Mitigating Composition Variability in Post-Industrial PC/ABS Recycling via Targeted Compatibilization
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
- Lotader AX8900 (Arkema, Colombes, France) is a random ethylene-methyl acrylate-glycidyl methacrylate (E-MA-GMA) terpolymer employed as an impact modifier in engineering thermoplastics;
- Elvaloy AC1224 (Dow Chemical, Midland, MI, USA) is an ethylene-methyl acrylate copolymer (EMAco) with a 24% weight content of methyl acrylate;
- Paraloid EXL-2650J (Dow Chemical, Midland, MI, USA) is a methyl metacrylate/butadiene-styrene (MBS) core-shell impact modifier employed in polyesters and polyamide blends;
- Europrene SOL THX3300 (Versalis, San Donato Milanese, Italy) is a polymer obtained from the selective hydrogenation of styrene-butadiene-styrene linear block copolymer, with a 30% weight content of styrene and grafted with maleic anhydride (SEBS-g-MAH);
- Dutral CX 2907 (Versalis, San Donato Milanese, Italy) is an ethylene-propylene copolymer grafted with maleic anhydride (EPDM-g-MAH), containing over 50% by weight of ethylene monomer;
- Setabond ABS (Seta Polymers srl, Fontaniva, Italy), a maleic anhydride grafted ABS (ABS-g-MAH) employed for glass-filled ABS of ABS/polyamide blends;
- Setabond SBS (Seta Polymers srl, Fontaniva, Italy), a maleic anhydride grafted SBS (SBS-g-MAH) employed for filled SBS or SBS/polar resin blends.
2.2. Methods
2.2.1. Processing
2.2.2. Characterization
2.2.3. Design of Experiments
3. Results
3.1. Screening of Compatibilizers
- the ~1740 cm−1 region, corresponding to the C=O stretching of ester groups,
- the ~910–915 cm−1 region, associated with the epoxide ring of the glycidyl methacrylate (GMA) units prior to reaction, and
- the ~1100–1250 cm−1 region, which includes C–O–C stretching bands representative of polycarbonate and ABS backbone vibrations.
3.2. Formulation Optimization of Recycled Blends with E-MA-GMA
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ABS | Acrylonitrile–Butadiene–Styrene |
| ABS-g-MAH | Maleic anhydride grafted Acrylonitrile–Butadiene–Styrene |
| DMA | Dynamic Mechanical Analysis |
| DoE | Design of Experiments |
| EMAco | Ethylene-methyl acrylate copolymer |
| EPDM-g-MAH | Ethylene-propylene copolymer grafted with maleic anhydride |
| E-MA-GMA | Ethylene-methyl acrylate-glycidyl methacrylate |
| FT-IR | Fourier-Transformed Infrared Spectroscopy |
| HDT | Heat Deflection Temperature |
| MBS | Methyl methacrylate/butadiene-styrene |
| MFI | Melt Flow Index |
| MN | Micronero |
| PC | Polycarbonate |
| SBS | Styrene–Butylene–Styrene |
| SEBS-g-MAH | Maleic anhydride grafted Styrene–Ethylene–Butylene–Styrene |
| SBS-g-MAH | Maleic anhydride grafted Styrene–Butylene–Styrene |
References
- Zanatta, S.; Boaretti, C.; Lago, E.D.; Scopel, L.; Penzo, D.; Modesti, M. Mechanical Recycling of Post-Industrial PC/ABS Blends from the Automotive Sector by Mixture Design. Processes 2024, 12, 349. [Google Scholar] [CrossRef]
- Zambrano, C.; Tamarit, P.; Fernandez, A.I.; Barreneche, C. Recycling of Plastics in the Automotive Sector and Methods of Removing Paint for Its Revalorization: A Critical Review. Polymers 2024, 16, 3023. [Google Scholar] [CrossRef]
- Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017, 69, 24–58. [Google Scholar] [CrossRef] [PubMed]
- Pelto, J.; Barreto, C.; Anwar, H.; Strobl, L.; Schlummer, M. Compatibilized PC/ABS blends from solvent recycled PC and ABS polymers from electronic equipment waste. Polym Test. 2023, 120, 107969. [Google Scholar] [CrossRef]
- Phanthong, P.; Yao, S. Revolutionary Plastic Mechanical Recycling Process: Regeneration of Mechanical Properties and Lamellar Structures. In Recycling Strategy and Challenges Associated with Waste Management Towards Sustaining the World; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Louzao, V.V.; Murias, D.G.; De Dios Álvarez, M.Á.; Domínguez, P.A.A.; Barros, E.P.; Bañobre, R.L. Impact of recyclability on the mechanical properties of coated plastic materials for the automotive and electronic sectors. Open Res. Eur. 2024, 4, 51. [Google Scholar] [CrossRef]
- Munshi, G.A.; Kulkarni, V.M. A comprehensive study on restoring properties in expired/aged ABS materials: Advanced techniques, additive integration and challenges for sustainable industrial reuse and manufacturing. J. Mater. Sci. Mater. Eng. 2025, 20, 48. [Google Scholar] [CrossRef]
- Muzata, T.S.; Matuana, L.M.; Rabnawaz, M. Challenges in the mechanical recycling and upcycling of mixed postconsumer recovered plastics (PCR): A review. Curr. Res. Green Sustain. Chem. 2024, 8, 100407. [Google Scholar] [CrossRef]
- Nishino, K.; Shindo, Y.; Takayama, T.; Ito, H. Improvement of impact strength and hydrolytic stability of PC/ABS blend using reactive polymer. J. Appl. Polym. Sci. 2017, 134, 44550. [Google Scholar] [CrossRef]
- Eguiazabal, J.I.; Nazabal, J. Reprocessing Polycarbonate/Acrylonitrile-Butadiene-Styrene Blends: Influence on Physical Properties. Polym. Eng. Sci. 1990, 30, 527–531. [Google Scholar] [CrossRef]
- Jakubowicz, I.; Yarahmadi, N. Review and Assessment of Existing and Future Techniques for Traceability with Particular Focus on Applicability to ABS Plastics. Polymers 2024, 16, 1343. [Google Scholar] [CrossRef] [PubMed]
- Larocca, N.M.; Hage, E.; Pessan, L.A. Effect of reactive compatibilization on the properties of poly(butylene terephthalate)/acrylonitrile-ethylene-propylene-diene-styrene blends. J. Polym. Sci. Part B Polym. Phys. 2005, 43, 1244–1259. [Google Scholar] [CrossRef]
- Lin, G.P.; Lin, L.; Wang, X.L.; Chen, L.; Wang, Y.Z. PBT/PC blends compatibilized and toughened via copolymers in situ formed by MgO-catalyzed transesterification. Ind. Eng. Chem. Res. 2015, 54, 1282–1291. [Google Scholar] [CrossRef]
- Hund, J. Characterisation and Modelling of PC/ABS Blends; KIT Scientific Publishing: Karlsruhe, Germany, 2022. [Google Scholar] [CrossRef]
- Wagner, F.; Peeters, J.R.; de Keyzer, J.; Duflou, J.R.; Dewulf, W. Closed loop recycling of WEEE plastics: A case study for payment terminals. Procedia CIRP 2020, 90, 416–420. [Google Scholar] [CrossRef]
- ISO 1133-1:2022; Plastics—Determination of the Melt Mass-Flow Rate (MFR) and Melt Volume-Flow Rate (MVR) of Thermoplastics. International Organization for Standardization: Geneva, Switzerland, 2022.
- ISO 180:2019; Plastics—Determination of Izod Impact Strength. International Organization for Standardization: Geneva, Switzerland, 2019.
- ISO 527-1:2019; Determination of Tensile Properties. International Organization for Standardization: Geneva, Switzerland, 2019.
- Wadud, S.E.B.; Ullbrich, R.R. Using the DMA Q800 for ASTM International D 648 Deflection Temperature Under Load; TA Instruments: New Castle, DE, USA, 2019. [Google Scholar]
- ASTM D648-18; Standard Test Method for Deflection Temperature of Plastics Under Flexural Load in the Edgewise Position. ASTM International: West Conshohocken, PA, USA, 2018. [CrossRef]
- Sharma, S.; Singh, A.A.; Majumdar, A.; Butola, B.S. Harnessing the ductility of polylactic acid/halloysite nanocomposites by synergistic effects of impact modifier and plasticiser. Compos. Part B Eng. 2020, 188, 107845. [Google Scholar] [CrossRef]
- Bagotia, N.; Singh, B.P.; Choudhary, V.; Sharma, D.K. Excellent impact strength of ethylene-methyl acrylate copolymer toughened polycarbonate. RSC Adv. 2015, 5, 87589–87597. [Google Scholar] [CrossRef]
- Martin, P.; Devaux, J.; Legras, R.; Van Gurp, M.; Van Duin, M. Competitive reactions during compatibilization of blends of polybutyleneterephthalate with epoxide-containing rubber. Polymer 2000, 42, 2463–2478. [Google Scholar] [CrossRef]
- Lin, W.; Qu, J.P. Enhancing Impact Toughness of Renewable Poly(lactic acid)/Thermoplastic Polyurethane Blends via Constructing Cocontinuous-like Phase Morphology Assisted by Ethylene-Methyl Acrylate-Glycidyl Methacrylate Copolymer. Ind. Eng. Chem. Res. 2019, 58, 10894–10907. [Google Scholar] [CrossRef]
- Husaini; Kishimoto, K.; Notomi, M.; Shibuya, T. Fracture behaviour of PC/ABS resin under mixed-mode loading. Fatigue Fract. Eng. Mater. Struct. 2001, 24, 895–903. [Google Scholar] [CrossRef]
- Bärwinkel, S.; Seidel, A.; Hobeika, S.; Hufen, R.; Mörl, M.; Altstädt, V. Morphology formation in PC/ABS blends during thermal processing and the effect of the viscosity ratio of blend partners. Materials 2016, 9, 659. [Google Scholar] [CrossRef] [PubMed]
- Hale, W.; Keskkula, H.; Paul, D.R. Compatibilization of PBT/ABS blends by methyl methacrylate-glycidyl methacrylate-ethyl acrylate terpolymers. Polymer 1999, 40, 365–377. [Google Scholar] [CrossRef]













| Batch | Izod [kJ/m2] | |||
|---|---|---|---|---|
| MN1 | 6.4 ± 0.25 | 0.69 | 0.06 | 0.25 |
| MN2 | 7.0 ± 0.17 | 0.88 | 0.03 | 0.09 |
| Run 1 | Izod [kJ/m2] | ||||
|---|---|---|---|---|---|
| 1 | 0 | 1 | 0 | 0 | 19.224 |
| 2 | 0 | 0 | 1 | 0 | 31.266 |
| 3 | 0 | 0.492 | 0.508 | 0 | 13.550 |
| 4 | 1 | 0 | 0 | 0 | 7.000 |
| 5 | 0.508 | 0 | 0.492 | 0 | 33.938 |
| 7 | 0 | 1 | 0 | 0 | 19.769 |
| 8 | 1 | 0 | 0 | 0 | 6.802 |
| 9 | 0 | 0 | 1 | 0 | 30.427 |
| 10 | 0.488 | 0.512 | 0 | 0 | 21.425 |
| 11 | 0.608 | 0.157 | 0.157 | 0.078 | 38.313 |
| 12 | 0 | 0.900 | 0 | 0.100 | 23.427 |
| 15 | 0.405 | 0.157 | 0.405 | 0.033 | 29.144 |
| 16 | 0.157 | 0.608 | 0.157 | 0.078 | 9.568 |
| 17 | 0 | 0.495 | 0.495 | 0.010 | 12.938 |
| 18 | 0 | 0 | 0.990 | 0.010 | 29.964 |
| 19 | 0.495 | 0 | 0.495 | 0.010 | 34.899 |
| 21 | 0 | 0 | 0.945 | 0.055 | 27.219 |
| 23 | 0 | 0.990 | 0 | 0.010 | 21.657 |
| 24 | 0.315 | 0.315 | 0.315 | 0.055 | 22.016 |
| 25 | 0.157 | 0.157 | 0.608 | 0.078 | 21.417 |
| 26 | 0.315 | 0.315 | 0.315 | 0.055 | 21.709 |
| 27 | 0 | 0.450 | 0.450 | 0.100 | 7.713 |
| 28 | 0.158 | 0.382 | 0.382 | 0.078 | 13.328 |
| 29 | 0 | 0.900 | 0 | 0.100 | 17.318 |
| 31 | 0 | 0.990 | 0 | 0.010 | 19.943 |
| 32 | 0.450 | 0 | 0.450 | 0.100 | 35.797 |
| 33 | 0.450 | 0.450 | 0 | 0.100 | 24.868 |
| 35 | 0 | 0 | 0.900 | 0.100 | 16.865 |
| 36 | 0.990 | 0 | 0 | 0.010 | 12.979 |
| 38 | 0 | 0.943 | 0 | 0.057 | 23.344 |
| 39 | 0 | 0.990 | 0 | 0.010 | 20.443 |
| 41 | 1 | 0 | 0 | 0 | 7.511 |
| 42 | 0.488 | 0.512 | 0 | 0 | 20.219 |
| 43 | 0.500 | 0 | 0.500 | 0 | 33.464 |
| 44 | 0.495 | 0 | 0.505 | 0 | 32.194 |
| 45 | 0.500 | 0.500 | 0 | 0 | 23.537 |
| 48 | 0.757 | 0.243 | 0 | 0 | 24.745 |
| 49 | 0.328 | 0.338 | 0.334 | 0 | 30.125 |
| 50 | 0.512 | 0.488 | 0 | 0 | 21.219 |
| 51 | 0 | 0.508 | 0.492 | 0 | 14.729 |
| 52 | 0.171 | 0.672 | 0.157 | 0 | 16.329 |
| 53 | 0 | 0.240 | 0.760 | 0 | 27.219 |
| 54 | 0.255 | 0 | 0.745 | 0 | 33.922 |
| 55 | 0 | 0.508 | 0.492 | 0 | 15.078 |
| 56 | 0.328 | 0.338 | 0.334 | 0 | 30.297 |
| 57 | 0.748 | 0 | 0.252 | 0 | 28.339 |
| 58 | 0.333 | 0.333 | 0.334 | 0 | 31.771 |
| 59 | 0 | 0.500 | 0.500 | 0 | 14.469 |
| 60 | 0 | 0 | 1 | 0 | 30.526 |
| 61 | 0.170 | 0.330 | 0.500 | 0 | 30.656 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanatta, S.; Dal Lago, E.; Dall’Amico, F.; Boaretti, C.; Lorenzetti, A.; Roso, M.; Modesti, M. Mitigating Composition Variability in Post-Industrial PC/ABS Recycling via Targeted Compatibilization. Polymers 2025, 17, 2848. https://doi.org/10.3390/polym17212848
Zanatta S, Dal Lago E, Dall’Amico F, Boaretti C, Lorenzetti A, Roso M, Modesti M. Mitigating Composition Variability in Post-Industrial PC/ABS Recycling via Targeted Compatibilization. Polymers. 2025; 17(21):2848. https://doi.org/10.3390/polym17212848
Chicago/Turabian StyleZanatta, Silvia, Eleonora Dal Lago, Filippo Dall’Amico, Carlo Boaretti, Alessandra Lorenzetti, Martina Roso, and Michele Modesti. 2025. "Mitigating Composition Variability in Post-Industrial PC/ABS Recycling via Targeted Compatibilization" Polymers 17, no. 21: 2848. https://doi.org/10.3390/polym17212848
APA StyleZanatta, S., Dal Lago, E., Dall’Amico, F., Boaretti, C., Lorenzetti, A., Roso, M., & Modesti, M. (2025). Mitigating Composition Variability in Post-Industrial PC/ABS Recycling via Targeted Compatibilization. Polymers, 17(21), 2848. https://doi.org/10.3390/polym17212848

