The Bioenergy Potential of Date Palm Branch/Waste Through Reaction Modeling, Thermokinetic Data, Machine Learning KNN Analysis, and Techno-Economic Assessments (TEA)
Abstract
1. Introduction
- Experimental characterization of the DPB biomass: proximate and ultimate analysis, FTIR and SEM/EDS measurements, and TGA/DTG measurements.
- Reaction modeling and thermokinetic analysis of the TGA/DTG traces obtained from the thermal devolatilization of the materials.
- Application of the KNN machine learning algorithm for the prediction and optimal analysis of the thermogravimetric data.
- Techno-economic assessments (TEA) of the process.
2. Materials and Methods
2.1. Compositional Analysis
2.2. FTIR and SEM/EDS Measurements
2.3. TGA/DTG Measurements
2.4. Solid-State Reaction Mechanisms and Thermokinetic Methods
2.5. Application of K-Nearest Neighbors to TGA Data
3. Discussion of Results
- Proximate and ultimate analysis: Analysis of the fundamental breakdown of material’s composition.
- Analysis of SEM/XEDS and FTIR data: Detailed analysis of material characterization using advanced microscopic and spectroscopic techniques.
- TGA/DTG data: Analysis of material decomposition under controlled heating.
- Analysis of thermokinetic data: Analysis of the reaction, kinetics and thermodynamics of the process.
- Application of K-Nearest Neighbors to TGA Data: The use of machine learning KNN to interpret thermal analysis results.
3.1. Proximate and Ultimate Analysis Data
3.2. Analysis of SEM/XEDS and FTIR Data
3.3. Analysis of TGA/DTG Data
3.4. Analysis of Thermokinetic Data
3.5. KNN Analysis of TGA Data
4. Techno-Economic Assessments (TEA)
4.1. Technical Feasibility
4.2. Economic Analysis and Environmental Impact
4.3. The Necessity of Legal Frameworks
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El Mir, J.; Elgendy, K.; Klamlichi, H. Circular Economy in Cities of the MENA Region: Prospects and Challenges for Materials Circularity, 2021. Available online: https://library.fes.de/pdf-files/bueros/amman/18984.pdf (accessed on 25 August 2025).
- Sikiru, S.; Abioye, K.J.; Adedayo, H.B.; Adebukola, S.Y.; Soleimani, H.; Anar, M. Technology Projection in Biofuel Production using Agricultural Waste Materials as a Source of Energy Sustainability: A Comprehensive Review. Renew. Sustain. Energy Rev. 2024, 200, 114535. [Google Scholar] [CrossRef]
- Tahir, M.H.; Zhao, Z.; Ren, J.; Rasool, T.; Naqvi, S.R. Thermo-kinetics and Gaseous Product Analysis of Banana peel Pyrolysis for its Bioenergy Potential. Biomass Bioenergy 2019, 122, 193–201. [Google Scholar] [CrossRef]
- Albin Zaid, Z.A.A.; Otaru, A.J. Analysis of the Thermal Degradation of Recycled Saudi Coffee and PLA Biopolymer Blends: Experimentation, Kinetics, Thermodynamics, and Convolutional Deep Neural Networks. Case Stud. Therm. Eng. 2025, 74, 106799. [Google Scholar] [CrossRef]
- Alsulami, R.A.; El-Sayed, S.A.; Eltaher, M.A.; Mohammad, A.; Almitani, K.H.; Mostafa, M.E. Thermal Decomposition Characterization and Kinetic Parameters Estimation for Date Palm Wastes and their Blends using TGA. Fuel 2023, 334, 126600. [Google Scholar] [CrossRef]
- Otaru, A.J.; Albin Zaid, Z.A.A. On the Thermal Degradation of Palm frond and PLA 3251D Biopolymer: TGA/FTIR Experimentation, Thermo-kinetics, and Machine Learning CDNN Analysis. Fuel 2025, 391, 134724. [Google Scholar] [CrossRef]
- Falamarz Tahir, A.H.; Al-Ani, F.H.; Jawad Al-Obaidy, A.H.M. Analysis of Different Date Palm Parts for Char Production. IOP Conf. Ser. Earth Environ. Sci. 2021, 779, 012015. [Google Scholar] [CrossRef]
- Xiao, K.; Zhu, X. Machine Learning Approach for the Prediction of Biomass Waste Pyrolysis Kinetics from Preliminary Analysis. ACS Omega 2024, 9, 48125–48136. [Google Scholar] [CrossRef]
- Liu, J.; Jia, H.; Mairaj Deen, K.; Xu, Z.; Cheng, C.; Zhang, W. Application of Machine Learning Methods for Lignocellulose Biomass Pyrolysis: Activation Energy Prediction from Preliminary Analysis and Conversion Degree. Fuel 2023, 343, 128005. [Google Scholar] [CrossRef]
- Wang, M.; Xie, Y.; Gao, Y.; Huang, X.; Chen, W. Machine Learning Prediction of Higher Heating Value of Biochar Based on Biomass Characteristics and Pyrolysis Conditions. Bioresour. Technol. 2024, 395, 130364. [Google Scholar] [CrossRef]
- Alharbi, A.; Ghonimy, M. Environmental Benefits of Olive By-Products in Energy, Soil, and Sustainable Management. Sustainability 2025, 17, 4722. [Google Scholar] [CrossRef]
- Wang, F.; Zhen, Z.; Wang, B.; Mi, Z. Comparative Study on KNN and SVM Based Weather Classification Models for Day Ahead Short-Term Solar PV Power Forecasting. Appl. Sci. 2017, 8, 28. [Google Scholar] [CrossRef]
- Betancur-Ancona, D.; Peraza-Mercado, G.; Moguel-Ordoñez, Y.; Fuertes-Blanco, S. Physicochemical Characterization of Lima Bean (Phaseolus lunatus) and Jack Bean (Canavalia ensiformis) Fibrous Residues. Food Chem. 2004, 84, 287–295. [Google Scholar] [CrossRef]
- Otaru, A.J.; Adeniyi, O.D.; Bori, I.; Olugboji, O.A.; Odigure, J.O. Numerical Simulations and Analysis of Bimodal and Modulated Macroporous Structures are used to Understand and Predict their acoustic properties, Particularly Sound Absorption. Appl. Sci. 2023, 13, 12518. [Google Scholar] [CrossRef]
- Tan, Y.; Miao, Z.; Abdul, M.M.; Grift, T.E.; Ting, K.C. Electrical Capacitance as a Proxy Measurement of Miscanthus Bulk Density, and the Influence of Moisture Content and Particle Size. Comput. Electron. Agric. 2017, 134, 102–108. [Google Scholar] [CrossRef]
- Sadek, F.S.; Herrell, A.Y. Methods of proximate analysis by thermogravimetry. Thermochim. Acta 1984, 81, 297–303. [Google Scholar] [CrossRef]
- Park, S.; Kim, S.J.; Oh, K.C.; Cho, L.H.; Jeon, Y.K.; Lee, C.; Kim, D.H. Thermogravimetric Analysis-Based Proximate Analysis of Agro-Byproducts and Prediction of Calorific Value. Energy Rep. 2022, 8, 12038–12044. [Google Scholar] [CrossRef]
- Krotz, L.; Giazzi, G. Elemental Analysis: CHNS/O Characterization of Biomass and Bio-fuels, Thermo Fisher Scientific, Milan Italy, 2017. Available online: https://documents.thermofisher.com/TFS-Assets/CMD/Application-Notes/an-42151-oea-chnso-biomass-biofuels-an42151-en.pdf (accessed on 25 August 2025).
- Otaru, A.J.; Albin Zaid, Z.A.A. Thermal Degradation of Palm Fronds/Polypropylene Bio-Composites: Thermo-Kinetics and Convolutional-Deep Neural Networks Techniques. Polymers 2025, 17, 1244. [Google Scholar] [CrossRef]
- Li, J.; Zheng, J.; Peng, X.; Dai, Z.; Liu, W.; Deng, H.; Xi, B.; Lin, Z. NaCl Recovery from Organic Pollutants-Containing Salt Waste via Dual Effects of Aqueous Two-Phase Systems (ATPS) and Crystal Regulation with Acetone. J. Clean. Prod. 2020, 260, 121044. [Google Scholar] [CrossRef]
- Leslie, S.A.; Mitchell, J.C. Removing Gold Coating from SEM Samples. Palaeontology 2007, 50, 1459–1461. [Google Scholar] [CrossRef]
- Zaharia, A.; Nedeff, V.; López-Ramírez, J.A.; Moșneguțu, E.; Bârsan, N.; Lehadus-Panaite, M.; Krzysztof, J.; Tomozei, C. Scanning Electron Microscope Analysis of Polypropylene Filter Cartridges used in Drinking Water Purification Systems. Water 2024, 16, 165. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Chrissafis, K.; di Lorenzo, M.L.; Koga, N.; Pijolat, M.; Roduit, B.; Sbirrazzuoli, N.; Suñol, J.J. ICTAC Kinetics Committee Recommendations for Collecting Experimental Thermal Analysis Data for Kinetic Computations. Thermochim. Acta 2014, 590, 1–23. [Google Scholar] [CrossRef]
- Piazza, V.; da Silva Junior, R.B.; Frassoldati, A.; Lietti, L.; Chiaberge, S.; Gambaro, C.; Siviero, A.; Faravelli, T.; Beretta, A. Detailed Speciation of Biomass Pyrolysis Products with a Novel TGA-Based Methodology: The Case-Study of Cellulose. J. Anal. Appl. Pyrolysis 2024, 178, 106413. [Google Scholar] [CrossRef]
- Daramola, O.O.; Kariuki, E.M.; Aramide, F.O.; Adewuyi, B.O.; Adekoya, G.J.; Sadiku, R. 5-Proper Samples Preparation Methods for SEM, TEM, TGA, XRD, and DSC: Techniques, Operations, and Recommendation. In Woodhead Publishing Series in Composites Science and Engineering, Polymers and Two-Dimensional Nanocomposites; Sadiku, R., Hamam, Y., Ray, S.S., Folorunso, O., Eds.; Woodhead Publishing: Cambridge, UK, 2025; pp. 123–153. Available online: https://www.sciencedirect.com/science/article/pii/B9780443141317000067 (accessed on 5 September 2025).
- Baldauf-Sommerbauer, G.; Lux, S.; Wagner, J.; Siebenhofer, M. Determination of the Kinetic Triplet by an Isoconversional and a Regression Method Applied to the Decomposition of Mineral Iron Carbonate in Nitrogen. Thermochim. Acta 2017, 649, 123–153. [Google Scholar] [CrossRef]
- Rego, F.; Soares Dias, A.P.; Casquilho, M.; Rosa, F.C.; Rodrigues, A. Fast Determination of Lignocellulosic Composition of Poplar Biomass by Thermogravimetry. Biomass Bioenergy 2019, 122, 375–380. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Burnham, A.K.; Favergeon, L.; Koga, N.; Moukhina, E.; Pẻrez-Maqueda, L.A.; Sbirrazzuoli, N. ICTAC Kinetic Committee Recommendations for Analysis of Multi-Step Kinetics. Thermochim. Acta 2020, 689, 178597. [Google Scholar] [CrossRef]
- Lalaymia, I.; Belaadi, A.; Ghernaout, D. Studying Gaussian Deconvolution and Multicomponent Kinetics Models in Agave cellulosic Fibers Pyrolysis: Application in Sustainable Bioenergy for Cleaner Production. Biomass Bioenergy 2025, 192, 107488. [Google Scholar] [CrossRef]
- Li, W.; Huang, Y.; Liu, H.; Zhang, Y.; Jiang, Y.; Wang, Y.; Wan, J.; Yin, X. Kinetic and Thermodynamic Studies of Biomass Pseudo-Components under Thermo-Oxidative Degradation Conditions using Asymmetric Function of Bi-Gaussian as Deconvolution Technique. Renew. Energy 2022, 188, 491–503. [Google Scholar] [CrossRef]
- Liu, K.Q.; Zhang, Z.C.; Ostadhassan, M. The Application of Gaussian Distribution Deconvolution Method to Separate the Overlapping Signals in the 2D NMR Map. Pet. Sci. 2023, 20, 1513–1520. [Google Scholar] [CrossRef]
- Ozawa, T. A New Method of Analyzing Thermogravimetric Data. Bull. Chem. Soc. Jpn. 1965, 38, 1881–1886. [Google Scholar] [CrossRef]
- Flynn, J.H.; Wall, L.A. A Quick, Direct Method for the Determination of Activation Energy from Thermogravimetric Data. J. Polym. Sci. Part B Polym. Lett. 1966, 4, 323–328. [Google Scholar] [CrossRef]
- Han, Y. Theoretical Study of Thermal Analysis Kinetics, Theses and Dissertations, Mechanical Engineering, University of Kentucky, 2014. Available online: https://uknowledge.uky.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=1036&context=me_etds (accessed on 20 June 2025).
- Otaru, A.J. Kinetics Study of the Thermal Decomposition of Date Seed Powder/HDPE Plastic Blends. Bioresour. Technol. Rep. 2025, 29, 102028. [Google Scholar] [CrossRef]
- Starink, M.J. The Determination of Activation Energy from Linear Heating Rate Experiments: A Comparison of the Accuracy of Isoconversion Methods. Thermochim. Acta 2003, 404, 163–176. [Google Scholar] [CrossRef]
- Friedman, H. Kinetics of Thermal Degradation of Char-forming Plastics from Thermogravimetry-Application to a Phenolic Resin. J. Polym. Sci. Part C Polym. Symp. 1964, 6, 183–195. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Wight, C.A. Model-Free and Model-Fitting Approaches to Kinetic Analysis of Isothermal and Non-Isothermal Data. Thermochim. Acta 1999, 340–341, 53–68. [Google Scholar] [CrossRef]
- Vyazovkin, S. Misinterpretation of Thermodynamic Parameters Evaluated from Activation Energy and Preexponential Factor Determined in Thermal Analysis Experiments. Thermo 2024, 4, 373–381. [Google Scholar] [CrossRef]
- Farrukh, M.A.; Butt, K.M.; Chong, K.K.; Chang, W.S. Photoluminescence Emission Behavior on the Reduced Band Gap of Fe Doping in CeO2-SiO2 Nanocomposite and Photophysical Properties. J. Saudi Chem. Soc. 2019, 23, 561–575. [Google Scholar] [CrossRef]
- Cohen, T.; Widdows, D. Geometric Representations in Biomedical Informatics: Applications in Automated Text Analysis. Methods Biomed. Inform. A Pragmatic Approach 2014, 99–139. [Google Scholar] [CrossRef]
- LaViale, T. Deep Dive on KNN: Understanding and Implementing the K-Nearest Neighbors Algorithm, 2023. Available online: https://arize.com/blog-course/knn-algorithm-k-nearest-neighbor/#:~:text=Choosing%20K%20Value&text=If%20k%20is%20too%20small,which%20can%20lead%20to%20underfitting. (accessed on 29 July 2025).
- Shen, J.; Yan, M.; Fang, M.; Gao, X. Machine Learning-Based Modelling Approaches for Estimating Pyrolysis Products of Varied Biomass and Operating Conditions. Bioresour. Technol. Rep. 2022, 20, 101285. [Google Scholar] [CrossRef]
- Zavarella, L. Beyond 80–20: A Practical Guide to Train-Test Splits in Machine Learning, 2025. Available online: https://medium.com/data-science/beyond-80-20-a-practical-guide-to-train-test-splits-in-machine-learning-5fc62ebe276f (accessed on 29 August 2025).
- Parveen, K.R.; Thangaraju, P. Enhanced Credit Scoring Prediction Using KNN-Z-Score Based Logistic Regression (KZ-LR) Algorithm. J. Electr. Syst. 2024, 20, 7230–7237. [Google Scholar] [CrossRef]
- Rajendran, K. Effect of Moisture Content on Lignocellulosic Power Generation: Energy, Economic and Environmental Impacts. Processes 2017, 5, 78. [Google Scholar] [CrossRef]
- Motta, I.L.; Miranda, N.T.; Maciel Filho, R.; Wolf Maciel, M.R. Biomass Gasification in Fluidized Beds: A Review of Biomass Moisture Content and Operating Pressure Effects. Renew. Sustain. Energy Rev. 2018, 94, 998–1023. [Google Scholar] [CrossRef]
- Silva, D.A.d.; Hansted, A.L.S.; Nakashima, G.T.; Padilla, E.R.D.; Pereira, J.C.; Yamaji, F.M. Volatile Matter Values Change According to the Standard Utilized? Res. Soc. Dev. 2021, 10, e291101220476. [Google Scholar] [CrossRef]
- Weber, K.; Quicker, P. Properties of biochar. Fuel 2018, 217, 240–261. [Google Scholar] [CrossRef]
- Zhai, J.; Burke, I.T.; Mayes, W.M.; Stewart, D.I. New Insights into Biomass Combustion Ash Categorisation: A Phylogenetic Analysis. Fuel 2021, 287, 119469. [Google Scholar] [CrossRef]
- Tripathi, M.; Sahu, J.N.; Gnesan, P. Effect of Process Parameters on Production of Biochar from Biomass Waste through Pyrolysis: A Review. Renew. Sustain. Energy Rev. 2016, 55, 467–481. [Google Scholar] [CrossRef]
- Quan, C.; Wang, M.; Gao, N.; Yang, T.; Fan, X.; Miskolczi, N. Enhanced Hydrogen Production from Biomass Gasification by In-Situ CO2 Capture with Ni/Ca-Based Catalysts. Biomass Bioenergy 2024, 182, 107110. [Google Scholar] [CrossRef]
- Nasser, R.A.; Salem, M.Z.M.; Hiziroglu, S.; Al-Mefarrej, H.A.; Mohareb, A.S.; Alam, M.; Aref, I.M. Chemical Analysis of Different Parts of Date Palm (Phoenix dactylifera L.) using Ultimate, Proximate and Thermo-Gravimetric Techniques for Energy Production. Energies 2016, 9, 374. [Google Scholar] [CrossRef]
- Al-Awa, Z.F.A.; Sangor, F.I.M.S.; Babili, S.B.; Saud, A.; Saleem, H.; Zaidi, S.J. Effect of Leaf Powdering Technique on the Characteristics of Date Palm-Derived Cellulose. ACS Omega 2023, 8, 18930–18939. [Google Scholar] [CrossRef]
- Salem, I.B.; Saleh, M.B.; Iqbal, J.; El Gamal, M.; Hameed, S. Date Palm Waste Pyrolysis into Biochar for Carbon Dioxide Adsorption. Energy Rep. 2021, 7, 152–157. [Google Scholar] [CrossRef]
- Basheer, A.O.; Abu Odeh, A.; Al-Douri, Y. Structural Analysis and Characterization of Date Palm Fiber-Based Low-Cost Carbon Nanotubes and Nanostructured Powder Activated Carbon. Heliyon 2023, 9, e18811. [Google Scholar] [CrossRef]
- Baxter, L.L.; Miles, T.R.; Miles, T.R.; Jenkins, B.M.; Milne, T.; Dayton, D.; Bryers, R.W.; Oden, L.L. The Behavior of Inorganic Material in Biomass-Fired Power Boilers: Field and Laboratory Experiences. Fuel Process. Technol. 1998, 54, 47–78. [Google Scholar] [CrossRef]
- Paneru, M.; Babat, S.; Maier, J.; Scheffknecht, G. Role of Potassium in Deposit Formation During Wood Pellets Combustion. Fuel Process. Technol. 2016, 141, 266–275. [Google Scholar] [CrossRef]
- FTIR Functional Group Database Table with Search—InstaNANO. Available online: https://instanano.com/all/characterization/ftir/ftir-functional-group-search/ (accessed on 28 July 2025).
- Martín-Ramos, P.; Maria, T.M.R.; Correa-Guimaraes, A.; Carrión-Prieto, P.; Hernández-Navarro, S.; Martín-Gil, J. Crude and Refined Oils from Elaeis guineensis: Facile Characterization by FTIR and Thermal Analysis Techniques. Int. J. Food Prop. 2018, 20, 52739–52749. [Google Scholar] [CrossRef]
- Fahmy, T.; Sarhan, A.; Elsayed, I.A.; Abdelwahed, H.G. Optical Properties of Poly (Vinyl Chloride-Co-Vinyl Acetate-Co-2-Hydroxypropyl Acrylate)/(Acrylonitrile-Butadiene-Styrene) Blends. Int. J. Eng. Res. Technol. 2018, 11, 1405–1415. Available online: https://www.ripublication.com/irph/ijert18/ijertv11n9_06.pdf (accessed on 5 September 2025).
- Acquah, G.E.; Via, B.K.; Fasina, O.O.; Eckhardt, L.G. Rapid Quantitative Analysis of Forest Biomass Using Fourier Transform Infrared Spectroscopy and Partial Least Squares Regression. J. Anal. Methods Chem. 2016, 2016, 1839798. [Google Scholar] [CrossRef] [PubMed]
- Soria-Verdugo, A.; Garcia-Gutierrez, L.M.; Blanco-Cano, L.; Garcia-Hernando, N.; Ruiz-Rivas, U. Evaluating the accuracy of the Distributed Activation Energy Model for biomass devolatilization curves obtained at high heating rates. Energy Convers. Manag. 2014, 86, 1045–1049. [Google Scholar] [CrossRef]
- Galiwango, E.; Abdel Rahman, N.S.; Al-Marzouqi, A.H.; Abu-Omar, M.M.; Khaleel, A.A. Isolation and Characterization of Cellulose and α-cellulose from Date Palm Biomass Waste. Heliyon 2019, 5, e02937. [Google Scholar] [CrossRef]
- Zhou, S.; Pecha, B.; van Kuppevelt, M.; McDonald, A.G.; Garcia-Perez, M. Slow and Fast Pyrolysis of Douglas-fir Lignin: Importance of Liquid-Intermediate Formation on the Distribution of Products. Biomass Bioenergy 2014, 66, 398–409. [Google Scholar] [CrossRef]
- Chua, Y.W.; Yu, Y.; Wu, H. Thermal Decomposition of Pyrolytic Lignin Under Inert Conditions at Low Temperatures. Fuel 2017, 200, 70–75. [Google Scholar] [CrossRef]
- Sikarwar, V.S.; Zhao, M.; Clough, P.; Yao, J.; Zhong, X.; Memon, M.Z.; Shah, N.; Anthony, E.J.; Fennell, P.S. An Overview of Advances in Biomass Gasification. Energy Environ. Sci. 2016, 9, 2927–3304. [Google Scholar] [CrossRef]
- Agnihotri, N.; Mondal, M.K. Thermal Analysis, Kinetic Behavior, Reaction Modeling, and Comprehensive Pyrolysis Index of Soybean Stalk Pyrolysis. Biomass Convers. Biorefin. 2024, 14, 14977–14992. [Google Scholar] [CrossRef]
- Kim, H.; Yu, S.; Kim, M.; Ryu, C. Progressive Deconvolution of Biomass Thermogram to Derive Lignocellulosic Composition and Pyrolysis Kinetics for Parallel Reaction Model. Energy 2022, 254, 124446. [Google Scholar] [CrossRef]
- Zhong, Y.; Ding, Y.; Lu, K.; Mao, S.; Li, C. Kinetic Parameters and Reaction Mechanism Study of Biomass Pyrolysis by Combined Kinetics Coupled with a Heuristic Optimization Algorithm. Fuel 2023, 334, 126622. [Google Scholar] [CrossRef]
- Hai, A.; Bharath, G.; Ali, I.; Daud, M.; Othman, I.; Rambabu, K.; Haija, M.A.; Hasan, S.W.; Banat, F. Pyrolysis of Date Seeds Loaded with Layered Double Hydroxide: Kinetics, Thermodynamics, and Pyrolytic Gas Properties. Energy Convers. Manag. 2022, 252, 115127. [Google Scholar] [CrossRef]
- Raza, M.; Abu-Jdayil, B.; Al-Marzouqi, A.H.; Inayat, A. Kinetic and Thermodynamic Analyses of Date Palm Surface Fibers Pyrolysis using Coats-Redfern Method. Renew. Energy 2022, 183, 67–77. [Google Scholar] [CrossRef]
- Elmay, Y.; Jeguirim, M.; Trouvé, G.; Said, R. Kinetic Analysis of Thermal Decomposition of Date Palm Residues using Coats-Redfern Method. Energy Sources, Part A: Recovery. Util. Environ. Eff. 2016, 38, 1117–1124. [Google Scholar] [CrossRef]
- Chen, D.; Cen, K.; Zhuang, X.; Gan, Z.; Zhou, J.; Zhang, Y.; Zhang, H. Insight into Biomass Pyrolysis Mechanism Based on Cellulose, Hemicellulose, and Lignin: Evolution of Volatiles and Kinetics, Elucidation of Reaction Pathways, and Characterization of Gas, Biochar and Bio-Oil. Combust. Flame 2022, 242, 112142. [Google Scholar] [CrossRef]
- Gajera, B.; Tyagi, U.; Sarma, A.K.; Jha, M.K. Impact of Torrefaction on Thermal Behavior of Wheat Straw and Groundnut Stalk Biomass: Kinetic and Thermodynamic Study. Fuel Commun. 2022, 12, 100073. [Google Scholar] [CrossRef]
- Mahmood, H.; Shakeel, A.; Abdullah, A.; Khan, M.I.; Moniruzzaman, M. A Comparative Study on Suitability of Model-Free and Model-Fitting Kinetic Methods to Non-Isothermal degradation of lignocellulosic materials. Polymers 2021, 13, 2504. [Google Scholar] [CrossRef]
- Mardia, K.V. Measures of Multivariate Skewness and Kurtosis with Applications. Biometrika 1970, 57, 519–530. [Google Scholar] [CrossRef]
- Cai, J.; Xu, D.; Dong, Z.; Yu, X.; Yang, Y.; Banks, S.W.; Bridgwater, A.V. Processing Thermogravimetric Analysis Data for Isoconversional Kinetic Analysis of Lignocellulosic Biomass Pyrolysis: Case Study of Corn Stalk. Renew. Sustain. Energy Rev. 2018, 82, 2705–2715. [Google Scholar] [CrossRef]
- Liu, L.; Pang, Y.; Lv, D.; Wang, K.; Wang, Y. Thermal and Kinetic Analyzing of Pyrolysis and Combustion of Self-heating Biomass Particles. Process Saf. Environ. Prot. 2021, 151, 39–50. [Google Scholar] [CrossRef]
- Mian, I.; Li, X.; Jian, Y.; Dacres, O.D.; Zhong, M.; Liu, J.; Ma, F.; Rahman, N. Kinetic Study of Biomass Pellet Pyrolysis by using Distributed Activation Energy Model and Coats Redfern Methods and their Comparison. Bioresour. Technol. 2019, 294, 122099. [Google Scholar] [CrossRef]
- Schaller, C.P. Free Energy and Equilibrium. LibreTestsTM Chemisty. Available online: https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Thermodynamics/Fundamentals_of_Thermodynamics/Free_Energy_and_Equilibrium#:~:text=That%20means%20if%20%CE%94G%20is,does%20not%20favor%20product%20formation (accessed on 29 August 2025).
- Kennedy, I.R.; Hodzic, M. Partitioning Entropy with Action Mechanics: Predicting Chemical Reaction Rates and Gaseous Equilibria of Reactions of Hydrogen from Molecular Properties. Entropy 2021, 23, 1056. [Google Scholar] [CrossRef] [PubMed]
- Albin Zaid, Z.A.A.; Otaru, A.J. Experimental Measurements, Convolutional Deep Neural Networks, and Thermo-kinetic Analyses of the Thermal Decomposition of Phoenix dactylifera L./Polylactic Acid Composites. Ind. Crops Prod. 2025, 233, 121489. [Google Scholar] [CrossRef]
- Otaru, A.J. Circular Economy: Kinetic-Triplet, Thermodynamic, and Gradient Descent Optimisation Algorithm of Deep Learning Models for the Thermal Degradation of Walnut Shell. Case Stud. Therm. Eng. 2025. in Press. [Google Scholar] [CrossRef]
- Nakkina, D. Exploring the Performance of KNN Model: The Impact of ‘k’ Values, 2024. Available online: https://medium.com/@DineshNakkina/exploring-the-performance-of-knn-model-the-impact-of-k-values-56d05fdf7b91 (accessed on 20 November 2025).
- Ashraf, H.M.; Abu-Reesh, I.M. Variance-Based Global Sensitivity Analysis of a Multi-Population, Single-Chamber Microbial Fuel Cell Operating in Continuous Flow Mode at Steady State. Biomass Convers. Biorefin. 2024, 14, 10131–10145. [Google Scholar] [CrossRef]
- Zaifullizan, Y.M.; Kuan, L.M.; Salema, A.A.; Ishaque, K. Comparison of Artificial Intelligence Models to Predict Oil Palm Biomass Pyrolysis and Kinetics using Thermogravimetric Analysis. J. Oil Palm Res. 2023, 35, 86–99. [Google Scholar] [CrossRef]
- Ahmad, J.; Ngamcharussrivichai, C.; Ali, I. Investigating the Predictive Capabilities of MARS for Biomass Pyrolysis Kinetics: A Case Study on an Oil Palm Empty Fruit Bunch. ACS Omega 2025, 10, 3944–3952. Available online: https://pubs.acs.org/doi/10.1021/acsomega.4c09789 (accessed on 6 September 2025). [CrossRef] [PubMed]
- Yahya, S.; Iqbal, T.; Omar, M.M.; Ahmad, M. Techno-Economic Analysis of Fast Pyrolysis of Date Palm Waste for Adoption in Saudi Arabia. Energies 2021, 14, 6048. [Google Scholar] [CrossRef]
- Balopi, B.; Moyo, M.; Gorimbo, J.; Liu, X. Biomass-to-Electricity Conversion Technologies: A Review. Waste Dispos. Sustain. Energy 2025, 7, 323–351. [Google Scholar] [CrossRef]
- Grande, L.; Pedroarena, I.; Korili, S.A.; Gil, A. Hydrothermal Liquefaction of Biomass as One of the Most Promising Alternatives for the Synthesis of Advanced Liquid Biofuels: A review. Materials 2021, 14, 5286. [Google Scholar] [CrossRef]
- Figueiró, C.G.; Vital, B.R.; Carneiro Ade, d.C.O.; da Silva, C.M.S.; Magalhães, M.A.; Fialho, L.d.F. Energy Valorization of Woody Biomass by Torrefaction Treatment: A Brazilian Experimental Study. Maderas Cienc. Y Tecnol. 2019, 21. [Google Scholar] [CrossRef]
- Munir, M.; Alhajhoj, M.R.; Mohammed, M.E.; Ghazzawy, H.S.; Elgarawany, M.M.; El-Habbab, M.S.; Zeineldin, F.I.; Al-Bahigan, A.M. Effects of Date Palm Biochar on Growth, Yield and Photosynthetic Capacity of Cucumber (Cucumis sativus L.) Under Glasshouse Conditions. Pak. J. Life Soc. Sci. 2020, 18, 7–16. Available online: https://www.kfu.edu.sa/ar/Centers/WaterStudies/Documents/EffectsofDatePalmBiocharonGrowthYieldandPhotosynthetic.pdf (accessed on 7 August 2025).









| Proximate Analysis | Ultimate Analysis | |||||||
|---|---|---|---|---|---|---|---|---|
| Moisture [%] | Fixed Carbon [%] | Volatile Matter [%] | Ash [%] | C [%] | H [%] | N [%] | S [%] | O [%] |
| 4.47 | 18.14 | 72.01 | 5.38 | 45.54 | 5.40 | 2.54 | 0.00 | 46.52 |
| Element | Raw [wt%] | Biochar [wt%] |
|---|---|---|
| C | 45.62 ± 0.92 | 4.46 ± 0.20 |
| O | 26.80 ± 1.24 | 35.16 ± 0.79 |
| Al | 0.31 ± 0.05 | 1.00 ± 0.07 |
| Mg | 0.62 ± 0.04 | 4.62 ± 0.15 |
| Si | 6.81 ± 0.33 | 23.80 ± 0.31 |
| S | 0.39 ± 0.03 | 0.85+ 0.05 |
| Cl | 2.53 ± 0.25 | 0.88 ± 0.07 |
| K | 2.79 ± 0.29 | 7.66 ± 0.22 |
| Ca | 4.02 ± 0.34 | 20.21 ± 0.39 |
| Fe | 0.89 ± 0.20 | 0.86 ± 0.18 |
| Nb | 0.67 ± 0.15 | 0.50 ± 0.05 |
| Au | 8.55 ± 0.63 | 0.00 ± 0.00 |
| Total | 100 | 100 |
| FWO | KAS | STK | FR | |
|---|---|---|---|---|
| Mean Value (MV) [kJ.mol−1] | 103.06 | 98.43 | 98.82 | 109.30 |
| Median Value (MEDV) [kJ.mol−1] | 114.12 | 110.32 | 110.71 | 119.17 |
| Estimate uncertainty (Δ) | 8.01 | 8.58 | 8.57 | 14.21 |
| Range [kJ.mol−1] | 22.65 | 24.25 | 24.24 | 40.18 |
| Skewness (SKN) | −1.47 | −1.62 | −1.61 | −2.29 |
| Kurtosis (KTS) | 1.36 | 2.10 | 2.07 | 5.64 |
| R2 [-] | EA [kJ.mol−1] | A [sec−1] | ΔS [kJ.mol−1.K−1] | ΔH [kJ.mol−1] | ΔG [kJ.mol−1] | k [-] | |
|---|---|---|---|---|---|---|---|
| FWO | 0.99 | 103.06 | 3.53 × 107 | −0.13 | 97.79 | 180.47 | 1.36 × 10−15 |
| KAS | 0.99 | 98.43 | 1.30 × 107 | −0.14 | 93.15 | 183.48 | 7.70 × 10−16 |
| STK | 0.99 | 98.82 | 1.24 × 10−1 | −0.29 | 93.55 | 279.06 | 1.03 × 10−23 |
| FR | 0.94 | 109.30 | 3.92 × 108 | −0.13 | 104.03 | 189.69 | 2.37 × 10−16 |
| Mean | Median | Standard Deviation | Variance | Range | Skewness | Kurtosis | Uncertainty | |
|---|---|---|---|---|---|---|---|---|
| Real train | 44.651 | 29.651 | 34.862 | 1215.352 | 97.186 | 0.534 | 1.700 | 1.752 |
| Real test | 49.692 | 33.946 | 34.830 | 1213.155 | 97.142 | 0.362 | 1.530 | 3.501 |
| Predict train k = 1 | 44.651 | 29.651 | 34.862 | 1215.352 | 97.186 | 0.534 | 1.700 | 1.752 |
| Predict test k = 1 | 44.686 | 30.528 | 33.955 | 1152.953 | 97.186 | 0.582 | 1.792 | 3.413 |
| Predict train k = 3 | 43.698 | 29.306 | 34.519 | 1191.540 | 97.186 | 0.577 | 1.763 | 1.752 |
| Predict test k = 3 | 43.430 | 29.898 | 33.557 | 1126.067 | 97.186 | 0.638 | 1.879 | 3.413 |
| Predict train k = 5 | 42.685 | 28.670 | 34.176 | 1168.014 | 97.186 | 0.622 | 1.832 | 1.717 |
| Predict test k = 5 | 42.255 | 29.596 | 33.082 | 1094.387 | 97.186 | 0.687 | 1.970 | 3.325 |
| Predict train k = 7 | 41.582 | 28.722 | 33.701 | 1135.746 | 97.186 | 0.679 | 1.941 | 1.694 |
| Predict test k = 7 | 41.153 | 29.596 | 32.751 | 1072.614 | 97.186 | 0.749 | 2.088 | 3.292 |
| Predict train k = 9 | 40.556 | 28.517 | 33.295 | 1108.548 | 97.186 | 0.679 | 1.941 | 1.694 |
| Predict test k = 9 | 39.903 | 28.578 | 32.354 | 1046.808 | 97.186 | 0.749 | 2.088 | 3.292 |
| Predict train k = 11 | 39.564 | 27.388 | 32.882 | 1081.232 | 97.186 | 0.781 | 2.137 | 1.652 |
| Predict test k = 11 | 38.881 | 28.137 | 31.856 | 1014.802 | 97.186 | 0.856 | 2.332 | 3.202 |
| Predict train k = SQRT(N) | 36.162 | 25.769 | 31.516 | 993.235 | 97.186 | 1.033 | 2.707 | 1.584 |
| Predict test k = SQRT(N) | 35.293 | 26.981 | 30.767 | 946.588 | 97.186 | 1.100 | 2.912 | 3.092 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Otaru, A.J.; Albin Zaid, Z.A.A.; Alkhaldi, M.M.; Albin Zaid, S.M.A.; AlShuaibi, A. The Bioenergy Potential of Date Palm Branch/Waste Through Reaction Modeling, Thermokinetic Data, Machine Learning KNN Analysis, and Techno-Economic Assessments (TEA). Polymers 2025, 17, 3182. https://doi.org/10.3390/polym17233182
Otaru AJ, Albin Zaid ZAA, Alkhaldi MM, Albin Zaid SMA, AlShuaibi A. The Bioenergy Potential of Date Palm Branch/Waste Through Reaction Modeling, Thermokinetic Data, Machine Learning KNN Analysis, and Techno-Economic Assessments (TEA). Polymers. 2025; 17(23):3182. https://doi.org/10.3390/polym17233182
Chicago/Turabian StyleOtaru, Abdulrazak Jinadu, Zaid Abdulhamid Alhulaybi Albin Zaid, Mubarak Mohammed Alkhaldi, Saud Mahmood Alholiby Albin Zaid, and Abdullah AlShuaibi. 2025. "The Bioenergy Potential of Date Palm Branch/Waste Through Reaction Modeling, Thermokinetic Data, Machine Learning KNN Analysis, and Techno-Economic Assessments (TEA)" Polymers 17, no. 23: 3182. https://doi.org/10.3390/polym17233182
APA StyleOtaru, A. J., Albin Zaid, Z. A. A., Alkhaldi, M. M., Albin Zaid, S. M. A., & AlShuaibi, A. (2025). The Bioenergy Potential of Date Palm Branch/Waste Through Reaction Modeling, Thermokinetic Data, Machine Learning KNN Analysis, and Techno-Economic Assessments (TEA). Polymers, 17(23), 3182. https://doi.org/10.3390/polym17233182

