deep wrinkles |
30 min | 16 h | |||
---|---|---|---|---|
Leathers | Observation | Gray Scale Value | Observation | Gray Scale Value |
AC | The water drop was partially absorbed; no spot after drying. | 5 | No spot | 5 |
PU | The water drop was partially absorbed; very light spot. | 4/5 | Very light spot | 4/5 |
S1 | Completely absorbed by leather; no spot. | 5 | No spot | 4/5 |
S2 | Completely absorbed by leather; no spot. | 5 | No spot | 5 |
S3 | Completely absorbed by leather; no spot. | 5 | No spot | 5 |
M1 | The water drop was partially absorbed; no spot. | 5 | No spot | 5 |
M2 | The water drop was partially absorbed; very light spot after drying. | 4/5 | Light spot | 4 |
Samples | Grain Cracking | Grain Burst | Adhesion of Finish | ||
---|---|---|---|---|---|
Strength (kg) | Distension (mm) | Strength (kg) | Distension (mm) | Strength (N) | |
AC | 5.0 ± 1.2 | 71.0 ± 0.2 | 20.5 ± 0.5 | 99.8 ± 1.7 | 5.5 ± 0.92 |
PU | 7.5 ± 0.5 | 68.9 ± 0.4 | 24.5 ± 0.5 | 98.0 ± 2.0 | 6.3 ± 1.80 |
S1 | 13.0 ± 2.0 | 64.3 ± 2.3 | 26.0 ± 1.0 | 81.3 ± 1.3 | 9.8 ± 1.42 |
S2 | 18.0 ± 0.5 | 75.5 ± 1.0 | 26.0 ± 2.0 | 87.6 ± 0.2 | 8.4 ± 2.10 |
S3 | 20.0 ± 2.0 | 72.5 ± 0.5 | 30.0 ± 2.0 | 83.2 ± 0.2 | 10.2 ± 3.24 |
M1 | 8.0 ± 0.5 | 69.9 ± 0.2 | 25.5 ± 2.5 | 97.8 ± 1.9 | 6.4 ± 0.77 |
M2 | 9.0 ± 2.0 | 64.9 ± 0.2 | 33.0 ± 4.0 | 99.0 ± 0.8 | 7.1 ± 1.25 |
Samples | L1 | L2 | a1 | a2 | b1 | b2 | ΔE |
---|---|---|---|---|---|---|---|
AC | 24.630 | 24.628 | −0.018 | −0.022 | −0.606 | −0.674 | 0.068 |
PU | 24.358 | 24.908 | 0.024 | −0.002 | −0.636 | −0.618 | 0.551 |
S1 | 24.306 | 24.900 | −0.030 | −0.066 | −0.700 | −0.762 | 0.598 |
S2 | 24.292 | 24.578 | −0.002 | −0.024 | −0.636 | −0.696 | 0.293 |
S3 | 24.350 | 24.678 | −0.024 | −0.036 | −0.712 | −0.768 | 0.333 |
M1 | 24.612 | 24.432 | 0.014 | −0.016 | −0.558 | −0.724 | 0.247 |
M2 | 24.232 | 24.494 | −0.026 | 0.022 | −0.572 | −0.684 | 0.289 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keskin, S.; Cheaburu-Yilmaz, C.N.; Altinisik Tagac, A.; Darie-Nita, R.N.; Yilmaz, O. Synthesis of Acrylic–Urethane Hybrid Polymer Dispersions and Investigations on Their Properties as Binders in Leather Finishing. Polymers 2025, 17, 308. https://doi.org/10.3390/polym17030308
Keskin S, Cheaburu-Yilmaz CN, Altinisik Tagac A, Darie-Nita RN, Yilmaz O. Synthesis of Acrylic–Urethane Hybrid Polymer Dispersions and Investigations on Their Properties as Binders in Leather Finishing. Polymers. 2025; 17(3):308. https://doi.org/10.3390/polym17030308
Chicago/Turabian StyleKeskin, Selime, Catalina N. Cheaburu-Yilmaz, Aylin Altinisik Tagac, Raluca Nicoleta Darie-Nita, and Onur Yilmaz. 2025. "Synthesis of Acrylic–Urethane Hybrid Polymer Dispersions and Investigations on Their Properties as Binders in Leather Finishing" Polymers 17, no. 3: 308. https://doi.org/10.3390/polym17030308
APA StyleKeskin, S., Cheaburu-Yilmaz, C. N., Altinisik Tagac, A., Darie-Nita, R. N., & Yilmaz, O. (2025). Synthesis of Acrylic–Urethane Hybrid Polymer Dispersions and Investigations on Their Properties as Binders in Leather Finishing. Polymers, 17(3), 308. https://doi.org/10.3390/polym17030308