Experimental and Molecular Dynamics Study of Pyrite Effects on the Flocculation of Clayey Tailings in Seawater
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Methods
2.3.1. Sedimentation-Flocculation Tests
2.3.2. Fractal Dimension
2.3.3. Zeta Potential
2.3.4. Molecular Dynamics Simulations
3. Results
3.1. Sedimentation Tests
3.2. Flocculation Kinetics as a Function of Pyrite Content
3.3. Chord Length Distributions (CLD)
3.4. Fractal Dimension and Density of Flocs
3.5. Effect of Flocculant on Particle Zeta Potential
- Pyrite: The presence of the anionic flocculant significantly decreased the zeta potential of pyrite, from a positive value of 5.3 mV to −4.5 mV. In the absence of flocculant, the positive surface charge can be explained by the preferential adsorption of monovalent and divalent cations, such as Na+, K+, Ca2+, and Mg2+ [44], abundant in seawater. These ions can form complexes that adsorb on the mineral surface. With the addition of the flocculant, the mineral charge is reversed. This change is attributed to the adsorption of the polymer, which induces a neutralization of the positive charges on the mineral surface, decreasing electrostatic repulsions and promoting aggregation.
- Kaolin: In the absence of flocculant, the zeta potential of kaolin was negative at −13.7 mV, a value consistent with its surface anionic nature under pH ≈ 8 conditions in seawater [45]. This negative charge is mainly caused by the deprotonation of hydroxyl groups on the edges and faces of mineral particles, as well as isomorphic substitution within the crystal structure. These factors generate a negatively charged surface. After the addition of anionic flocculant, the zeta potential decreased to −20.3 mV. This indicates that the anionic polymer interacts with the kaolin surface by adsorbing its chains, modifying the structure of the electrical double layer. As a result, the density of negative charges exposed to the continuous phase increases, which translates into a greater negativity of the zeta potential.
- Quartz: The negative zeta potential of quartz at pH 8 was −7.4, a value consistent with its negative surface charge generated by the deprotonation of silanol groups. Upon incorporation of the flocculant, the zeta potential decreased slightly to −8.7 mV, suggesting low adsorption of the polymer by quartz, probably limited by its low surface charge density, which limits the interaction between the polymer and the mineral surface.
3.6. Molecular Dynamics Adsorption Study
4. Conclusions
- The mineralogical composition of pyrite influences flocculation efficiency in seawater, directly modifying the aggregation kinetics, floc size, and sedimentation efficiency due to its surface properties and high density. Increasing the proportion of pyrite reduced the maximum floc size and increased the amount of unflocculated fine particles for both flocculant doses (10 and 30 g/t).
- The fractal dimension of the flocs remained constant with increasing pyrite, suggesting that the internal structural complexity of the flocs was not significantly altered. However, the density of the flocs increased linearly with the proportion of pyrite, which explains the higher intrinsic density of this mineral.
- Pyrite adsorbs the polymer through uncharged sections of the chain, making it less sensitive to pH or salinity conditions than other minerals such as clays or oxides. It can also cause train-type adsorption, where the polymer flattens on the mineral surface, preventing the flocculant from interacting with kaolin particles and affecting the sedimentation process, especially for pyrite proportions greater than 6%.
- Simulations showed that pyrite has a high affinity for PAM polymer, with adsorption even in aliphatic regions. This behavior is consistent with experimental results, where the presence of pyrite favors the formation of larger flocs, attributed to its ability to retain the polymer and facilitate the union between particles.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
| Proportion of Pyrite (%) | Flocculant Dosage (g/t) | (µm) | (kg/m3) | (kg/m3) | |
|---|---|---|---|---|---|
| 0 | 10 | 29.2 | 2630 | 1025 | 0.042 |
| 3 | 10 | 28.9 | 2670 | 1025 | 0.041 |
| 6 | 10 | 28.1 | 2710 | 1025 | 0.040 |
| 10 | 10 | 29.0 | 2760 | 1025 | 0.040 |
| 0 | 30 | 28.4 | 2630 | 1025 | 0.042 |
| 3 | 30 | 29.6 | 2670 | 1025 | 0.041 |
| 6 | 30 | 28.2 | 2710 | 1025 | 0.040 |
| 10 | 30 | 27.9 | 2760 | 1025 | 0.040 |
References
- Cisternas, L.A.; Gálvez, E.D. The Use of Seawater in Mining. Miner. Process. Extr. Metall. Rev. 2018, 39, 18–33. [Google Scholar] [CrossRef]
- Cruz, C.; Botero, Y.L.; Jeldres, R.I.; Uribe, L.; Cisternas, L.A. Current Status of the Effect of Seawater Ions on Copper Flotation: Difficulties, Opportunities, and Industrial Experience. Miner. Process. Extr. Metall. Rev. 2022, 43, 545–563. [Google Scholar] [CrossRef]
- Durán-Sánchez, A.; De La Cruz Del Río-Rama, M.; Cacciuttolo, C.; Valenzuela, F. Efficient Use of Water in Tailings Management: New Technologies and Environmental Strategies for the Future of Mining. Water 2022, 14, 1741. [Google Scholar] [CrossRef]
- Peng, Y.; Jin, D. Screening Tests of Copper Mine Tailings Flocculation with Polyacrylamide. IOP Conf. Ser. Earth Environ. Sci. 2019, 371, 042004. [Google Scholar] [CrossRef]
- Wang, S.; Li, S.; Qin, J.C.; Xiao, G.Z.; Yang, G.C.; Feng, X. Effect of Anionic Polyacrylamide on the Structural Stability of Thickened Tailings Slurry in Pipeline Transportation. Adv. Mater. Sci. Eng. 2018, 2018, 7131487. [Google Scholar] [CrossRef]
- Peng, F.F.; Di, P. Effect of Multivalent Salts—Calcium and Aluminum on the Flocculation of Kaolin Suspension with Anionic Polyacrylamide. J. Colloid. Interface Sci. 1994, 164, 229–237. [Google Scholar] [CrossRef]
- Shakeel, A.; Safar, Z.; Ibanez, M.; van Paassen, L.; Chassagne, C. Flocculation of Clay Suspensions by Anionic and Cationic Polyelectrolytes: A Systematic Analysis. Minerals 2020, 10, 999. [Google Scholar] [CrossRef]
- Quezada, G.R.; Jeldres, R.I.; Fawell, P.D.; Toledo, P.G. Use of Molecular Dynamics to Study the Conformation of an Anionic Polyelectrolyte in Saline Medium and Its Adsorption on a Quartz Surface. Miner. Eng. 2018, 129, 102–105. [Google Scholar] [CrossRef]
- Nieto, S.; Toro, N.; Robles, P.; Gálvez, E.; Gallegos, S.; Jeldres, R.I. Flocculation of Clay-Based Tailings: Differences of Kaolin and Sodium Montmorillonite in Salt Medium. Materials 2022, 15, 1156. [Google Scholar] [CrossRef]
- Liu, D.; Edraki, M.; Berry, L. Investigating the Settling Behaviour of Saline Tailing Suspensions Using Kaolinite, Bentonite, and Illite Clay Minerals. Powder Technol. 2018, 326, 228–236. [Google Scholar] [CrossRef]
- Ji, Y.; Lu, Q.; Liu, Q.; Zeng, H. Effect of Solution Salinity on Settling of Mineral Tailings by Polymer Flocculants. Colloids Surf. A Physicochem. Eng. Asp. 2013, 430, 29–38. [Google Scholar] [CrossRef]
- Önen, V.; Ali Taner, H.; Mühendisliği Bölümü, M.; Fakültesi, M.; Üniversitesi, S.; Geliş, T. Effect of coagulants and flocculants on dewatering of kaolin suspensions. Nigde Omer Halisdemir Univ. J. Eng. Sci. 2018, 7, 297–305. [Google Scholar] [CrossRef]
- Martins, G.S.; Batista, A.M.M.; de Siqueira, J.C.; Siniscalchi, L.A.B.; Oréfice, R.L. Aplicação de polímeros na floculação de rejeito de caulim: Efeitos da variação de concentração e tipo DE floculante. Quim. Nova 2022, 45, 543–549. [Google Scholar] [CrossRef]
- Orumwense, F.F.O.; Eligwe, C.A.; Ejiofor, J.U. Flocculation Characteristics of Kaolin. Appl. Clay Sci. 1992, 6, 383–393. [Google Scholar] [CrossRef]
- Gupta, V. Surface Charge Features of Kaolinite Particles and Their Interactions. Ph.D. Thesis, The University of Utah, Salt Lake City, UT, USA, 2011. [Google Scholar]
- Leiva, W.H.; Toro, N.; Robles, P.; Quezada, G.R.; Salazar, I.; Jeldres, R. Clay Tailings Flocculated in Seawater and Industrial Water: Analysis of Aggregates, Sedimentation, and Supernatant Quality. Polymers 2024, 16, 1441. [Google Scholar] [CrossRef]
- Nieto, S.; Piceros, E.; Quezada, G.R.; Robles, P.; Jeldres, R.I. Structure–Performance Relationship of Anionic Polyacrylamide in Pyrite-Containing Tailings: Insights into Flocculation Efficiency. Polymers 2025, 17, 1055. [Google Scholar] [CrossRef]
- Xu, J.; Wang, X.; Chen, J.; Ding, T.; Xue, J. Inhibition Mechanism of Cationic Polyacrylamide on Montmorillonite Surface Hydration: A Molecular Dynamics Simulation Study. Chem. Phys. 2023, 567, 111792. [Google Scholar] [CrossRef]
- Xu, J.; Yuan, Y.; Feng, Z.; Liu, F.; Zhang, Z. Molecular Dynamics Simulation of Adsorption and Diffusion of Partially Hydrolyzed Polyacrylamide on Kaolinite Surface. J. Mol. Liq. 2022, 367, 120377. [Google Scholar] [CrossRef]
- Gurina, D.; Surov, O.; Voronova, M.; Zakharov, A. Molecular Dynamics Simulation of Polyacrylamide Adsorption on Cellulose Nanocrystals. Nanomaterials 2020, 10, 1256. [Google Scholar] [CrossRef]
- Chang, Z.; Sun, C.; Kou, J.; Fu, G.; Qi, X. Experimental and Molecular Dynamics Simulation Study on the Effect of Polyacrylamide on Bauxite Flotation. Miner. Eng. 2021, 164, 106810. [Google Scholar] [CrossRef]
- Kroutil, O.; Chval, Z.; Skelton, A.A.; Předota, M. Computer Simulations of Quartz (101)-Water Interface over a Range of PH Values. J. Phys. Chem. C 2015, 119, 9274–9286. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Chen, Y.; Zhao, C.; Zhang, Y.; Ke, B. Interactions of Oxygen and Water Molecules with Pyrite Surface: A New Insight. Langmuir 2018, 34, 1941–1952. [Google Scholar] [CrossRef]
- Jin, J.; Miller, J.D.; Dang, L.X.; Wick, C.D. Effect of Surface Oxidation on Interfacial Water Structure at a Pyrite (100) Surface as Studied by Molecular Dynamics Simulation. Int. J. Miner. Process. 2015, 139, 64–76. [Google Scholar] [CrossRef]
- Philpott, M.R.; Goliney, I.Y.; Lin, T.T. Molecular Dynamics Simulation of Water in a Contact with an Iron Pyrite FeS2 Surface. J. Chem. Phys. 2004, 120, 1943–1950. [Google Scholar] [CrossRef] [PubMed]
- Villca, G.; Arias, D.; Jeldres, R.; Pánico, A.; Rivas, M.; Cisternas, L.A. Use of Radial Basis Function Network to Predict Optimum Calcium and Magnesium Levels in Seawater and Application of Pretreated Seawater by Biomineralization as Crucial Tools to Improve Copper Tailings Flocculation. Minerals 2020, 10, 676. [Google Scholar] [CrossRef]
- Heath, A.R.; Bahri, P.A.; Fawell, P.D.; Farrow, J.B. Polymer Flocculation of Calcite: Experimental Results from Turbulent Pipe Flow. AIChE J. 2006, 52, 1284–1293. [Google Scholar] [CrossRef]
- Kranenburg, C. The Fractal Structure of Cohesive Sediment Aggregates. Estuar. Coast. Shelf Sci. 1994, 39, 451–460. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindah, E. Gromacs: High Performance Molecular Simulations through Multi-Level Parallelism from Laptops to Supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Li, P.; Song, L.F.; Merz, K.M. Systematic Parameterization of Monovalent Ions Employing the Nonbonded Model. J. Chem. Theory Comput. 2015, 11, 1645–1657. [Google Scholar] [CrossRef]
- Li, P.; Merz, K.M. Taking into Account the Ion-Induced Dipole Interaction in the Nonbonded Model of Ions. J. Chem. Theory Comput. 2014, 10, 289–297. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Grigera, J.R.; Straatsma, T.P. The Missing Term in Effective Pair Potentials. J. Phys. Chem. 1987, 91, 6269–6271. [Google Scholar] [CrossRef]
- Quezada, G.R.; Vargas, A.A.; Nieto, S.; García, K.I.; Robles, P.; Jeldres, R.I. Molecular Dynamics Study of Polyacrylamide and Polysaccharide-Derived Flocculants Adsorption on Mg(OH)2 Surfaces at PH 11. Polymers 2025, 17, 227. [Google Scholar] [CrossRef]
- Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N·log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef]
- Nosé, S. A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. J. Chem. Phys. 1984, 81, 511–519. [Google Scholar] [CrossRef]
- Hoover, W.G. Canonical Dynamics: Equilibrium Phase-Space Distributions. Phys. Rev. A 1985, 31, 1695. [Google Scholar] [CrossRef] [PubMed]
- Parrinello, M.; Rahman, A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 1981, 52, 7182–7190. [Google Scholar] [CrossRef]
- Kyoda, Y.; Costine, A.D.; Fawell, P.D.; Bellwood, J.; Das, G.K. Using Focused Beam Reflectance Measurement (FBRM) to Monitor Aggregate Structures Formed in Flocculated Clay Suspensions. Miner. Eng. 2019, 138, 148–160. [Google Scholar] [CrossRef]
- Grabsch, A.F.; Fawell, P.D.; Adkins, S.J.; Beveridge, A. The Impact of Achieving a Higher Aggregate Density on Polymer-Bridging Flocculation. Int. J. Miner. Process. 2013, 124, 83–94. [Google Scholar] [CrossRef]
- Puls, W.; Kuehl, H.; Heymann, K. Settling Velocity of Mud Flocs: Results of Field Measurements in the Elbe and the Weser Estuary. In Physical Processes in Estuaries; Dronkers, J., van Leussen, W., Eds.; Springer: Berlin/Heidelberg, Germany, 1988; pp. 404–424. ISBN 978-3-642-73691-9. [Google Scholar]
- Glover, S.M.; Yan, Y.D.; Jameson, G.J.; Biggs, S. Bridging Flocculation Studied by Light Scattering and Settling. Chem. Eng. J. 2000, 80, 3–12. [Google Scholar] [CrossRef]
- Paredes, A.; Acuña, S.M.; Gutiérrez, L.; Toledo, P.G. Zeta Potential of Pyrite Particles in Concentrated Solutions of Monovalent Seawater Electrolytes and Amyl Xanthate. Minerals 2019, 9, 584. [Google Scholar] [CrossRef]
- Mohammed, I.; Shehri, D.A.; Mahmoud, M.; Kamal, M.S.; Alade, O.; Arif, M.; Patil, S. Effect of Native Reservoir State and Oilfield Operations on Clay Mineral Surface Chemistry. Molecules 2022, 27, 1739. [Google Scholar] [CrossRef]
- Quezada, G.R.; Jeldres, M.; Toro, N.; Robles, P.; Toledo, P.G.; Jeldres, R.I. Understanding the Flocculation Mechanism of Quartz and Kaolinite with Polyacrylamide in Seawater: A Molecular Dynamics Approach. Colloids Surf. A Physicochem. Eng. Asp. 2021, 608, 125576. [Google Scholar] [CrossRef]










| Salt | Concentration (g/L) |
|---|---|
| NaCl | 24.53 |
| MgCl2·6H2O | 11.10 |
| Na2SO4 | 4.09 |
| CaCl2 | 1.16 |
| KCl | 0.69 |
| NaHCO3 | 0.20 |
| KBr | 0.10 |
| H3BO3 | 0.03 |
| Parameter | Values |
|---|---|
| 28.6 ± 0.6 | |
| 2692.5 ± 51.5 | |
| 1025 | |
| 9.81 | |
| 0.001021 | |
| 0.040 |
| Unflocculated | Flocculated | |
|---|---|---|
| Kaolin | −13.7 | −20.3 |
| Pyrite | 5.3 | −4.5 |
| Quartz | −7.4 | −8.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieto, S.; Piceros, E.; Quezada, G.R.; Betancourt, F.; Robles, P.; Leiva, W.; Jeldres, R.I. Experimental and Molecular Dynamics Study of Pyrite Effects on the Flocculation of Clayey Tailings in Seawater. Polymers 2025, 17, 2895. https://doi.org/10.3390/polym17212895
Nieto S, Piceros E, Quezada GR, Betancourt F, Robles P, Leiva W, Jeldres RI. Experimental and Molecular Dynamics Study of Pyrite Effects on the Flocculation of Clayey Tailings in Seawater. Polymers. 2025; 17(21):2895. https://doi.org/10.3390/polym17212895
Chicago/Turabian StyleNieto, Steven, Eder Piceros, Gonzalo R. Quezada, Fernando Betancourt, Pedro Robles, Williams Leiva, and Ricardo I. Jeldres. 2025. "Experimental and Molecular Dynamics Study of Pyrite Effects on the Flocculation of Clayey Tailings in Seawater" Polymers 17, no. 21: 2895. https://doi.org/10.3390/polym17212895
APA StyleNieto, S., Piceros, E., Quezada, G. R., Betancourt, F., Robles, P., Leiva, W., & Jeldres, R. I. (2025). Experimental and Molecular Dynamics Study of Pyrite Effects on the Flocculation of Clayey Tailings in Seawater. Polymers, 17(21), 2895. https://doi.org/10.3390/polym17212895

