Influence of Fabric Support on Improving the Layer-by-Layer Polyethersulfone Membrane Performance
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Support Permeability Test and Water Uptake %
2.4. Membrane Preparation
2.5. Membrane Performance Test
3. Results and Discussions
3.1. Support Characterization
3.1.1. Scanning Electron Microscope and Contact Angle for Supports
3.1.2. Fabric Support Mechanical Properties
3.1.3. Fourier Transform Infrared (FTIR) Spectrophotometer
3.1.4. Permeability Test and Water Uptake %
3.2. Prepared Membranes
3.2.1. Scan Electron Microscope Analysis for Prepared Membranes
3.2.2. Mechanical Testing for Prepared Membranes
3.2.3. Membrane Performance Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ramrez, J.A.L.; Oviedo, M.D.; Alonso, J.M. Comparative Studies of Reverse Osmosis Membranes for Wastewater Reclamation. Desalination 2006, 191, 137–147. [Google Scholar] [CrossRef]
- Qtaishat, M.; Khayet, M.; Matsuura, T. Guidelines for Preparation of Higher Flux Hydrophobic/Hydrophilic Composite Membranes for Membrane Distillation. J. Membr. Sci. 2009, 329, 193–200. [Google Scholar] [CrossRef]
- Ochoa, N.A.; Masuelli, M.; Marchese, J. Effect of Hydrophilicity on Fouling of an Emulsified Oil Wastewater with PVDF/PMMA Membranes. J. Membr. Sci. 2003, 226, 203–211. [Google Scholar] [CrossRef]
- Al-Karaghouli, A.; Renne, D.; Kazmerski, L.L. Solar and Wind Opportunities for Water Desalination in the Arab Regions. Renew. Sustain. Energy Rev. 2009, 13, 2397–2407. [Google Scholar] [CrossRef]
- Jakubiak, S.; Tomaszewska, J.; Jackiewicz, A.; Michalski, J.; Kurzydłowski, K.J. Polypropylene—Zinc Oxide Nanorod Hybrid Material for Applications in Separation Processes. Chem. Process Eng. 2016, 37, 393–403. [Google Scholar] [CrossRef]
- Haining, Y.; Keyang, C.; Xinlin, Z.; Tao, M.; Chenguang, Y.; Ying, L.; Yingying, L.; Qinghua, Z.; Xiufang, L.; Tao, Z.; et al. Customizing loose nanofiltration membranes on nanofiber scaffolds with surfactants: Towards efficient dye/salt selective separation. Sep. Purif. Technol. 2025, 361, 131624. [Google Scholar] [CrossRef]
- Peng, Z.; Haoning, L.; Guangming, Y.; Gang, Z. Preparation of large layered MXene/Al(OH)3 composite membranes with porous structures and efficient separation performance. Sep. Purif. Technol. 2024, 351, 128048. [Google Scholar] [CrossRef]
- Yi, W.; Yuqi, N.; Chunhong, C.; Hongjie, Z.; Ye, Z.; Yujin, J.; Jun, L.; Zhanguo, L. Preparation and Characterization of a Thin-Film Composite Membrane Modified by MXene Nano-Sheets. Membranes 2022, 12, 368. [Google Scholar] [CrossRef]
- Jung, C.H.; Lee, M.-S.; Kim, D.Y.; Shin, M.G.; An, S.; Kang, D.-K.; Kim, J.F.; Nam, S.-E.; Park, S.-J.; Lee, J.-H. Biopolymer-Supported Thin-Film Composite Membranes for Reverse Osmosis. Chem. Eng. J. 2025, 505, 159264. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, X.; Zhao, S.; Xiao, Y.; Wen, X.; Tong, Y.; Zhao, Y. Design and Preparation of Woven Fabric-Reinforced Substrate: A New Pathway for Robust Thin Film Composite Membrane. Polym. Test. 2024, 137, 108490. [Google Scholar] [CrossRef]
- Bachurová, M.; Wiener, J. Free Energy Balance of Polyamide, Polyester and Polypropylene Surfaces. J. Eng. Fibers Fabr. 2012, 7, 22–27. Available online: http://www.jeffjournal.org (accessed on 21 September 2025). [CrossRef]
- Cheng, K.; Naccarato, B.; Kim, K.J.; Kumar, A. Theoretical Consideration of Contact Angle Hysteresis Using Surface-Energy-Minimization Methods. Int. J. Heat Mass Transf. 2016, 102, 154–161. [Google Scholar] [CrossRef]
- Lee, H.J.; Michielsen, S. Preparation of a Superhydrophobic Rough Surface. J. Polym. Sci. Part B Polym. Phys. 2007, 45, 253–261. [Google Scholar] [CrossRef]
- Abdallah, H.; Taman, R.; Elgayar, D.; Farag, H. Antibacterial Blend Polyvinylidene Fluoride/Polyethyleneimine Membranes for Salty Oil Emulsion Separation. Eur. Polym. J. 2018, 108, 542–553. [Google Scholar] [CrossRef]
- Abood, T.W.; Shabeeb, K.M.; Alzubaydi, A.B.; Fal, M.; Lotaibi, A.M.A.; Lawal, D.U.; Hernadi, K.; Alsalhy, Q.F. Novel MXene/PVDF Nanocomposite Ultrafiltration Membranes for Optimized Eriochrome Black T (Azo Dye) Removal. Desalin. Water Treat. 2024, 318, 100311. [Google Scholar] [CrossRef]
- Abdallah, H.; Abo-Almaged, H.H.; Amin, S.K.; Shalaby, M.S.; Shaban, A.M. Fabrication of Mixed Nanoceramic Waste with Polymeric Matrix Membranes for Water Desalting. J. Polym. Eng. 2022, 42, 446–457. [Google Scholar] [CrossRef]
- Yalcinkaya, F.; Veeramuthu, V.K.; Yalcinkaya, B.; Siekierka, A.; Kohout, M.; Čížek, J. Parametric Study of Microporous Nanofiber Support and Thin-Film Composite Membranes for Remediation of Saline Water. J. Ind. Text. 2025, 55, 1–26. [Google Scholar] [CrossRef]
- O’Connell, D.W.; Birkinshaw, C.; O’Dwyer, T.F. Heavy Metal Adsorbents Prepared from the Modification of Cellulose: A Review. Bioresour. Technol. 2008, 99, 6709–6724. [Google Scholar] [CrossRef]
- Haddad, R.; Ferjani, E.; Roudesli, M.S.; Deratani, A. Properties of Cellulose Acetate Nanofiltration Membranes. Application to Brackish Water Desalination. Desalination 2004, 167, 403–410. [Google Scholar] [CrossRef]
- Lv, C.; Su, Y.; Wang, Y.; Ma, X.; Sun, Q.; Jiang, Z. Enhanced Permeation Performance of Cellulose Acetate Ultrafiltration Membrane by Incorporation of Pluronic F127. J. Membr. Sci. 2007, 294, 68–74. [Google Scholar] [CrossRef]
- Candido, R.G.; Gonçalves, A.R. Synthesis of Cellulose Acetate and Carboxymethylcellulose from Sugarcane Straw. Carbohydr. Polym. 2016, 152, 679–686. [Google Scholar] [CrossRef]
- Xiaoyan, L.; Wei, Q.; Ning, G.; Xinliang, L.; Ming, W.; Yingfei, H. Preparation of a swelling-resistant polyethyleneimine-based pervaporation membrane via surface gradient crosslinking for the separation of methanol/dimethyl carbonate. Sep. Purif. Technol. 2025, 361, 131231. [Google Scholar] [CrossRef]
- Le, T.M.H.; Chuchak, R.; Sairiam, S. Empowering TiO2—coated PVDF membranes stability with polyaniline and polydopamine for synergistic separation and photocatalytic enhancement in dye wastewater purification. Sci. Rep. 2024, 14, 15969. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Xu, Y.; Ni, C.; Pan, X.; Tijing, L.D.; Shon, H.K.; Deng, N.; Huang, X. Tailoring pore size to enhance dissolution of layered double oxides for efficient nitrogen and phosphorus recovery via crystallization of struvite from wastewater. J. Colloid Interface Sci. 2025, 692, 137546. [Google Scholar] [CrossRef]
- Prasad, S.G.; De, A.; De, U. Structural and Optical Investigations of Radiation Damage in Transparent PET Polymer Films. Int. J. Spectrosc. 2011, 2011, 810936. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Jia, Y.; Hou, L. Synthesis of Zeolitic Imidazolate Framework-8 on Polyester Fiber for PM2.5 Removal. RSC Adv. 2018, 8, 31471–31477. [Google Scholar] [CrossRef]
- Nagase, Y.; Suleimenov, B.; Umeda, C.; Taira, K.; Oda, T.; Suzuki, S.; Okamura, Y.; Koguchi, S. Syntheses of Aromatic Polymers Containing Imidazolium Moiety and the Surface Modification of a Highly Gas Permeable Membrane Using the Nanosheets. Polymer 2018, 135, 142–153. [Google Scholar] [CrossRef]
- Taha, Y.R.; Zrelli, A.; Hajji, N.; Alsalhy, Q.; Shehab, M.A.; Németh, Z.; Hernadi, K. Optimum Content of Incorporated Nanomaterials: Characterizations and Performance of Mixed Matrix Membranes a Review. Desalin. Water Treat. 2024, 317, 100088. [Google Scholar] [CrossRef]
- Cole, K.C.; Guevremont, J.; Ajji, A.; Dumoulin, M.M. Characterization of Surface Orientation in Poly(Ethylene Terephthalate) by Front-Surface Reflection Infrared Spectroscopy. Appl. Spectrosc. 1994, 48, 1513–1521. [Google Scholar] [CrossRef]
- Sarkar, S.; Sengupta, K.; Prakash, P. The Donnan Membrane Principle: Opportunities for Sustainable Engineered Processes and Materials. Environ. Sci. Technol. 2010, 44, 1161–1166. [Google Scholar] [CrossRef]
- Idarraga-Mora, J.A.; Ladner, D.A.; Husson, S.M. Thin-film composite membranes on polyester woven mesh with variable opening size for pressure-retarded osmosis. J. Membr. Sci. 2018, 549, 251–259. [Google Scholar] [CrossRef]
- Chen, M.; Song, Q.; Li, Z.; Bai, W.; Xu, M.; Li, X.; Li, W.; Nan, H.; Wang, J.; Zhang, Y.; et al. COFs functionalized self-cleaning loose nanofiltration membranes for efficient dye/salt separation. Desalination 2025, 593, 118206. [Google Scholar] [CrossRef]
- Jamil, T.S.; Mansor, E.S.; Abdallah, H.; Shaban, A.M.; Souaya, E.R. Novel antifouling mixed matrix CeO2/Ce7O12 nanofiltration membranes for heavy metal uptake. J. Environ. Chem. Eng. 2018, 6, 3273–3282. [Google Scholar] [CrossRef]
- Zamani, M.; Taghizadeh, S.R.; Zahedipoor, A.R.; Rahbari-Sisakht, M. Reverse osmosis desalination using the thin film composite polysulfone-zinc oxide mixed matrix membrane. Iran. J. Chem. Eng. 2023, 20, 67–77. [Google Scholar] [CrossRef]
- Panahi, M.; Rahbari-Sisakht, M.; Parsa, S.A.M.; Ismail, A.F. Substrate modified thin film composite reverse osmosis membrane with improved desalination performance and fouling-resistant characteristics. J. Environ. Chem. Eng. 2025, 13, 115051. [Google Scholar] [CrossRef]
- Ye, L.; Wang, L.; Wei, Z.; Zhou, S.; Yao, Z.; Fan, F.; Mei, Y. Thin film composite nanofiltration membrane with tannic acid-Fe(III) complexes functionalized CNTs interlayer toward energy efficient remediation of groundwater. Desalination 2023, 552, 116438. [Google Scholar] [CrossRef]
- Alaswad, S.O.; Mansor, E.S.; Abdallah, H.; Shaban, A.M. Modification of blend reverse osmosis membranes using ZrO2 for desalination process purposes. Appl. Water Sci. 2025, 15, 2. [Google Scholar] [CrossRef]
- Koriem, O.A.; Showman, M.S.; El-Shazly, A.H.; Elkady, M.F. Cellulose acetate/polyvinylidene fluoride based mixed matrix membranes impregnated with UiO-66 nano-MOF for reverse osmosis desalination. Cellulose 2022, 30, 413–426. [Google Scholar] [CrossRef]










| Membrane Symbol | Support Type |
|---|---|
| M1ws | Woven polyester |
| M2ns | Non-woven polyester |
| M3np | Non-woven polypropylene |
| Symbol | SEM Images | Average Fiber Thickness (µm) | Contact Angle | Types of Fabric | |
|---|---|---|---|---|---|
| Polyester | ![]() | ![]() | 13.24 | 84.5° | woven |
| Polyester | ![]() | ![]() | 8.58 | 89.6° | Non-woven |
| Polypropylene | ![]() | ![]() | 25.92 | 93.4 | Non-woven |
| Membrane | Nanoparticle | Permeate Flux (LMH) | NaCl Salt Rejection (%) | Ref. |
|---|---|---|---|---|
| Cellulose acetate/polyvinyl alcohol | ZrO2 | 12.5 | 97 | 35 |
| Polyamide membrane | ZnO | 30.2 | 97.21 | 36 |
| TFC | GO/SiO2 | 44.5 | 81.44 | 37 |
| Polyamide membrane | CNT | 37.2 | 95.4 | 38 |
| Cellulose acetate polyvinylidene fluoride | UiO-66 | 5.7 | 90.7 | 39 |
| Layer by Layer PES | TiO2/PEI | 34.5 | 92.2 (Non-woven support) | This work |
| Layer by Layer PES | TiO2/PEI | 40 | 86.6 (woven support) | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhran, A.A.; Gadallah, A.G.; Mansor, E.S.; Abdallah, H. Influence of Fabric Support on Improving the Layer-by-Layer Polyethersulfone Membrane Performance. Polymers 2025, 17, 2825. https://doi.org/10.3390/polym17212825
Bhran AA, Gadallah AG, Mansor ES, Abdallah H. Influence of Fabric Support on Improving the Layer-by-Layer Polyethersulfone Membrane Performance. Polymers. 2025; 17(21):2825. https://doi.org/10.3390/polym17212825
Chicago/Turabian StyleBhran, Ahmed A., Abdelrahman G. Gadallah, Eman S. Mansor, and Heba Abdallah. 2025. "Influence of Fabric Support on Improving the Layer-by-Layer Polyethersulfone Membrane Performance" Polymers 17, no. 21: 2825. https://doi.org/10.3390/polym17212825
APA StyleBhran, A. A., Gadallah, A. G., Mansor, E. S., & Abdallah, H. (2025). Influence of Fabric Support on Improving the Layer-by-Layer Polyethersulfone Membrane Performance. Polymers, 17(21), 2825. https://doi.org/10.3390/polym17212825







