Hydrogel Materials for Drug Delivery and Tissue Engineering
1. Introduction
2. Overview of Published Articles
3. Summary and Future Outlook
Acknowledgments
Conflicts of Interest
References
- Protsak, I.S.; Morozov, Y.M. Fundamentals and Advances in Stimuli-Responsive Hydrogels and Their Applications: A Review. Gels 2025, 11, 30. [Google Scholar] [CrossRef] [PubMed]
- Qutub, M.; Tatode, A.; Taksande, J.; Premchandani, T.; Umekar, M.; Hussain, U.M.; Biyani, D.; Mane, D. Stimuli-responsive supramolecular hydrogels for paclitaxel delivery: Progress and prospects. Asp. Mol. Med. 2025, 5, 100062. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, Y.; Zhang, J.; Liang, H.; Chen, X.; Tan, H. Natural Polymer-Based Hydrogels: From Polymer to Biomedical Applications. Pharmaceutics 2023, 15, 2514. [Google Scholar] [CrossRef] [PubMed]
- Nanda, D.; Behera, D.; Pattnaik, S.S.; Behera, A.K. Advances in natural polymer-based hydrogels: Synthesis, applications, and future directions in biomedical and environmental fields. Discov. Polym. 2025, 2, 6. [Google Scholar] [CrossRef]
- Damiri, F.; Fatimi, A.; Liu, Y.; Musuc, A.M.; Fajardo, A.R.; Gowda, B.H.J.; Vora, L.K.; Shavandi, A.; Okoro, O.V. Recent Advances in 3D Bioprinted Polysaccharide Hydrogels for Biomedical Applications: A Comprehensive Review. Carbohydr. Polym. 2025, 348, 122845. [Google Scholar] [CrossRef] [PubMed]
- Szoleczky, R.; Budai-Szűcs, M.; Csányi, E.; Berkó, S.; Tonka-Nagy, P.; Csóka, I.; Kovács, A. Analytical Quality by Design (AQbD) Approach to the Development of In Vitro Release Test for Topical Hydrogel. Pharmaceutics 2022, 14, 707. [Google Scholar] [CrossRef] [PubMed]
- Ranamalla, S.R.; Tavakoli, S.; Porfire, A.S.; Tefas, L.R.; Banciu, M.; Tomuța, I.; Varghese, O.P. A quality by design approach to optimise disulfide-linked hyaluronic acid hydrogels. Carbohydr. Polym. 2024, 339, 122251. [Google Scholar] [CrossRef] [PubMed]
- Esparza-Villalpando, V.; Pozos-Guillén, A.; Vértiz-Hernández, Á.A.; Vega-Baudrit, J.; Chavarría-Bolaños, D. Design of a Dual-Drug Delivery System for Local Release of Chlorhexidine and Dexketoprofen. Polymers 2025, 17, 1771. [Google Scholar] [CrossRef] [PubMed]
- Ostróżka-Cieślik, A.; Wilczyński, S.; Dolińska, B. Hydrogel Formulations for Topical Insulin Application: Preparation, Characterization and In Vitro Permeation across the Strat-M® Membrane. Polymers 2023, 15, 3639. [Google Scholar] [CrossRef] [PubMed]
- da Silva, J.G.M.; de Melo, I.M.F.; Alves, É.R.; de Oliveira, G.M.; da Silva, A.A.; Cavalcanti, I.M.F.; Araujo, D.N.; Pinto, F.C.M.; de Andrade Aguiar, J.L.; Wanderley Teixeira, V.; et al. Melatonin and Bacterial Cellulose Regulate the Expression of Inflammatory Cytokines, VEGF, PCNA, and Collagen in Cutaneous Wound Healing in Diabetic Rats. Polymers 2024, 16, 2611. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Wu, J.; Zan, J.; Li, Z.; Liu, L.; Ding, G. Multi-Functional Applications of Hydrogel Delivery Systems in Inflammatory Bowel Disease: Drug Delivery, Anti-Inflammation, and Intestinal Repair. Polymers 2025, 17, 1430. [Google Scholar] [CrossRef] [PubMed]
- Mohseni-Motlagh, S.F.; Dolatabadi, R.; Baniassadi, M.; Baghani, M. Application of the Quality by Design Concept (QbD) in the Development of Hydrogel-Based Drug Delivery Systems. Polymers 2023, 15, 4407. [Google Scholar] [CrossRef] [PubMed]
- Nogoceke, R.; Josino, R.; Robert, A.W.; Stimamiglio, M.A. Evaluation of a Peptide Hydrogel as a Chondro-Instructive Three-Dimensional Microenvironment. Polymers 2023, 15, 4630. [Google Scholar] [CrossRef] [PubMed]
- Mohd Razak, R.; Harizal, N.A.A.; Azman, M.A.Z.; Mohd Redzuan, N.S.; Ogaili, R.H.; Kamarrudin, A.H.; Mohamad Azmi, M.F.; Kamaruddin, N.A.; Abdul Jamil, A.S.; Mokhtar, S.A.; et al. Deciphering the Effect of Hyaluronic Acid/Collagen Hydrogel for Pain Relief and Tissue Hydration in a Rat Model of Intervertebral Disc Degeneration. Polymers 2024, 16, 2574. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.; Subramani, S.V.; Lee, K.Z.; Elizondo-Benedetto, S.; Zayed, M.A.; Zhang, F. Engineering Adhesive Hydrogels for Hemostasis and Vascular Repair. Polymers 2025, 17, 959. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostróżka-Cieślik, A.; Wilczyński, S. Hydrogel Materials for Drug Delivery and Tissue Engineering. Polymers 2025, 17, 2862. https://doi.org/10.3390/polym17212862
Ostróżka-Cieślik A, Wilczyński S. Hydrogel Materials for Drug Delivery and Tissue Engineering. Polymers. 2025; 17(21):2862. https://doi.org/10.3390/polym17212862
Chicago/Turabian StyleOstróżka-Cieślik, Aneta, and Sławomir Wilczyński. 2025. "Hydrogel Materials for Drug Delivery and Tissue Engineering" Polymers 17, no. 21: 2862. https://doi.org/10.3390/polym17212862
APA StyleOstróżka-Cieślik, A., & Wilczyński, S. (2025). Hydrogel Materials for Drug Delivery and Tissue Engineering. Polymers, 17(21), 2862. https://doi.org/10.3390/polym17212862
