Shear Bond Strength of Biointeractive Restorative Materials to NeoMTA Plus and Biodentine
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Power Analysis
2.2. Specimen Preparation
2.3. Randomization and Blinding
2.4. Restorative Procedure
2.5. Shear Bond Strength (SBS) Testing
2.6. Stereomicroscopic Failure Analysis
2.7. Statistical Analysis
3. Results
Failure Mode Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alyahya, Y. A narrative review of minimally invasive techniques in restorative dentistry. Saudi Dent. J. 2023, 36, 228. [Google Scholar] [CrossRef]
- Xavier, M.T.; Costa, A.L.; Caramelo, F.J.; Palma, P.J.; Ramos, J.C. Evaluation of the interfaces between restorative and regenerative biomaterials used in vital pulp therapy. Materials 2021, 14, 5055. [Google Scholar] [CrossRef]
- Han, S.-Y.; Chang, C.-L.; Wang, Y.-L.; Wang, C.-S.; Lee, W.-J.; Vo, T.T.T.; Chen, Y.-L.; Cheng, C.-Y.; Lee, I.-T. A narrative review on advancing pediatric oral health: Comprehensive strategies for the prevention and management of dental challenges in children. Children 2025, 12, 286. [Google Scholar] [CrossRef]
- Hambire, C.; Hambire, U. Recent advancements in materials in pediatric restorative dentistry. Int. J. Oral Health Sci. 2022, 12, 3–7. [Google Scholar] [CrossRef]
- Zafar, M.S.; Amin, F.; Fareed, M.A.; Ghabbani, H.; Riaz, S.; Khurshid, Z.; Kumar, N. Biomimetic aspects of restorative dentistry biomaterials. Biomimetics 2020, 5, 34. [Google Scholar] [CrossRef] [PubMed]
- Xavier, M.T.; Costa, A.L.; Ramos, J.C.; Caramês, J.; Marques, D.; Martins, J.N.R. Calcium silicate-based cements in restorative dentistry: Vital pulp therapy clinical, radiographic, and histological outcomes on deciduous and permanent dentition—A systematic review and meta-analysis. Materials 2024, 17, 4264. [Google Scholar] [CrossRef]
- Pires, P.M.; Neves, A.A.; Makeeva, I.M.; Schwendicke, F.; Faus-Matoses, V.; Yoshihara, K.; Banerjee, A.; Sauro, S. Contemporary restorative ion-releasing materials: Current status, interfacial properties and operative approaches. Br. Dent. J. 2020, 229, 450–458. [Google Scholar] [CrossRef]
- Camilleri, J. Mineral trioxide aggregate: Present and future developments. Endod. Topics 2015, 32, 31–46. [Google Scholar] [CrossRef]
- Parirokh, M.; Torabinejad, M. Mineral trioxide aggregate: A comprehensive literature review—Part I: Chemical, physical, and antibacterial properties. J. Endod. 2010, 36, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Walsh, R.M.; Attar, S.; Turner, C.L.; Pistocchi, R.; Allen, L.; Woodmansey, K.F. Clinical outcomes of non-surgical root canal obturations using NeoMTA: A retrospective series of case reports. Aust. Endod. J. 2023, 49, 455–461. [Google Scholar] [CrossRef]
- Gisour, E.F.; Karimipour, P.; Jahanimoghadam, F. Clinical and radiographic comparison of primary molar pulpotomy using formocresol, portland cement, and NeoMTA plus: A randomized controlled clinical trial. Sci. Rep. 2024, 14, 29690. [Google Scholar] [CrossRef] [PubMed]
- Karobari, M.; Basheer, S.; Sayed, F. An in vitro stereomicroscopic evaluation of bioactivity between Neo MTA Plus, Pro Root MTA, BIODENTINE & glass ionomer cement using dye penetration. Materials 2021, 14, 3159. [Google Scholar] [CrossRef]
- Rajasekharan, S.; Martens, L.C.; Cauwels, R.G.E.C.; Verbeeck, R.M.H. Biodentine material characteristics and clinical applications: A review of the literature. Eur. Arch. Paediatr. Dent. 2014, 15, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Dentistry, W.Z.J. Evaluation of vital pulp therapy with Biodentine in young permanent teeth: A systematic review and meta-analysis. J. Clin. Pediatr. Dent. 2025, 49, 9–20. [Google Scholar]
- Altunsoy, M.; Tanriver, M.; Ok, E.; Kucukyilmaz, E. Shear bond strength of a self-adhering flowable composite and a flowable base composite to mineral trioxide aggregate, calcium-enriched mixture cement, and biodentine. J. Endod. 2015, 41, 1691–1695. [Google Scholar] [CrossRef]
- Bezerra, I.M.; Brito, A.C.M.; de Sousa, S.A.; Santiago, B.M.; Cavalcanti, Y.W.; de Almeida, L.F.D. Glass ionomer cements compared with composite resin in restoration of noncarious cervical lesions: A systematic review and meta-analysis. Heliyon 2020, 6, e03969. [Google Scholar] [CrossRef] [PubMed]
- Da Rosa Rodolpho, P.A.; Rodolfo, B.; Collares, K.; Correa, M.B.; Demarco, F.F.; Opdam, N.J.M.; Cenci, M.S.; Moraes, R.R. Clinical performance of posterior resin composite restorations after up to 33 years. Dent. Mater. 2022, 38, 680–688. [Google Scholar] [CrossRef]
- Benetti, A.R.; Michou, S.; Larsen, L.; Peutzfeldt, A.; Pallesen, U.; van Dijken, J.W.V. Adhesion and marginal adaptation of a claimed bioactive, restorative material. Biomater. Investig. Dent. 2019, 6, 90–98. [Google Scholar] [CrossRef]
- Cribari, L.; Madeira, L.; Roeder, R.B.R.; Macedo, R.M.; Wambier, L.M.; Porto, T.S.; Gonzaga, C.C.; Kaizer, M.R. High-viscosity glass-ionomer cement or composite resin for restorations in posterior permanent teeth? A systematic review and meta-analyses. J. Dent. 2023, 137, 104629. [Google Scholar] [CrossRef]
- Costa, M.P.; de Souza, I.D.; Giacomini, M.C.; Zabeu, G.S.; Jacomine, J.C.; Wang, L. Impact of S-PRG/Giomer and Bulk-fill technologies on the hygroscopic profile of resin composites under erosive condition. J. Dent. 2025, 152, 105440. [Google Scholar] [CrossRef]
- Radwanski, M.; Zmyslowska-Polakowska, E.; Osica, K.; Krasowski, M.; Sauro, S.; Hardan, L.; Lukomska-Szymanska, M. Mechanical properties of modern restorative “bioactive” dental materials-an in vitro study. Sci. Rep. 2025, 15, 3552. [Google Scholar] [CrossRef]
- Ionescu, A.C.; Nicita, F.; Zambelli, V.; Bellani, G.; Degli Esposti, L.; Iafisco, M.; Brambilla, E. Ion-releasing resin composites prevent demineralization around restorations in an in-vitro biofilm model. J. Dent. 2025, 154, 105600. [Google Scholar] [CrossRef]
- Güner, Z.; Dent, H.K.J. Evaluation of nanohardness, elastic modulus, and surface roughness of fluoride-releasing tooth colored restorative materials. J. Clin. Pediatr. Dent. 2024, 48, 131–137. [Google Scholar] [CrossRef]
- Raina, A.; Sawhny, A.; Paul, S.; Nandamuri, S. Comparative evaluation of the bond strength of self-adhering and bulk-fill flowable composites to MTA Plus, Dycal, Biodentine, and TheraCal: An in vitro study. Restor. Dent. Endod. 2020, 45, e10. [Google Scholar] [CrossRef] [PubMed]
- El-Refai, D. Shear bond strength of NuSmile- Neoputty Bio- ceramic material to four different restorative materials used in pedodontics. Egypt. Dent. J. 2023, 69, 1343–1365. [Google Scholar] [CrossRef]
- Alqahtani, A.S.; Sulimany, A.M.; Alayad, A.S.; Alqahtani, A.S.; Bawazir, O.A. Evaluation of the shear bond strength of four bioceramic materials with different restorative materials and timings. Materials 2022, 15, 4668. [Google Scholar] [CrossRef] [PubMed]
- Hursh, K.A.; Kirkpatrick, T.C.; Cardon, J.W.; Brewster, J.A.; Black, S.W.; Himel, V.T.; Sabey, K.A. Shear bond comparison between 4 bioceramic materials and dual-cure composite resin. J. Endod. 2019, 45, 1378–1383. [Google Scholar] [CrossRef]
- Candan, M.; Altinay Karaca, F.K.; Öznurhan, F. Evaluation of the shear bond strength of immediate and delayed restorations of various calcium silicate-based materials with fiber-reinforced composite resin materials. Polymers 2023, 15, 3971. [Google Scholar] [CrossRef]
- Ha, H.T. The effect of the maturation time of calcium silicate-based cement (Biodentine) on resin bonding: An in vitro study. Appl. Adhes. Sci. 2019, 7, 1. [Google Scholar] [CrossRef]
- Samimi, P.; Kazemian, M.; Shirban, F.; Alaei, S.; Khoroushi, M. Bond strength of composite resin to white mineral trioxide aggregate: Effect of different surface treatments. J. Conserv. Dent. 2018, 21, 350. [Google Scholar] [CrossRef]
- Ipek, İ.; Karaağaç Eskibağlar, B.; Yildiz, Ş.; Ataş, O.; Ünal, M. Analysis of the bond strength between conventional, putty or resin-modified calcium silicate cement and bulk fill composites. Aust. Dent. J. 2023, 68, 265–272. [Google Scholar] [CrossRef]
- De Munck, J.; Van Landuyt, K.; Peumans, M.; Poitevin, A.; Lambrechts, P.; Braem, M.; Van Meerbeek, B. A critical review of the durability of adhesion to tooth tissue: Methods and results. J. Dent. Res. 2005, 84, 118–132. [Google Scholar] [CrossRef] [PubMed]
- Gurcan, A.; Society, S.S.J. Effects of different surface treatment methods on the micro-shear bond strength of calcium silicate–based materials. J. Aust. Ceram. Soc. 2024, 60, 497–507. [Google Scholar] [CrossRef]
- Bhullar, K.K.; Gupta, V.; Sapra, M.; Bhullar, R.S.; Sahiwal, H. Evaluation of surface microstructure and compressive strength of mineral trioxide aggregate and Biodentine in the existence and absence of oral tissue fluids. Int. J. Clin. Pediatr. Dent. 2024, 17, S1–S5. [Google Scholar] [CrossRef]
- Arandi, N.Z.; Thabet, M. Minimal intervention in dentistry: A literature review on Biodentine as a bioactive pulp capping material. Biomed. Res. Int. 2021, 2021, 5569313. [Google Scholar] [CrossRef] [PubMed]
- Falakaloğlu, S.; Yeniçeri Özata, M.; Plotino, G. Micro-shear bond strength of different calcium silicate materials to bulk-fill composite. PeerJ 2023, 11, e15183. [Google Scholar] [CrossRef]
- Suharwardy, Z.; Jain, R.; Khetarpal, A.; Bala, A. An in-vitro study comparing the shear bond strength of a self-adhering flowable composite and a bulk-fill flowable composite to various pulp capping materials. J. Adv. Med. Med. Res. 2024, 36, 1–11. [Google Scholar] [CrossRef]
- Mayya, A.; George, A.; Mayya, A.; D’souza, S.P.; Mayya, S.S. Impact of maturation time on the shear bond strength of an alkasite restorative material to pure tricalcium silicate based cement: An in-vitro experimental study. J. Int. Oral Health 2022, 14, 78–83. [Google Scholar] [CrossRef]
- Guerrero, F.; Berástegui, E. Porosity analysis of MTA and Biodentine cements for use in endodontics by using micro–computed tomography. J. Clin. Exp. Dent. 2018, 10, e136–e140. [Google Scholar] [CrossRef]
- Pires, M.; Cordeiro, J.; Vasconcelos, I.; Alves, M.; Quaresma, S.A.; Ginjeira, A.; Camilleri, J. Effect of different manipulations on the physical, chemical and microstructural characteristics of Biodentine. Dent. Mater. 2021, 37, e371–e383. [Google Scholar] [CrossRef]
- Mustafa, R.M.; Al-Nasrawi, S.J.; Aljdaimi, A.I. The effect of biodentine maturation time on resin bond strength when aged in artificial saliva. Int. J. Dent. 2020, 2020, 8831813. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk-Stuss, M.; Nowak, J.; Bołtacz-Rzepkowska, E. Bond strength of Biodentine to a resin-based composite at various acid etching times and with different adhesive strategies. Dent. Med. Probl. 2019, 56, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Durmazpinar, P.M.; Recen, D.; Çeliksöz, Ö.; Yazkan, B. Micro shear bond strength of mineral trioxide aggregate to different innovative dental restorative materials. Proc. Inst. Mech. Eng. H 2023, 237, 762–769. [Google Scholar] [CrossRef]
- Ajami, A.A.; Bahari, M.; Hassanpour-Kashani, A.; Abed-Kahnamoui, M.; Savadi-Oskoee, A.; Azadi-Oskoee, F. Shear bond strengths of composite resin and giomer to mineral trioxide aggregate at different time intervals. J. Clin. Exp. Dent. 2017, 9, e906. [Google Scholar] [CrossRef]
- Celiksoz, O.; Irmak, O. Delayed vs. immediate placement of restorative materials over Biodentine and RetroMTA: A micro-shear bond strength study. BMC Oral Health 2024, 24, 130. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, H.; Dhillon, J.S.; Batra, M.; Saini, M. MTA versus Biodentine: Review of literature with a comparative analysis. J. Clin. Diagn. Res. 2017, 11, ZG01–ZG05. [Google Scholar] [CrossRef]
- Lozano-Guillén, A.; López-García, S.; Rodríguez-Lozano, F.J.; Sanz, J.L.; Lozano, A.; Llena, C.; Forner, L. Comparative cytocompatibility of the new calcium silicate-based cement NeoPutty versus NeoMTA Plus and MTA on human dental pulp cells: An in vitro study. Clin. Oral Investig. 2022, 26, 7219–7228. [Google Scholar] [CrossRef]
- Martínez-Sabio, L.; Peñate, L.; Arregui, M.; Veloso Duran, A.; Blanco, J.R.; Guinot, F. Comparison of shear bond strength and microleakage between Activa Bioactive Restorative and Bulk-Fill Composites—An in vitro study. Polymers 2023, 15, 2840. [Google Scholar] [CrossRef]
- Ergül, R.; Aksu, S.; Çalışkan, S.; Tüloğlu, N. Shear bond strength of calcium silicate-based cements to glass ionomers. BMC Oral Health 2024, 24, 140. [Google Scholar] [CrossRef]
- François, P.; Benoit, A.; Slimani, L.; Dufresne, A.; Gouze, H.; Attal, J.P.; Mangione, F.; Dursun, E. In vitro remineralization by various ion-releasing materials of artificially demineralized dentin: A micro-CT study. Dent. Mater. 2024, 40, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Tohidkhah, S.; Kermanshah, H.; Ahmadi, E.; Jalalian, B.; Ranjbar Omrani, L. Marginal microleakage and modified microtensile bond strength of Activa Bioactive, in comparison with conventional restorative materials. Clin. Exp. Dent. Res. 2022, 8, 329–335. [Google Scholar] [CrossRef] [PubMed]
- Kenchappa, M.; Nagaveni, N.; Kashetty, B. Evaluation of the shear bond strength of methacrylate-based composite, resin-modified glass ionomer cement, and Fuji IX glass ionomer cement with Biodentine as a base. CODS J. Dent. 2020, 11, 40–43. [Google Scholar]

| Material | Manufacturer | Composition | Application | Lot No./ Expiry |
|---|---|---|---|---|
| NeoMTA Plus | Avalon Biomed Inc., Houston, TX, USA | Powder: Tricalcium silicate, dicalcium silicate, tantalite, calcium sulfate and silica; Liquid: salt-free polymer gel | Mix powder and liquid (1:3). Place it into the cavity. Set for 50–60 min. | NA |
| Biodentine | Septodont, Saint-Maur-des-Fossés, France | Powder: Tricalcium silicate, dicalcium silicate, calcium carbonate, zirconium oxide, calcium oxide, iron oxide; Liquid: calcium chloride, a hydrosoluble polymer and water | Capsule mixed in amalgamator 30 s, place, sets in 6.5–12 min | NA |
| Filtek Ultimate Universal Composite | 3M ESPE, St. Paul, MN, USA | Matrix: Bis-GMA, UDMA, TEGDMA, bis-EMA, PEGDMA; Fillers: 63.3% wt silica/zirconia (nanofiller), glass ceramic | Etch (10–15 s), rinse/dry, bond (G-Premio), light-cure 10 s, apply composite, light-cure 20 s at 1000 mW/cm2 standard power. | NA |
| Beautifil II (A2) | Shofu Inc., Kyoto, Japan | Matrix: Bis-GMA, UDMA, TEGDMA, Bis-MPEPP; Filler: 83.3% wt S-PRG (surface pre-reacted glass) | Etch (10–15 s), rinse/dry, bond (G-Premio), light-cure 10 s, apply composite, light-cure 20 s at 1000 mW/cm2 standard power. | NA |
| Activa BioActive Restorative (A2) | Pulpdent Corporation, Watertown, MA, USA | Diurethane and other methacrylates, modified polyacrylic acid, 55% bioactive glass, sodium fluoride | Etch (10–15 s), rinse/dry, bond (G-Premio), light-cure 10 s, apply composite, light-cure 20 s at 1000 mW/cm2 standard power. | NA |
| Fuji IX GP Extra | GC Corporation, Tokyo, Japan | Powder: Fluoroaluminosilicate glass, polyacrylic acid, tartaric acid; Liquid: polybasic acid, water | Used in capsule form. Etch for 10–15 s, rinse for 5 s, and dry. Applied to bioceramic surface. | NA |
| Total Etch | Ivoclar Vivadent AG, Schaan, Liechtenstein | 37% phosphoric acid gel | Apply 10–15 s, rinse 5 s and dry | NA |
| G-Premio Bond | GC Corporation, Tokyo, Japan | 4-MET, 10-MDP, MDTP, phosphoric acid monomer, acetone, water, photoinitiators, colloidal silica | Apply for 10 s, air dry 5 s, light-cure 10 s at 1000 mW/cm2 standard power. | NA |
| Groups | Mean ± SD (MPa) | Min/Max (MPa) | p |
|---|---|---|---|
| NM | 5.24 ± 3.08 a | 1.24/11.58 | 0.001 |
| BD | 11.52 ± 11.35 b | 2.20/41.58 |
| Subgroups | Mean ± SD (MPa) | Min/Max (MPa) |
|---|---|---|
| FU | 20.04 ± 9.98 b | 10.34/37.31 |
| BII | 19.39 ± 12.55 b | 7.16/41.58 |
| ACT | 3.89 ± 1.20 a | 2.25/6.05 |
| GIC | 2.76 ± 0.41 a | 2.20/3.40 |
| Subgroups | Mean ± SD (MPa) | Min/Max (MPa) |
|---|---|---|
| FU | 5.67 ± 4.06 a | 1.24/11.58 |
| BII | 7.05 ± 2.50 a | 3.08/10.05 |
| ACT | 6.07 ± 1.80 a | 3.20/8.58 |
| GIC | 2.18 ± 0.54 a | 1.40/3.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gündoğar, Z.U.; Keskin, G.; Yaman Küçükersen, M. Shear Bond Strength of Biointeractive Restorative Materials to NeoMTA Plus and Biodentine. Polymers 2025, 17, 3070. https://doi.org/10.3390/polym17223070
Gündoğar ZU, Keskin G, Yaman Küçükersen M. Shear Bond Strength of Biointeractive Restorative Materials to NeoMTA Plus and Biodentine. Polymers. 2025; 17(22):3070. https://doi.org/10.3390/polym17223070
Chicago/Turabian StyleGündoğar, Zübeyde Uçar, Gül Keskin, and Merve Yaman Küçükersen. 2025. "Shear Bond Strength of Biointeractive Restorative Materials to NeoMTA Plus and Biodentine" Polymers 17, no. 22: 3070. https://doi.org/10.3390/polym17223070
APA StyleGündoğar, Z. U., Keskin, G., & Yaman Küçükersen, M. (2025). Shear Bond Strength of Biointeractive Restorative Materials to NeoMTA Plus and Biodentine. Polymers, 17(22), 3070. https://doi.org/10.3390/polym17223070

