Microstructure Evolution Study of the Field-Serviced Silicone Rubber Insulator via X-Ray Micro-CT Imaging
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. X-Ray Micro-CT Measurements
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Lin, Y.; Li, Z.; Yang, Y.; Lin, J.; He, S. Effect of Fluorosilicone Rubber on Mechanical Properties, Dielectric Breakdown Strength and Hydrophobicity of Methyl Vinyl Silicone Rubber. Polymers 2023, 15, 3448. [Google Scholar] [CrossRef]
- Liu, J.; Hu, M.; Dong, J.; Lu, X. Summary of insulator defect detection based on deep learning. Electr. Power Syst. Res. 2023, 224, 109688. [Google Scholar] [CrossRef]
- Xie, J.; Qiao, L.; Liu, Z.; Shi, X.; Huang, P. Temperature effects on the sheath-core bar interface of composite insulators: A molecular dynamics and DFT study. Model. Simul. Mater. Sci. Eng. 2024, 32, 065027. [Google Scholar] [CrossRef]
- Hakimabadi, S.; Ehsani, M.; Esfandeh, M. Polymeric composites and hybrids for high-voltage insulators. Polym.-Plast. Technol. Mater. 2024, 63, 857–871. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, Z.; Diao, M.; Wang, X.; Deng, Y.; Cao, B.; Xu, Y.; Zhang, C. External Insulation Performance under DC Voltages of Polluted Post Insulators for Power Stations in Rainy Weather: A Brief Review and Recent Progress. Energies 2024, 17, 4137. [Google Scholar] [CrossRef]
- Fahmi, D.; Asfani, D.; Hernanda, I.; Septianto, B.; Negara, I.; Illias, H. Partial discharge characteristics from polymer insulator under various contaminant. Electr. Power Syst. Res. 2024, 236, 110978. [Google Scholar] [CrossRef]
- Ning, K.; Lu, J.; Jiang, Z.; Xie, P.; Feng, T.; Hu, J.; Fu, Z.; Tang, Z. Aging characteristics and lifespan prediction for composite insulator silicone rubber in a mountainous region environment. Polym. Test. 2023, 122, 108023. [Google Scholar] [CrossRef]
- Saleem, M.Z.; Akbar, M. Review of the Performance of High-Voltage Composite Insulators. Polymers 2022, 14, 431. [Google Scholar] [CrossRef] [PubMed]
- Nazir, M.T.; Khalid, A.; Akram, S.; Mishra, P.; Kabir, I.; Yeoh, G.; Phung, B.; Wong, K. Electrical tracking, erosion and flammability resistance of high voltage outdoor composite insulation: Research, innovation and future outlook. Mater. Sci. Eng. R Rep. 2023, 156, 100757. [Google Scholar] [CrossRef]
- Tu, Y.; Gong, B.; Yuan, Z.; Wang, C.; Xu, Z.; Li, R.; Zhang, F. Moisture induced local heating of overhead line composite insulators. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 483–489. [Google Scholar] [CrossRef]
- Wang, X.; Fan, H.; Li, W.; Zhang, Y.; Shang, R.; Yin, F.; Wang, L. Effect of Ultraviolet—A Radiation on Alicyclic Epoxy Resin and Silicone Rubber Used for Insulators. Polymers 2022, 14, 4889. [Google Scholar] [CrossRef]
- Ullah, I.; Akbar, M.; Khan, H. Degradation analysis of RTV-SiR based composites under both polarities DC voltage for insulators coating. Mater. Today Commun. 2021, 29, 102890. [Google Scholar] [CrossRef]
- Vásárhelyi, L.; Kónya, Z.; Kukovecz, Á.; Vajtai, R. Microcomputed tomography–based characterization of advanced materials: A review. Mater. Today Adv. 2020, 8, 100084. [Google Scholar] [CrossRef]
- Hounsfield, G.N. Computerized transverse axial scanning (tomography): Part I. Description of system. Br. J. Radiol. 1973, 46, 1016–1022. [Google Scholar] [CrossRef]
- Stock, S.R. X-ray microtomography of materials. Int. Mater. Rev. 1999, 44, 141–164. [Google Scholar] [CrossRef]
- Plessis Ad Boshoff, W.P. A review of X-ray computed tomography of concrete and asphalt construction materials. Constr. Build. Mater. 2019, 199, 637–651. [Google Scholar] [CrossRef]
- Chen, K.; Chen, G.; Zhuang, Z.; Luo, S.; Liu, J.; Liu, G. Feasibility study on the introduction of Micro-CT technology for the identification of Radix Bupleuri and its adulterants. Front. Pharmacol. 2024, 15, 1347316. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Lee, J.S.; Gwak, D.H.; Ko, Y.S.; Lim, C.; Lee, S.Y. In Vitro Comparison of Differences in Setting Time of Premixed Calcium Silicate-Based Mineral Trioxide Aggregate According to Moisture Content of Gypsum. Materials 2023, 17, 35. [Google Scholar] [CrossRef]
- Njeru, R.M.; Sofyan, A.; Halisch, M.; Kóbor, B.; Szanyi, J. Optimizing Micro-CT Resolution for Geothermal Reservoir Characterization in the Pannonian Basin. Energies 2024, 17, 3081. [Google Scholar] [CrossRef]
- Al-Shemmeri, M.; Fryer, P.; Farr, R.; Lopez-Quiroga, E. Development of coffee bean porosity and thermophysical properties during roasting. J. Food Eng. 2024, 378, 112096. [Google Scholar] [CrossRef]
- Maire, E.; Withers, P.J. Quantitative X-ray tomography. Int. Mater. Rev. 2013, 59, 1–44. [Google Scholar] [CrossRef]
- Ye, H.; Zhang, J.; Shang, Y.; Xu, G.; Zhan, J.; Marguet, S.; Bougherara, H.; Zitoune, R.; Wang, H. Investigation of hole quality Enhancement in new glass/flax laminates via hybrid drilling techniques. Compos. Part A Appl. Sci. Manuf. 2025, 190, 108651. [Google Scholar] [CrossRef]
- Tikhani, F.; Gurbin, A.; Hubert, P. Unveiling the impact of short fibre reinforcement and extrusion properties on microstructure of 3D printed polycarbonate composites. Addit. Manuf. 2024, 93, 104423. [Google Scholar] [CrossRef]
- Kouzmanova, Y.; Dimitrova, I. Marginal Adaptation and Porosity of a Novel MTA Brand Applied as Root-End Filling Material: A Micro-CT Study. Appl. Sci. 2024, 14, 2758. [Google Scholar] [CrossRef]
- Wang, X.; Hong, X.; Chen, P.; Zhao, C.; Jia, Z.; Wang, L.; Lv, Q.; Huang, R.; Liu, S. In-situ and quantitative analysis of aged silicone rubber materials with laser-induced breakdown spectroscopy. High Volt. 2018, 3, 140–146. [Google Scholar]
- Jiang, H.; Li, B.; Zhao, B.; Sun, Q.; Lu, R.; Chen, B. Photothermal Radiometry Depth-Profiling of Aged Silicone Rubber Composite Insulators. IEEE Trans. Power Deliv. 2021, 36, 3223–3230. [Google Scholar] [CrossRef]
- Gao, Y.; Hu, W.; Xin, S.; Sun, L. A review of applications of CT imaging on fiber reinforced composites. J. Compos. Mater. 2021, 56, 133–164. [Google Scholar] [CrossRef]
- Kim, T.; Sanyal, S.; Rabelo, M.; Choi, I.; Geun Yoon, Y.; Oh, T.; Yi, J. Non-destructive analysis of power insulators by frequency response function and three dimensional-computed tomography. Mech. Syst. Signal Process. 2022, 177, 109310. [Google Scholar] [CrossRef]
- Jeon, S.; Kim, T.; Lee, Y.-J.; Yi, J.; Choi, I.-H.; Son, J.-A. Porcelain suspension insulator for OHTL: A comparative study of new and used insulators using 3D-CT. IEEE Trans. Dielectr. Electr. Insul. 2019, 26, 1654–1659. [Google Scholar] [CrossRef]
- Ferreira, C.R.D.; Santiago, A.A.G.; Vasconcelos, R.C.; Paiva, D.F.F.; Pirih, F.Q.; Araújo, A.A.; Motta, F.V.; Bomio, M.R.D. Study of microstructural, mechanical, and biomedical properties of zirconia/hydroxyapatite ceramic composites. Ceram. Int. 2022, 48, 12376–12386. [Google Scholar] [CrossRef]
- Lin, L.; Lv, S.; Xie, W.; Feng, X.; Zhao, Y.; Yang, Z.; Qiu, J.; Zhou, S. Nanostructured Glass Composite for Self-Calibrated Radiation Dose Rate Detection. Adv. Opt. Mater. 2021, 9, 2100751. [Google Scholar] [CrossRef]
- Chen, B.; Guizar-Sicairos, M.; Xiong, G.; Shemilt, L.; Diaz, A.; Nutter, J.; Burdet, N.; Huo, S.; Mancuso, J.; Monteith, A.; et al. Three-Dimensional Structure Analysis and Percolation Properties of a Barrier Marine Coating. Sci. Rep. 2013, 3, 1177. [Google Scholar] [CrossRef] [PubMed]
- Innes, J.R.; Shriky, B.; Nocita, D.; Thompson, G.; Coates, P.; Whiteside, B.; Kelly, A.; Hebda, M. Development of thermoplastic vulcanizates based on polypropylene/ethylene propylene diene monomer for prototyping by Fused Filament Fabrication. Polymer 2023, 273, 125839. [Google Scholar] [CrossRef]
- Moretto, E.; Stoffels, C.; Eloy Federico, C.; Rogé, V.; Staropoli, M.; Imiete, I.; Audinot, J.; Steiner, P.; Duez, B.; Lenoble, D.; et al. Interplay of regio-selectively modified dendritic silica particles with styrene-butadiene rubber: The route towards better tires with lower rolling-resistance and higher grip. Chem. Eng. J. 2023, 461, 141964. [Google Scholar] [CrossRef]
- Kuang, W.; Arey, B.W.; Dohnalkova, A.C.; Kovarik, L.; Mills, B.; Menon, N.C.; Seffens, R.J.; Simmons, K.L. Multi-scale imaging of high-pressure hydrogen induced damage in EPDM rubber using X-ray microcomputed tomography, helium-ion microscopy and transmission electron microscopy. Int. J. Hydrogen Energy 2023, 48, 8573–8587. [Google Scholar] [CrossRef]
- Esteves, D.S.; Pereira, M.F.C.; Ribeiro, A.; Durães, N.; Paiva, M.C.; Sequeiros, E.W. Development of MWCNT/Magnetite Flexible Triboelectric Sensors by Magnetic Patterning. Polymers 2023, 15, 2870. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Y.; Zhu, G. Thermo-stamping shear characteristics of thermoplastics based on X-ray micro-CT. Mater. Manuf. Process 2022, 38, 668–679. [Google Scholar] [CrossRef]
- Cnudde, V.; Boone, M.N. High-resolution X-ray computed tomography in geosciences: A review of the current technology and applications. Earth-Sci. Rev. 2013, 123, 1–17. [Google Scholar] [CrossRef]
- Nayak, S.R.; Mishra, J.; Palai, G. Analysing roughness of surface through fractal dimension: A review. Image Vis. Comput. 2019, 89, 21–34. [Google Scholar] [CrossRef]
- Liu, J.; Jiang, R.; Sun, J.; Shi, P.; Yang, Y. Concrete Damage Evolution and Three-Dimensional Reconstruction by Integrating CT Test and Fractal Theory. J. Mater. Civ. Eng. 2017, 29, 04017122. [Google Scholar] [CrossRef]
- Ilhan, S.; Tuzun, D.; Ozdemir, A. Comparative Properties of HTV Silicone Rubber for Composite Insulators—ATH and Silica Fillers. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 414–422. [Google Scholar] [CrossRef]
- Alqudsi, A.Y.; Ghunem, R.A.; David, E. Analyzing the Role of Filler Interface on the Erosion Performance of Filled RTV Silicone Rubber under DC Dry-band Arcing. IEEE Trans. Dielectr. Electr. Insul. 2021, 28, 788–796. [Google Scholar] [CrossRef]
- Akbar, M.; Ullah, R.; Alam, S. Aging of silicone rubber-based composite insulators under multi-stressed conditions: An overview. Mater. Res. Express 2019, 6, 102003. [Google Scholar] [CrossRef]
- Wang, X.; Kumagai, S.; Yoshimura, N. Contamination performances of silicone rubber insulator subjected to acid rain. IEEE Trans. Dielectr. Electr. Insul. 1998, 5, 909–916. [Google Scholar] [CrossRef]
- Xiong, Y.; Rowland, S.M.; Robertson, J.; Hoffmann, S. Characterization of field-aged 400 kV silicone rubber composite insulators. In Proceedings of the 2006 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Kansas City, MO, USA, 15–18 October 2006. [Google Scholar]
- Zhu, Z.; Wang, X.; Jia, Z.; Guang, Z. Mechanical properties of HTV materials used in composite insulators in strong wind area. In Proceedings of the 2014 Electrical Insulation Conference, Philadelphia, PA, USA, 8–11 June 2014. [Google Scholar]
- Li, J.; Wu, H.; Zhang, X.; Lan, Y. Study on X-Ray Photoelectron Spectroscopy of High-Temperature Vulcanized Silicone Rubber Accelerated Aging by Ultraviolet Radiation. Spectrosc. Spectr. Anal. 2021, 41, 720–726. [Google Scholar]
- Li, J.; Zhang, H.; Li, G.; Zhang, S.; Liu, Y.; Dong, K.; Zu, E.; Yu, L. Aging Mechanism Analysis of High Temperature Vulcanization Silicone Rubber Irradiated by Ultraviolet Radiation Based on Infrared Spectra. Spectrosc. Spectr. Anal. 2020, 40, 1063–1070. [Google Scholar]
- Lin, Y.; Yin, F.; Liu, Y.; Wang, L.; Wu, K. Influence of vulcanization factors on UV-A resistance of silicone rubber for outdoor insulators. IEEE Trans. Dielectr. Electr. Insul. 2020, 27, 296–304. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, Y.; Gao, Y.; Wang, X.; Fan, S.; Chen, Y.; Wang, S.; Zhang, J.; Su, B.; Wang, H. Molecular Dynamics Simulation on Water Diffusion into HTV Silicone Rubber used in High Voltage Composite Insulator. In Proceedings of the 3rd IEEE International Electrical and Energy Conference (CIEEC), Beijing, China, 7–9 September 2019. [Google Scholar]
- Wu, G.; Fan, Y.; Guo, Y.; Xiao, S.; Liu, Y.; Gao, G.; Zhang, X. Aging Mechanisms and Evaluation Methods of Silicone Rubber Insulator Sheds: A Review. IEEE Trans. Dielectr. Electr. Insul. 2024, 31, 965–979. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, Z.; Xu, S.; Li, B.; Guo, Y.; Liu, Y.; Xiao, S.; Zhang, C.; Wu, G. Lifetime prediction and aging characteristics of silicone rubber under synergistic heat-moisture interaction. Eng. Fail. Anal. 2025, 170, 109252. [Google Scholar] [CrossRef]
- Verma, A.R.; Reddy, B.S. Tracking and erosion resistance of LSR and HTV silicon rubber samples under acid rain conditions. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 46–52. [Google Scholar] [CrossRef]
- Liang, T.; Zhang, Z.; Ma, X.; Xiang, Y.; Huang, H.; Jiang, X. Characteristics of powdered layer on silicone rubber surface. J. Mater. Res. Technol. 2021, 14, 36–46. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Chen, L.; Fu, X.; Geng, J.; Liu, Y.; Gong, Y.; Zhang, S. Study on the Ageing Characteristics of Silicone Rubber for Composite Insulators under Multi-Factor Coupling Effects. Coatings 2023, 13, 1688. [Google Scholar] [CrossRef]
- Mu, L.; Wang, B.; Hao, J.; Fang, Z.; Wang, Y. Study on material and mechanical characteristics of silicone rubber shed of field-aged 110 kV composite insulators. Sci. Rep. 2023, 13, 16889. [Google Scholar] [CrossRef] [PubMed]




| Fresh Insulator | Field-Serviced Insulator | |
|---|---|---|
| Fractal dimension of surface | 1.5 | 1.8 |
| Porosity (%) | 0.04 | 0.69 |
| Average diameter of fillers (μm) | 3.5 ± 1.3 | 10.4 ± 7.2 |
| Average diameter of pores (μm) | 2.8 ± 0.4 | 5.0 ± 1.5 |
| Average length of cracks (μm) | - | 118.2 |
| Length (μm) | Width (μm) | Depth (μm) | Volume (×104 μm3) | Sphericity | |
|---|---|---|---|---|---|
| A * | 842.7 | 243.4 | 211.0 | 122 | 566.3 |
| B * | 838.3 | 204.0 | 182.8 | 89.1 | 423.7 |
| C | 181.3 | 53.6 | 47.1 | 10.3 | 36.9 |
| D | 150.3 | 76.5 | 42.8 | 7.04 | 32.7 |
| E * | 140.2 | 43.0 | 18.6 | 2.34 | 27.3 |
| F * | 170.6 | 41.5 | 32.8 | 4.14 | 34.7 |
| G | 235.5 | 44.9 | 33.3 | 3.28 | 31.9 |
| H * | 132.5 | 88.2 | 83.6 | 13.8 | 39.5 |
| I | 129.5 | 51.6 | 39.8 | 1.88 | 21.7 |
| J | 181.5 | 95.4 | 95.2 | 7.34 | 74.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Zha, F.; Luo, Q.; Shi, L.; Wan, T.; Chen, B. Microstructure Evolution Study of the Field-Serviced Silicone Rubber Insulator via X-Ray Micro-CT Imaging. Polymers 2025, 17, 3009. https://doi.org/10.3390/polym17223009
Chen T, Zha F, Luo Q, Shi L, Wan T, Chen B. Microstructure Evolution Study of the Field-Serviced Silicone Rubber Insulator via X-Ray Micro-CT Imaging. Polymers. 2025; 17(22):3009. https://doi.org/10.3390/polym17223009
Chicago/Turabian StyleChen, Tiantian, Fanglin Zha, Qian Luo, Lei Shi, Tao Wan, and Bo Chen. 2025. "Microstructure Evolution Study of the Field-Serviced Silicone Rubber Insulator via X-Ray Micro-CT Imaging" Polymers 17, no. 22: 3009. https://doi.org/10.3390/polym17223009
APA StyleChen, T., Zha, F., Luo, Q., Shi, L., Wan, T., & Chen, B. (2025). Microstructure Evolution Study of the Field-Serviced Silicone Rubber Insulator via X-Ray Micro-CT Imaging. Polymers, 17(22), 3009. https://doi.org/10.3390/polym17223009

