A Review of the Sampling, Analysis, and Identification Techniques of Microplastics in the Air: Insights into PM2.5 and PM10
Abstract
1. Introduction
1.1. Sources of Emission and Transport of Microplastics in the Atmosphere
1.2. Microplastic Air Sampling Process
- Passive Sampling
- b.
- Active Sampling
- c.
- Sampling height
- d.
- Factors related to weather conditions that affect the amount of microplastics that are collected during the sampling process
1.3. Microplastics in Indoor and Outdoor Environments
- Microplastics in Indoor Environments
- b.
- Microplastics in Outdoor Environments
- c.
- A Comparison of Microplastics in Indoor and Outdoor Environments
1.4. Sample Preparation and Processing
1.5. Microplastic Identification Techniques
- Visual Analysis
- b.
- Scanning Electron Microscopy (SEM)
- c.
- Fourier Transform Infrared Spectroscopy (FTIR)
- d.
- Raman Spectroscopy
- e.
- Other Identification Techniques
1.6. Types of Microplastics Found
1.7. Identification of Fibers, Fragments, Spheres, and Films—Colors of Microplastics in the Air
1.8. Microplastics Concentration
1.9. Microplastics in the Air and Their Effect on Health
1.10. Determination of Microplastics in PM2.5 and PM10 Fractions
1.11. Recommendations and Research Gaps
- Sampling LocationRecommendations:
- Select the sampling location according to the study objective: urban/rural setting, proximity to direct sources of microplastics (MPs), sampling height, and indoor or outdoor environments.
- Record environmental characteristics: temperature, humidity, atmospheric pressure, wind speed, and direction.
Gaps: limited information from rural environments; scarce data from Oceania, Africa, and Latin America; and contradictory results regarding seasonal and meteorological variability. - Sample collectionRecommendations:
- Active sampling: use an adjustable air pumping system, recording air volume and sampling time to ensure reproducibility.
- Passive sampling: collect deposition from rain or dust; this method is ideal for long-term studies and remote locations.
- It is recommended to use both methods simultaneously.
Gaps: lack of standardization in filters, pore sizes, and air volumes; although fiberglass filters < 1.6 µm are recommended, there is no universal consensus. - Sample PreparationRecommendations:
- Use cotton clothing and nitrile gloves.
- Employ only glass or stainless-steel materials.
- Perform blank controls to detect cross-contamination.
- Organic matter treatment: use H2O2 and Fenton’s reagent with controlled temperature and duration to prevent MP degradation.
- Alkaline digestion: use ZnCl2, carefully controlling concentration, time, and temperature to protect sensitive microplastics (PA, PET, PC, PLA).
- Sonication: apply short durations to remove particles without fragmenting MPs.
- Filtration: use fiberglass or PTFE filters with 0.45 µm pore size, followed by air drying.
Gaps: alternative, less aggressive, and less polluting methods are still underdeveloped; limited information exists on the validation of density separation (oleoextraction) for different polymer types. - Recommendations for Identification and Quantification of Microplastics
- Visual Analysis: Use stereomicroscopy (not suitable for particles smaller than 50 µm) and SEM to identify particle size, shape, color, and surface morphology.
- Spectroscopic Analysis: For chemical identification, use µFTIR and µRaman spectroscopy—the latter for particles smaller than 1 µm.
- Thermal Analysis: Apply Pyr-GC/MS and TGA-MS to identify plastic additives and polymer composition.
2. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Plastics Europe. Plastics—The Fast Facts 2023. 2023. Available online: https://plasticseurope.org/es/plastics-europe-publica-plastics-the-fast-facts-2023/ (accessed on 19 September 2024).
- Soltani, N.S.; Taylor, M.P.; Wilson, S.P. Quantification and exposure assessment of microplastics in Australian indoor house dust. Environ. Pollut. 2021, 283, 117064. [Google Scholar] [CrossRef] [PubMed]
- ISO/TR 21960:2020; Plastics—Environmental Aspects—State of Knowledge and Methodologies. International Organization for Standardization: Geneva, Switzerland, 2020.
- Hartmann, N.B.; Hüffer, T.; Thompson, R.C.; Hassellöv, M.; Verschoor, A.; Daugaard, A.E.; Rist, S.; Karlsson, T.; Brennholt, N.; Cole, M.; et al. Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris. Environ. Sci. Technol. 2019, 53, 1039–1047. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wong, C.S.; Chen, D.; Lu, X.; Wang, F.; Zeng, E.Y. Interaction of toxic chemicals with microplastics: A critical review. Water Res. 2018, 139, 208–219. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.C.; Courtene-Jones, W.; Boucher, J.; Pahl, S.; Raubenheimer, K.; Koelmans, A.A. Twenty years of microplastic pollution research-what have we learned? Science 2024, 386, eadl2746. [Google Scholar] [CrossRef]
- Free, C.M.; Jensen, O.P.; Mason, S.A.; Eriksen, M.; Williamson, N.J.; Boldgiv, B. High-levels of microplastic pollution in a large, remote, mountain lake. Mar. Pollut. Bull. 2014, 85, 156–163. [Google Scholar] [CrossRef]
- Jenner, L.C.; Sadofsky, L.R.; Danopoulos, E.; Chapman, E.; White, D.; Jenkins, R.L.; Rotchell, J.M. Outdoor Atmospheric Microplastics within the Humber Region (United Kingdom): Quantification and Chemical Characterisation of Deposited Particles Present. Atmosphere 2022, 13, 265. [Google Scholar] [CrossRef]
- Browne, M.A.; Galloway, T.S.; Thompson, R.C. Spatial patterns of plastic debris along estuarine shorelines. Environ. Sci. Technol. 2010, 44, 3404–3409. [Google Scholar] [CrossRef]
- Akanyange, S.N.; Zhang, Y.; Zhao, X.; Adom-Asamoah, G.; Ature, A.R.A.; Anning, C.; Tianpeng, C.; Zhao, H.; Lyu, X.; Crittenden, J.C. A holistic assessment of microplastic ubiquitousness: Pathway for source identification in the environment. Sustain. Prod. Consum. 2022, 33, 113–145. [Google Scholar] [CrossRef]
- Sharma, S.; Basu, S.; Shetti, N.P.; Nadagouda, M.N.; Aminabhavi, T.M. Microplastics in the environment: Occurrence, perils, and eradication. Chem. Eng. J. 2021, 408, 127317. [Google Scholar] [CrossRef]
- Noorimotlagh, Z.; Hopke, P.K.; Mirzaee, S.A. A systematic review of airborne microplastics emissions as emerging contaminants in outdoor and indoor air environments. Emerg. Contam. 2024, 10, 100372. [Google Scholar] [CrossRef]
- Rezaei, M.; Riksen, M.J.P.M.; Sirjani, E.; Sameni, A.; Geissen, V. Wind erosion as a driver for transport of light density microplastics. Sci. Total Environ. 2019, 669, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Fu, Z.; Yang, H.; Wang, J. An overview of analytical methods for detecting microplastics in the atmosphere. TrAC—Trends Anal. Chem. 2020, 130, 115981. [Google Scholar] [CrossRef]
- Liao, Z.; Ji, X.; Ma, Y.; Lv, B.; Huang, W.; Zhu, X.; Fang, M.; Wang, Q.; Wang, X.; Dahlgren, R.; et al. Airborne microplastics in indoor and outdoor environments of a coastal city in Eastern China. J. Hazard. Mater. 2021, 417, 126007. [Google Scholar] [CrossRef]
- Zhang, Y.; Slade, J.H.; Ault, A.P.; Chan, A.W.H. An Atmospheric Chemistry Perspective on Airborne Micro- and Nanoplastic Particles. Environ. Sci. Technol. 2025, 59, 7810–7819. [Google Scholar] [CrossRef]
- Zhu, G.; Yue, K.; Ni, X.; Yuan, C.; Wu, F. The types of microplastics, heavy metals, and adsorption environments control the microplastic adsorption capacity of heavy metals. Environ. Sci. Pollut. Res. 2023, 30, 80807–80816. [Google Scholar] [CrossRef]
- Dehghani, S.; Moore, F.; Akhbarizadeh, R. Microplastic pollution in deposited urban dust, Tehran metropolis, Iran. Environ. Sci. Pollut. Res. 2017, 24, 20360–20371. [Google Scholar] [CrossRef]
- Koelmans, A.A.; Redondo-Hasselerharm, P.E.; Nor, N.H.M.; de Ruijter, V.N.; Mintenig, S.M.; Kooi, M. Risk assessment of microplastic particles. Nat. Rev. Mater. 2022, 7, 138–152. [Google Scholar] [CrossRef]
- Chen, C.; Long, X.; Guo, Z.; Li, J.; Li, H.; Tian, M.; Wang, R.; Li, Q.; Zou, X.; Yang, J.; et al. Electrification of wind-blown microplastics and its implication for transport of floating microplastics in air. J. Hazard. Mater. 2025, 495, 138992. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Wang, X.; Xu, L.; Ding, J.; Wania, F. A Flow-through Passive Sampler for Microplastics in Air. Environ. Sci. Technol. 2023, 57, 2362–2370. [Google Scholar] [CrossRef] [PubMed]
- Edo, C.; Fernández-Piñas, F.; Leganes, F.; Gómez, M.; Martínez, I.; Herrera, A.; Hernández-Sánchez, C.; González-Sálamo, J.; Borges, J.H.; López-Castellanos, J.; et al. A nationwide monitoring of atmospheric microplastic deposition. Sci. Total Environ. 2023, 905, 166923. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.L.; Ulke, J.; Font, A.; Chan, K.L.A.; Kelly, F.J. Atmospheric microplastic deposition in an urban environment and an evaluation of transport. Environ. Int. 2020, 136, 105411. [Google Scholar] [CrossRef]
- Klein, M.; Fischer, E.K. Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany. Sci. Total Environ. 2019, 685, 96–103. [Google Scholar] [CrossRef]
- Yao, Y.; Glamoclija, M.; Murphy, A.; Gao, Y. Characterization of microplastics in indoor and ambient air in northern New Jersey. Environ. Res. 2022, 207, 112142. [Google Scholar] [CrossRef] [PubMed]
- Crawford, C.B.; Quinn, B. Microplastic identification techniques. In Microplastic Pollutants; Elsevier: Amsterdam, The Netherlands, 2017; pp. 219–267. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, X.; Liao, K.; Wu, P.; Jin, H. Microplastics in dust from different indoor environments. Sci. Total Environ. 2022, 833, 155256. [Google Scholar] [CrossRef]
- O’Brien, S.; Okoffo, E.D.; Rauert, C.; O’Brien, J.W.; Ribeiro, F.; Burrows, S.D.; Toapanta, T.; Wang, X.; Thomas, K.V. Quantification of selected microplastics in Australian urban road dust. J. Hazard. Mater. 2021, 416, 125811. [Google Scholar] [CrossRef]
- Kernchen, S.; Löder, M.G.J.; Fischer, F.; Fischer, D.; Moses, S.R.; Georgi, C.; Nölscher, A.C.; Held, A.; Laforsch, C. Airborne microplastic concentrations and deposition across the Weser River catchment. Sci. Total Environ. 2022, 818, 151812. [Google Scholar] [CrossRef]
- Brahney, J.; Hallerud, M.; Heim, E.; Hahnenberger, M.; Sukumaran, S. Plastic rain in protected areas of the United States. Science 2020, 368, 1257–1260. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.H.; Shin, Y.; Song, I.; Lim, J.; Ok, Y.S.; Weon, S. Atmospheric microplastics: Challenges in site- and target-specific measurements. TrAC—Trends Anal. Chem. 2024, 178, 117859. [Google Scholar] [CrossRef]
- Liu, K.; Wang, X.; Song, Z.; Wei, N.; Li, D. Terrestrial plants as a potential temporary sink of atmospheric microplastics during transport. Sci. Total Environ. 2020, 742, 140523. [Google Scholar] [CrossRef]
- Chang, D.Y.; Jeong, S.; Shin, J.; Park, J.; Park, C.R.; Choi, S.; Chun, C.H.; Chae, M.Y.; Lim, B.C. First quantification and chemical characterization of atmospheric microplastics observed in Seoul, South Korea. Environ. Pollut. 2023, 327, 121481. [Google Scholar] [CrossRef] [PubMed]
- Azari, A.; Vanoirbeek, J.A.J.; Van Belleghem, F.; Vleeschouwers, B.; Hoet, P.H.M.; Ghosh, M. Sampling strategies and analytical techniques for assessment of airborne micro and nano plastics. Environ. Int. 2023, 174, 107885. [Google Scholar] [CrossRef] [PubMed]
- Vianello, A.; Jensen, R.L.; Liu, L.; Vollertsen, J. Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin. Sci. Rep. 2019, 9, 8670. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.; Allen, D.; Phoenix, V.R.; Le Roux, G.; Durántez Jiménez, P.; Simonneau, A.; Binet, S.; Galop, D. Atmospheric transport and deposition of microplastics in a remote mountain catchment. Nat. Geosci. 2019, 12, 339–344. [Google Scholar] [CrossRef]
- Beres, N.; Burkart, J.; Graf, E.; Zeder, Y.; Niederberger, E.; Dailey, L.A.; Weinzierl, B. A novel online method for the detection, analysis, and classification of airborne microplastics. In Proceedings of the EGU General Assembly 2023, Vienna, Austria, 23–28 April 2023. EGUGA EGU-12884. [Google Scholar] [CrossRef]
- Mutshekwa, T.; Mulaudzi, F.; Maiyana, V.P.; Mofu, L.; Munyai, L.F.; Murungweni, F.M. Atmospheric deposition of microplastics in urban, rural, forest environments: A case study of Thulamela Local Municipality. PLoS ONE 2025, 20, e0313840. [Google Scholar] [CrossRef]
- Kung, H.C.; Wu, C.H.; Cheruiyot, N.K.; Mutuku, J.K.; Huang, B.W.; Chang-Chien, G.P. The Current Status of Atmospheric Micro/Nanoplastics Research: Characterization, Analytical Methods, Fate, and Human Health Risk. Aerosol. Air Qual. Res. 2023, 23, 220362. [Google Scholar] [CrossRef]
- Abbasi, S. Microplastics washout from the atmosphere during a monsoon rain event. J. Hazard. Mater. Adv. 2021, 4, 100035. [Google Scholar] [CrossRef]
- Amato-Lourenço, L.F.; dos Santos Galvão, L.; Wiebeck, H.; Carvalho-Oliveira, R.; Mauad, T. Atmospheric microplastic fallout in outdoor and indoor environments in São Paulo megacity. Sci. Total Environ. 2022, 821, 153450. [Google Scholar] [CrossRef]
- Liu, K.; Wang, X.; Wei, N.; Song, Z.; Li, D. Accurate quantification and transport estimation of suspended atmospheric microplastics in megacities: Implications for human health. Environ. Int. 2019, 132, 10512. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Li, X.; Zhang, X.; Zhang, Y.; Gao, W.; Wang, R.; He, D. Air conditioner filters become sinks and sources of indoor microplastics fibers. Environ. Pollut. 2022, 292, 118465. [Google Scholar] [CrossRef]
- Enyoh, C.E.; Verla, A.W.; Verla, E.N.; Ibe, F.C.; Amaobi, C.E. Airborne microplastics: A review study on method for analysis, occurrence, movement and risks. Environ. Monit. Assess. 2019, 191, 668. [Google Scholar] [CrossRef]
- Shruti, V.C.; Kutralam-Muniasamy, G.; Pérez-Guevara, F.; Roy, P.D.; Martínez, I.E. Occurrence and characteristics of atmospheric microplastics in Mexico City. Sci. Total Environ. 2022, 847, 157601. [Google Scholar] [CrossRef] [PubMed]
- Winijkul, E.; Latt, K.Z.; Limsiriwong, K.; Pussayanavin, T.; Prapaspongsa, T. Depositions of airborne microplastics during the wet and dry seasons in Pathum Thani, Thailand. Atmos. Pollut. Res. 2024, 15, 102242. [Google Scholar] [CrossRef]
- Prajapati, A.; Jadhao, P.; Kumar, A.R. Atmospheric microplastics deposition in a central Indian city: Distribution, characteristics and seasonal variations. Environ. Pollut. 2025, 374, 126183. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, K.; Shi, X.; Chen, L.; Li, H. Analysis of microplastic sources in Wuliangsuhai Lake, China: Implications to microplastic deposition in cold, arid region lakes. J. Hazard. Mater. 2025, 492, 138135. [Google Scholar] [CrossRef]
- Zhou, Q.; Tian, C.; Luo, Y. Various forms and deposition fluxes of microplastics identified in the coastal urban atmosphere. Chin. Sci. Bull. 2017, 62, 3902–3909. [Google Scholar] [CrossRef]
- Nafea, T.H.; Shun Chan, F.K.; Xu, Y.; Xiao, H.; He, J. Unveiling the seasonal transport and exposure risks of atmospheric microplastics in the southern area of the Yangtze River Delta, China. Environ. Pollut. 2025, 367, 125567. [Google Scholar] [CrossRef]
- Jung, C.C.; Chao, Y.C.; Hsu, H.T.; Gong, D.W. Spatial and seasonal variations of atmospheric microplastics in high and low population density areas at the intersection of tropical and subtropical regions. Environ. Res. 2024, 263, 119996. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, L.; Kannan, K. Microplastics in house dust from 12 countries and associated human exposure. Environ. Int. 2020, 134, 105314. [Google Scholar] [CrossRef]
- Cui, J.; Chen, C.; Gan, Q.; Wang, T.; Li, W.; Zeng, W.; Xu, X.; Chen, G.; Wang, L.; Lu, Z.; et al. Indoor microplastics and bacteria in the atmospheric fallout in urban homes. Sci. Total Environ. 2022, 852, 158233. [Google Scholar] [CrossRef]
- Jia, Q.; Duan, Y.; Han, X.; Sun, X.; Munyaneza, J.; Ma, J.; Xiu, G. Atmospheric deposition of microplastics in the megalopolis (Shanghai) during rainy season: Characteristics, influence factors, and source. Sci. Total Environ. 2022, 847, 157609. [Google Scholar] [CrossRef]
- Kumar, R.; Pippal, P.S.; Yadav, V.K.; Namgyal, P.; Kumar, R. A systematic review of sources and pathways of microplastics at higher altitudes in glaciated environments. Phys. Chem. Earth Parts A/B/C 2025, 140, 104018. [Google Scholar] [CrossRef]
- Choi, H.; Lee, I.; Kim, H.; Park, J.; Cho, S.; Oh, S.; Lee, M.; Kim, H. Comparison of Microplastic Characteristics in the Indoor and Outdoor Air of Urban Areas of South Korea. Water Air Soil. Pollut. 2022, 233, 169. [Google Scholar] [CrossRef]
- Dris, R.; Gasperi, J.; Mirande, C.; Mandin, C.; Guerrouache, M.; Langlois, V.; Tassin, B. A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environ. Pollut. 2017, 221, 453–458. [Google Scholar] [CrossRef]
- Gaston, E.; Woo, M.; Steele, C.; Sukumaran, S.; Anderson, S. Microplastics Differ Between Indoor and Outdoor Air Masses: Insights from Multiple Microscopy Methodologies. Appl. Spectrosc. 2020, 74, 1079–1098. [Google Scholar] [CrossRef] [PubMed]
- Prata, J.C.; Castro, J.L.; da Costa, J.P.; Duarte, A.C.; Cerqueira, M.; Rocha-Santos, T. An easy method for processing and identification of natural and synthetic microfibers and microplastics in indoor and outdoor air. MethodsX 2020, 7, 100762. [Google Scholar] [CrossRef] [PubMed]
- Bhat, M.A.; Gaga, E.O.; Gedik, K. How can contamination be prevented during laboratory analysis of atmospheric samples for microplastics? Environ. Monit. Assess. 2024, 196, 159. [Google Scholar] [CrossRef]
- Prata, J.C.; Castro, J.L.; da Costa, J.P.; Duarte, A.C.; Rocha-Santos, T.; Cerqueira, M. The importance of contamination control in airborne fibers and microplastic sampling: Experiences from indoor and outdoor air sampling in Aveiro, Portugal. Mar. Pollut. Bull. 2020, 159, 111522. [Google Scholar] [CrossRef]
- Paiva, B.O.; de Souza, A.K.M.; Soares, P.L.; Palma, A.R.T.; Vendel, A.L. How to Control the Airborne Contamination in Laboratory Analyses of Microplastics? Braz. Arch. Biol. Technol. 2022, 65, e22210399. [Google Scholar] [CrossRef]
- Habibi, N.; Uddin, S.; Fowler, S.W.; Behbehani, M. Microplastics in the atmosphere: A review. J. Environ. Expo. Assess. 2022, 1, 6. [Google Scholar] [CrossRef]
- Abbasi, S.; Keshavarzi, B.; Moore, F.; Turner, A.; Kelly, F.J.; Dominguez, A.O.; Jaafarzadeh, N. Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran. Environ. Pollut. 2019, 244, 153–164. [Google Scholar] [CrossRef]
- Liu, P.; Shao, L.; Li, Y.; Jones, T.; Cao, Y.; Yang, C.X.; Zhang, M.; Santosh, M.; Feng, X.; BéruBé, K. Microplastic atmospheric dustfall pollution in urban environment: Evidence from the types, distribution, and probable sources in Beijing, China. Sci. Total Environ. 2022, 838, 155989. [Google Scholar] [CrossRef]
- Tunahan Kaya, A.; Yurtsever, M.; Çiftçi Bayraktar, S. Ubiquitous exposure to microfiber pollution in the air. Eur. Phys. J. Plus. 2018, 133, 488. [Google Scholar] [CrossRef]
- Nizamali, J.; Mintenig, S.M.; Koelmans, A.A. Assessing microplastic characteristics in bottled drinking water and air deposition samples using laser direct infrared imaging. J. Hazard. Mater. 2023, 441, 129942. [Google Scholar] [CrossRef]
- Tian, L.; Skoczynska, E.; Siddhanti, D.; van Putten, R.J.; Leslie, H.A.; Gruter, G.J.M. Quantification of polyethylene terephthalate microplastics and nanoplastics in sands, indoor dust and sludge using a simplified in-matrix depolymerization method. Mar. Pollut. Bull. 2022, 175, 113403. [Google Scholar] [CrossRef]
- Liu, K.; Wang, X.; Fang, T.; Xu, P.; Zhu, L.; Li, D. Source and potential risk assessment of suspended atmospheric microplastics in Shanghai. Sci. Total Environ. 2019, 675, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Li, Y.; Feng, Y.; Cheng, W.; Wang, Y. Inhalable microplastics prevails in air: Exploring the size detection limit. Environ. Int. 2022, 162, 107151. [Google Scholar] [CrossRef]
- Akhbarizadeh, R.; Dobaradaran, S.; Amouei Torkmahalleh, M.; Saeedi, R.; Aibaghi, R.; Faraji Ghasemi, F. Suspended fine particulate matter (PM2.5), microplastics (MPs), and polycyclic aromatic hydrocarbons (PAHs) in air: Their possible relationships and health implications. Environ. Res. 2021, 192, 110339. [Google Scholar] [CrossRef]
- Schrank, I.; Möller, J.N.; Imhof, H.K.; Hauenstein, O.; Zielke, F.; Agarwal, S.; Löder, M.G.J.; Greiner, A.; Laforsch, C. Microplastic sample purification methods—Assessing detrimental effects of purification procedures on specific plastic types. Sci. Total Environ. 2022, 833, 154824. [Google Scholar] [CrossRef] [PubMed]
- Corami, F.; Rosso, B.; Morabito, E.; Rensi, V.; Gambaro, A.; Barbante, C. Small microplastics (<100 μm), plasticizers and additives in seawater and sediments: Oleo-extraction, purification, quantification, and polymer characterization using Micro-FTIR. Sci. Total Environ. 2021, 797, 148937. [Google Scholar] [CrossRef] [PubMed]
- Din, K.S.; Khokhar, M.F.; Amjad, H. Tracking Microplastics in the Air: Cutting-edge Methods for Indoor and Outdoor Environments. Aerosol. Air Qual. Res. 2024, 24, 240073. [Google Scholar] [CrossRef]
- Hurley, R.R.; Lusher, A.L.; Olsen, M.; Nizzetto, L. Validation of a Method for Extracting Microplastics from Complex, Organic-Rich, Environmental Matrices. Environ. Sci. Technol. 2018, 52, 7409–7417. [Google Scholar] [CrossRef]
- Dong, H.; Wang, L.; Wang, X.; Xu, L.; Chen, M.; Gong, P.; Wang, C. Microplastics in a Remote Lake Basin of the Tibetan Plateau: Impacts of Atmospheric Transport and Glacial Melting. Environ. Sci. Technol. 2021, 55, 12951–12960. [Google Scholar] [CrossRef]
- Xu, G.; Cheng, H.; Jones, R.; Feng, Y.; Gong, K.; Li, K.; Fang, X.; Tahir, M.A.; Valev, V.K.; Zhang, L. Surface-Enhanced Raman Spectroscopy Facilitates the Detection of Microplastics <1 μm in the Environment. Environ. Sci. Technol. 2020, 54, 15594–15603. [Google Scholar] [CrossRef] [PubMed]
- Abbasi, S.; Keshavarzi, B.; Moore, F.; Delshab, H.; Soltani, N.; Sorooshian, A. Investigation of microrubbers, microplastics and heavy metals in street dust: A study in Bushehr city, Iran. Environ. Earth Sci. 2017, 76, 798. [Google Scholar] [CrossRef]
- Nematollahi, M.J.; Zarei, F.; Keshavarzi, B.; Zarei, M.; Moore, F.; Busquets, R.; Kelly, F.J. Microplastic occurrence in settled indoor dust in schools. Sci. Total Environ. 2022, 807, 150984. [Google Scholar] [CrossRef]
- Möller, J.N.; Löder, M.G.J.; Laforsch, C. Finding Microplastics in Soils: A Review of Analytical Methods. Environ. Sci. Technol. 2020, 54, 2078–2090. [Google Scholar] [CrossRef]
- GESAMP. Guidelines for the Monitoring and Assessment of Plastic Litter in the Ocean; GESAMP: London, UK, 2019. [Google Scholar]
- Pfohl, P.; Roth, C.; Meyer, L.; Heinemeyer, U.; Gruendling, T.; Lang, C.; Nestle, N.; Hofmann, T.; Wohlleben, W.; Jessl, S. Microplastic extraction protocols can impact the polymer structure. Microplast. Nanoplast. 2021, 1, 8. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, M.; Hedtke, T.; Deshmukh, A.; Zhou, X.; Weon, S.; Elimelech, M.; Kim, J.H. Mechanism of Heterogeneous Fenton Reaction Kinetics Enhancement under Nanoscale Spatial Confinement. Environ. Sci. Technol. 2020, 54, 10868–10875. [Google Scholar] [CrossRef] [PubMed]
- Enders, K.; Lenz, R.; Beer, S.; Stedmon, C.A. Extraction of microplastic from biota: Recommended acidic digestion destroys common plastic polymers. ICES J. Mar. Sci. 2017, 74, 326–331. [Google Scholar] [CrossRef]
- Karami, A.; Golieskardi, A.; Keong, C.; Romano, N.; Bin, Y.; Salamatinia, B. Science of the Total Environment A high-performance protocol for extraction of microplastics in fish. Sci. Total Environ. 2017, 578, 485–494. [Google Scholar] [CrossRef]
- Liu, X.; Lu, J.; He, S.; Tong, Y.; Liu, Z.; Li, W.; Xiayihazi, N. Evaluation of microplastic pollution in Shihezi city, China, using pine needles as a biological passive sampler. Sci. Total Environ. 2022, 821, 153181. [Google Scholar] [CrossRef]
- Yukioka, S.; Tanaka, S.; Nabetani, Y.; Suzuki, Y.; Ushijima, T.; Fujii, S.; Takada, H.; Van Tran, Q.; Singh, S. Occurrence and characteristics of microplastics in surface road dust in Kusatsu (Japan), Da Nang (Vietnam), and Kathmandu (Nepal). Environ. Pollut. 2020, 256, 113447. [Google Scholar] [CrossRef] [PubMed]
- Zobkov, M.B.; Esiukova, E.E. Evaluation of the Munich Plastic Sediment Separator efficiency in extraction of microplastics from natural marine bottom sediments. Limnol. Oceanogr. Methods 2017, 15, 967–978. [Google Scholar] [CrossRef]
- Rosso, B.; Corami, F.; Barbante, C.; Gambaro, A. Quantification and identification of airborne small microplastics (<100 μm) and other microlitter components in atmospheric aerosol via a novel elutriation and oleo-extraction method. Environ. Pollut. 2023, 318, 120889. [Google Scholar] [CrossRef]
- Primpke, S.; Dias, P.A.; Gerdts, G. Automated identification and quantification of microfibres and microplastics. Anal. Methods 2019, 11, 2138–2147. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Y.; Kang, S.; Wang, Z.; Wu, C. Microplastics in freshwater sediment: A review on methods, occurrence, and sources. Sci. Total Environ. 2021, 754, 141948. [Google Scholar] [CrossRef]
- Löder, M.G.J.; Imhof, H.K.; Ladehoff, M.; Löschel, L.A.; Lorenz, C.; Mintenig, S.; Piehl, S.; Primpke, S.; Schrank, I.; Laforsch, C.; et al. Enzymatic Purification of Microplastics in Environmental Samples. Environ. Sci. Technol. 2017, 51, 14283–14292. [Google Scholar] [CrossRef]
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in the marine environment: A review of the methods used for identification and quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef]
- Primpke, S.; Christiansen, S.H.; Cowger, W.; De Frond, H.; Deshpande, A.; Fischer, M.; Holland, E.B.; Meyns, M.; O’Donnell, B.A.; Ossmann, B.E.; et al. Critical Assessment of Analytical Methods for the Harmonized and Cost-Efficient Analysis of Microplastics. Appl. Spectrosc. 2020, 74, 1012–1047. [Google Scholar] [CrossRef] [PubMed]
- Priya, K.L.; Renjith, K.R.; Joseph, C.J.; Indu, M.S.; Srinivas, R.; Haddout, S. Fate. Fate, transport and degradation pathway of microplastics in aquatic environment—A critical review. Reg. Stud. Mar. Sci. 2022, 56, 102647. [Google Scholar] [CrossRef]
- Yoo, H.; Kim, M.; Lee, Y.; Park, J.; Lee, H.; Song, Y.C.; Ro, C.U. Novel Single-Particle Analytical Technique for Inhalable Airborne Microplastic Particles by the Combined Use of Fluorescence Microscopy, Raman Microspectrometry, and SEM/EDX. Anal. Chem. 2023, 95, 8552–8559. [Google Scholar] [CrossRef]
- Rocha-Santos, T.; Duarte, A.C. A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment. TrAC—Trends Anal. Chem. 2015, 65, 47–53. [Google Scholar] [CrossRef]
- Goldstein, J.; Newburry, D.; Michael, J.; Ritchie, N.; Scott, J.; Joy, D. Scanning Electron Microscopy and X-Ray Microanalysis, Cuarta; Springer: New York, NY, USA, 2017. [Google Scholar]
- Shim, W.J.; Hong, S.H.; Eo, S.E. Identification methods in microplastic analysis: A review. Anal. Methods 2017, 9, 1384–1391. [Google Scholar] [CrossRef]
- Veerasingam, S.; Ranjani, M.; Venkatachalapathy, R.; Bagaev, A.; Mukhanov, V.; Litvinyuk, D.; Mugilarasan, M.; Gurumoorthi, K.; Guganathan, L.; Aboobacker, V.M.; et al. Contributions of Fourier transform infrared spectroscopy in microplastic pollution research: A review. Crit. Rev. Environ. Sci. Technol. 2021, 51, 2681–2743. [Google Scholar] [CrossRef]
- Li, J.; Liu, H.; Paul Chen, J. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Res. 2018, 137, 362–374. [Google Scholar] [CrossRef]
- Huppertsberg, S.; Knepper, T.P. Instrumental analysis of microplastics—Benefits and challenges. Anal. Bioanal. Chem. 2018, 410, 6343–6352. [Google Scholar] [CrossRef] [PubMed]
- Sobhani, Z.; Al Amin, M.; Naidu, R.; Megharaj, M.; Fang, C. Identification and visualisation of microplastics by Raman mapping. Anal. Chim. Acta 2019, 1077, 191–199. [Google Scholar] [CrossRef]
- Zhu, X. The Sources of Microplastics in San Francisco Bay, California, USA. Master’s Thesis, University of Toronto, Toronto, ON, Canada, 2019. [Google Scholar]
- Oßmann, B.E.; Sarau, G.; Schmitt, S.W.; Holtmannspötter, H.; Christiansen, S.H.; Dicke, W. Development of an optimal filter substrate for the identification of small microplastic particles in food by micro-Raman spectroscopy. Anal. Bioanal. Chem. 2017, 409, 4099–4109. [Google Scholar] [CrossRef]
- Peñalver, R.; Costa-Gómez, I.; Arroyo-Manzanares, N.; Moreno, J.M.; López-García, I.; Moreno-Grau, S.; Córdoba, M.H. Assessing the level of airborne polystyrene microplastics using thermogravimetry-mass spectrometry: Results for an agricultural area. Sci. Total Environ. 2021, 787, 147656. [Google Scholar] [CrossRef]
- Estévez-Danta, A.; Ayala-Cabrera, J.F.; López-Vázquez, J.; Musatadi, M.; Montes, R.; Etxebarria, N.; Quintana, J.B.; Olivares, M.; Prieto, A.; Rodil, R.; et al. Analytical methodology for unveiling human exposure to (micro)plastic additives. TrAC—Trends Anal. Chem. 2024, 173, 117653. [Google Scholar] [CrossRef]
- Tsuge, S.; Ohtani, H.; Watanable, C. Pyrolysis-GC/MS Data Book of Synthetic Polymers: Pyrograms, Thermograms and MS of Pyrolyzates; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Dris, R.; Gasperi, J.; Rocher, V.; Saad, M.; Renault, N.; Tassin, B. Microplastic contamination in an urban area: A case study in Greater Paris. Environ. Chem. 2015, 12, 592–599. [Google Scholar] [CrossRef]
- Zhu, X.; Huang, W.; Fang, M.; Liao, Z.; Wang, Y.; Xu, L.; Mu, Q.; Shi, C.; Lu, C.; Deng, H.; et al. Airborne Microplastic Concentrations in Five Megacities of Northern and Southeast China. Environ. Sci. Technol. 2021, 55, 12871–12881. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.; Allen, D.; Moss, K.; Le Roux, G.; Phoenix, V.R.; Sonke, J.E. Examination of the ocean as a source for atmospheric microplastics. PLoS ONE 2020, 15, e023274. [Google Scholar] [CrossRef]
- Gasperi, J.; Wright, S.L.; Dris, R.; Collard, F.; Mandin, C.; Guerrouache, M.; Langlois, V.; Kelly, F.J.; Tassin, B. Microplastics in air: Are we breathing it in? Curr. Opin. Environ. Sci. Health 2018, 1, 1–5. [Google Scholar] [CrossRef]
- Prata, J.C. Airborne microplastics: Consequences to human health? Environ. Pollut. 2018, 234, 115–126. [Google Scholar] [CrossRef]
- Jabbal, S.; Poli, G.; Lipworth, B. Does size really matter?: Relationship of particle size to lung deposition and exhaled fraction. J. Allergy Clin. Immunol. 2017, 139, 2013–2014.e1. [Google Scholar] [CrossRef]
- Kau, D.; Materić, D.; Holzinger, R.; Baumann-Stanzer, K.; Schauer, G.; Kasper-Giebl, A. Fine micro- and nanoplastics concentrations in particulate matter samples from the high alpine site Sonnblick, Austria. Chemosphere 2024, 352, 141410. [Google Scholar] [CrossRef]
- Wu, C.H.; Dang, T.T.M.; Mutuku, J.K.; Lin, L.M.; Huang, B.W.; Chang-Chien, G.P. Evaluation of PM2.5 bound microplastics and plastic additives in several cities in Taiwan: Spatial distribution and human health risk. Sci. Total Environ. 2025, 959, 178213. [Google Scholar] [CrossRef]
- Costa-Gómez, I.; Suarez-Suarez, M.; Moreno, J.M.; Moreno-Grau, S.; Negral, L.; Arroyo-Manzanares, N.; López-García, I.; Peñalver, R. A novel application of thermogravimetry-mass spectrometry for polystyrene quantification in the PM10 and PM2.5 fractions of airborne microplastics. Sci. Total Environ. 2023, 856, 159041. [Google Scholar] [CrossRef]
- Chen, Y.; Jing, S.; Wang, Y.; Song, Z.; Xie, L.; Shang, X.; Fu, H.; Yang, X.; Wang, H.; Wu, M.; et al. Quantification and Characterization of Fine Plastic Particles as Considerable Components in Atmospheric Fine Particles. Environ. Sci. Technol. 2024, 58, 4691–4703. [Google Scholar] [CrossRef]
- US Environmental Protection Agency (EPA). Reference Method for the Determination of Particulate Matter as PM10 in the Atmosphere; Appendix J; EPA: Washington, DC, USA, 2012. [Google Scholar]
- Panko, J.M.; Hitchcock, K.M.; Fuller, G.W.; Green, D. Evaluation of tire wear contribution to PM2.5 in urban environments. Atmosphere 2019, 10, 99. [Google Scholar] [CrossRef]
- Jan Kole, P.; Löhr, A.J.; Van Belleghem, F.G.A.J.; Ragas, A.M.J. Wear and Tear of Tyres: A Stealthy Source of Microplastics in the Environment. Int. J. Environ. Res. Public Health 2017, 14, 1265. [Google Scholar] [CrossRef]
- Zhou, J.; Cheng, T.; Yang, Y.; Zhang, X.; Wang, K.; Wang, L. Seasonal co-occurrence and inhalation risks of microplastics and benzotriazole ultraviolet stabilizers in atmospheric PM2.5 from northern Chinese city. Environ. Int. 2025, 202, 109721. [Google Scholar] [CrossRef]






| City | Sampling Environment | Filters | Type of Sampling | Sample Preparation | Identification Methods | Ref. |
|---|---|---|---|---|---|---|
| Lhasa, China | Outdoor | Fiberglass (1 μm) and Polycarbonate filters (1 μm) | Passive | 30% H2O2 | u-FTIR, Microscopy | [21] |
| Beijing, China | Outdoor | - | Passive | 30% H2O2 ZnCl2 (1.7–1.8 g/cm3) Ethanol and ultrasound washes | SEM, LDIR | [65] |
| New Jersey, USA | Outdoor and indoor | Quartz filters (2.2 μm) | Active and passive | 30% H2O2 | Optical microscopy and stereoscopy Raman | [25] |
| Asaluyeh, Iran | Outdoor | PTFE filters (2 µm) | Active and Passive | 35% H2O2 NaI (1.6 g/cm3) | Binocular microscopy SEM | [64] |
| London, England | Outdoor | - | Passive | Ultrasonic treatment with HPLC-grade methanol NR addition | Fluorescence microscopy, FTIR | [23] |
| Seoul, South Korea | Outdoor | Cellulose nitrate filters | Active | Fenton reagent Density separation LMT | uFT-IR microscopy | [33] |
| Hamburg, Germany | Outdoor | - | Passive | 6–14% de NaClO | Fluorescence microscopy Raman | [24] |
| Sakarya, Turkey | Outdoor | Stainless-steel filters (50 μm and 500 μm) | Active | 35% H2O2 ZnCl2 (1.5–1.7 g/cm3) | Optical microscopy u-FTIR | [66] |
| Coastal City, East China | Outdoor and indoor | Whatman glass microfiber filters (0.7 μm) | Active | 30% H2O2 NR addition | u-FTIR | [15] |
| Wageningen, Amerongen, Zetten and Utrecht. Netherlands | Indoor | - | Passive | 96% ethanol treatment | LDIR | [67] |
| Spain and the Canary Islands | Outdoor | - | Passive | Digestion with 33% H2O2 | Stereomicroscopy u-FTIR | [22] |
| Netherlands | Indoor | PTFE filters (0.2 µm) | Passive | Ethylene glycol | LC-UV (LOD ¼ 62 mg/L) LC-ESI-MS | [68] |
| Shanghai, China | Outdoor and indoor | Glass fiber filter GF/A (1.6 μm) | Active | KOH and pentanol | u-FTIR ESIeMS/MS | [69] |
| Shanghai, China | Outdoor and indoor | Alumina filter GE (0.22 μm) | Active | Dilute hydrochloric acid, pH = 3. | Raman | [70] |
| Method | Main Reagents/Conditions | Advantages | Disadvantages | References |
|---|---|---|---|---|
| Oxidation with H2O2 | 30% H2O2, 60–70 °C, 12–48 h (up to 7–10 days in some cases) |
|
| [24,76,77,78,79,80] |
| Sodium hypochlorite (NaClO) | 6–14% v/v solution |
|
| [24] |
| Fenton’s reagent (Fe2+/H2O2) | FeSO4 + H2O2, 40–50 °C |
|
| [33,72,75,80,81,82] |
| Alkaline digestion | NaOH (1–10 M), KOH (10–20%), 20–80 °C |
|
| [70,72,75,83] |
| Acid digestion | 15.7 M HNO3, HClO4, H2SO5, 37% HCl |
|
| [72,84,85] |
| Enzymatic digestion | Protease K, cellulase, chitinase |
|
| [72,80] |
| Density separation | ZnCl2 (ρ = 1.6–1.8 g/cm3), NaCl, NaBr, NaI, KI |
|
| [31,72,86,87,88] |
| Oleoextraction | Sunflower oil + H2O2; hexane + ethanol washing |
|
| [73,89] |
| City | Microplastic Concentration | Types of MP | MP Sizes Range (µm) | Ref. |
|---|---|---|---|---|
| Lhasa, China | 0.15–0.25 MP/m3 | PE, PP | 10–100 | [21] |
| Beijing, China | 123.6 MP/g | PP, PA, PE, PET, PC, Silicone | 20–100 | [65] |
| New Jersey, USA | Fibers: 120–158 MP/m2 Films: 102–126 Fragments: 62–86 | PS, PET, PVC, PE, PP | 35–100 | [25] |
| Asaluyeh, Iran | Passive: 60 MP/g | 100–250 | [64] | |
| London, England | 575–1008 MP/m2 | PP, PVC, PE, PET, PS, PUR, PAN, PES, PA, Acrylic | 400–500 | [23] |
| Seoul, South Korea | 103 MP/m3 | PET, PP, PE, PEVA, PS, PU | <100 | [33] |
| Hamburg, Alemania | - | PE, EVAC, PTFE, PVA, PET | 63–5000 | [24] |
| Sakarya, Turkey | Depending on the sampling day, the color and shape of microplastics | PA, PL | - | [66] |
| Coastal city, Eat China | Indoor: 1583 MP/m3 Outdoor: 189 MP/m3 | PE, PS, PL | <100 | [15] |
| Wageningen, Amerongen, Zetten and Utrecht. Netherlands | 96,000 MP/m3 | PET y/o PU, PA, PP, PVC, POM, PMMA | - | [67] |
| Spain and the Canary Islands | 22.3–29.6 MP/m2 | PS, acrylic polymers, PP, alkyd resins, PES, PA, PVC, PSU | 67.7–72.4 | [22] |
| Netherlands | 1.2–305 mg MP/g | PET | - | [68] |
| Shanghai, China | PET: 1550–120,000 mg/kg PC: 4.6 mg/kg | PET, PC | 50–2000 | [69] |
| Shanghai, China | 15–94 MP/m3 | PE, PES, PVC, PP, PU, rubber | 240–2181.48 | [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solórzano, L.A.; Gavilanes, D.; Cadena, F.; Irusta, L.; González, A.; Aldas, M. A Review of the Sampling, Analysis, and Identification Techniques of Microplastics in the Air: Insights into PM2.5 and PM10. Polymers 2025, 17, 3045. https://doi.org/10.3390/polym17223045
Solórzano LA, Gavilanes D, Cadena F, Irusta L, González A, Aldas M. A Review of the Sampling, Analysis, and Identification Techniques of Microplastics in the Air: Insights into PM2.5 and PM10. Polymers. 2025; 17(22):3045. https://doi.org/10.3390/polym17223045
Chicago/Turabian StyleSolórzano, Leonela Anahis, Dayana Gavilanes, Francisco Cadena, Lourdes Irusta, Alba González, and Miguel Aldas. 2025. "A Review of the Sampling, Analysis, and Identification Techniques of Microplastics in the Air: Insights into PM2.5 and PM10" Polymers 17, no. 22: 3045. https://doi.org/10.3390/polym17223045
APA StyleSolórzano, L. A., Gavilanes, D., Cadena, F., Irusta, L., González, A., & Aldas, M. (2025). A Review of the Sampling, Analysis, and Identification Techniques of Microplastics in the Air: Insights into PM2.5 and PM10. Polymers, 17(22), 3045. https://doi.org/10.3390/polym17223045

