An Extensive Study of an Eco-Friendly Fireproofing Process of Lignocellulosic Miscanthus × giganteus Particles and Their Application in Flame-Retardant Panels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Olive Pomace Preparation
2.3. Steam Explosion of Miscanthus Giganteus Particles
2.4. Fireproofing Process of Miscanthus Particles by Phosphorylation
2.5. Binderless Panels Manufacturing
2.6. Characterization Techniques
2.6.1. Chemical Composition
2.6.2. Elementary Analysis
2.6.3. X-Ray Fluorescence (XRF)
2.6.4. Length and Width Measurements
2.6.5. Pyrolysis-Combustion Flow Calorimetry (PCFC)
2.6.6. Preliminary Fire Test on Particle Panels
2.6.7. Cone Calorimetry
3. Results and Discussion
3.1. Steam Explosion Effect on Miscanthus Particles
3.2. Fireproofing Effect on Miscanthus Particles
3.3. Flame Retardancy of Binderless Particle Panels
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grexa, O.; Poutch, F.; Manikova, D.; Martvonova, H.; Bartekova, A. Intumescence in Fire Retardancy of Lignocellulosic Panels. Polym. Degrad. Stab. 2003, 82, 373–377. [Google Scholar] [CrossRef]
- Yin, K.; Liu, M.; Shao, Z.; Chen, C.; Wu, W.; Tan, Y.; Wei, C.; Ma, X.; Dang, B.; Sun, Q. Enhancing Flame Retardancy and Smoke Suppression of Lignocellulose through Modification with Green Aqueous Flame Retardants. Ind. Crops Prod. 2025, 225, 120493. [Google Scholar] [CrossRef]
- Dasari, A.; Yu, Z.-Z.; Cai, G.-P.; Mai, Y.-W. Recent Developments in the Fire Retardancy of Polymeric Materials. Prog. Polym. Sci. 2013, 38, 1357–1387. [Google Scholar] [CrossRef]
- Sykam, K.; Försth, M.; Sas, G.; Restás, Á.; Das, O. Phytic Acid: A Bio-Based Flame Retardant for Cotton and Wool Fabrics. Ind. Crops Prod. 2021, 164, 113349. [Google Scholar] [CrossRef]
- Hajj, R.; El Hage, R.; Sonnier, R.; Otazaghine, B.; Gallard, B.; Rouif, S.; Nakhl, M.; Lopez-Cuesta, J.-M. Grafting of Phosphorus Flame Retardants on Flax Fabrics: Comparison between Two Routes. Polym. Degrad. Stab. 2018, 147, 25–34. [Google Scholar] [CrossRef]
- Sonnier, R.; Otazaghine, B.; Viretto, A.; Apolinario, G.; Ienny, P. Improving the Flame Retardancy of Flax Fabrics by Radiation Grafting of Phosphorus Compounds. Eur. Polym. J. 2015, 68, 313–325. [Google Scholar] [CrossRef]
- Chen, W.; Xu, D. Phytic Acid and Its Interactions in Food Components, Health Benefits, and Applications: A Comprehensive Review. Trends Food Sci. Technol. 2023, 141, 104201. [Google Scholar] [CrossRef]
- Bloot, A.P.M.; Kalschne, D.L.; Amaral, J.A.S.; Baraldi, I.J.; Canan, C. A Review of Phytic Acid Sources, Obtention, and Applications. Food Rev. Int. 2023, 39, 73–92. [Google Scholar] [CrossRef]
- Laufer, G.; Kirkland, C.; Morgan, A.B.; Grunlan, J.C. Intumescent Multilayer Nanocoating, Made with Renewable Polyelectrolytes, for Flame-Retardant Cotton. Biomacromolecules 2012, 13, 2843–2848. [Google Scholar] [CrossRef]
- Wang, K.; Meng, D.; Wang, S.; Sun, J.; Li, H.; Gu, X.; Zhang, S. Impregnation of Phytic Acid into the Delignified Wood to Realize Excellent Flame Retardant. Ind. Crops Prod. 2022, 176, 114364. [Google Scholar] [CrossRef]
- Antoun, K.; Ayadi, M.; El Hage, R.; Nakhl, M.; Sonnier, R.; Gardiennet, C.; Le Moigne, N.; Besserer, A.; Brosse, N. Renewable Phosphorous-Based Flame Retardant for Lignocellulosic Fibers. Ind. Crops Prod. 2022, 186, 115265. [Google Scholar] [CrossRef]
- Moussa, M.; El Hage, R.; Sonnier, R.; Chrusciel, L.; Ziegler-Devin, I.; Brosse, N. Toward the Cottonization of Hemp Fibers by Steam Explosion. Flame-Retardant Fibers. Ind. Crops Prod. 2020, 151, 112242. [Google Scholar] [CrossRef]
- Pędzik, M.; Janiszewska, D.; Rogoziński, T. Alternative Lignocellulosic Raw Materials in Particleboard Production: A Review. Ind. Crops Prod. 2021, 174, 114162. [Google Scholar] [CrossRef]
- Ramatia, D.; Syamani, F.A.; Hermawan, D. Literature Review of Production Process and Self-Bonding Mechanisms in Binderless Particleboard. In Innovative Forestry for a Sustainable Future; Working Paper: 10; Food and Agriculture Organization (FAO) of the United Nations, 2021; pp. 149–164. [Google Scholar]
- Lee, S.H.; Lum, W.C.; Boon, J.G.; Kristak, L.; Antov, P.; Pędzik, M.; Rogoziński, T.; Taghiyari, H.R.; Lubis, M.A.R.; Fatriasari, W.; et al. Particleboard from Agricultural Biomass and Recycled Wood Waste: A Review. J. Mater. Res. Technol. 2022, 20, 4630–4658. [Google Scholar] [CrossRef]
- Nadhari, W.N.A.W.; Karim, N.A.; Boon, J.G.; Salleh, K.M.; Mustapha, A.; Hashim, R.; Sulaiman, O.; Azni, M.E. Sugarcane (Saccharum officinarium L.) Bagasse Binderless Particleboard: Effect of Hot Pressing Time Study. Mater. Today Proc. 2020, 31, 313–317. [Google Scholar] [CrossRef]
- Cangussu, N.; Chaves, P.; da Rocha, W.; Maia, L. Particleboard Panels Made with Sugarcane Bagasse Waste—An Exploratory Study. Environ. Sci. Pollut. Res. 2023, 30, 25265–25273. [Google Scholar] [CrossRef]
- Narciso, C.R.P.; Reis, A.H.S.; Mendes, J.F.; Nogueira, N.D.; Mendes, R.F. Potential for the Use of Coconut Husk in the Production of Medium Density Particleboard. Waste Biomass Valorization 2021, 12, 1647–1658. [Google Scholar] [CrossRef]
- Antoun, K.; Besserer, A.; El Hage, R.; Segovia, C.; Sonnier, R.; Brosse, N. Environmentally-Friendly, Binder-Free, Non-Flammable Particleboard with Enhanced Properties. Ind. Crops Prod. 2024, 222, 119578. [Google Scholar] [CrossRef]
- Hashim, R.; Said, N.; Lamaming, J.; Baskaran, M.; Sulaiman, O.; Sato, M.; Hiziroglu, S.; Sugimoto, T. Influence of Press Temperature on the Properties of Binderless Particleboard Made from Oil Palm Trunk. Mater. Des. 2011, 32, 2520–2525. [Google Scholar] [CrossRef]
- Jakob, M.; Mahendran, A.R.; Gindl-Altmutter, W.; Bliem, P.; Konnerth, J.; Müller, U.; Veigel, S. The Strength and Stiffness of Oriented Wood and Cellulose-Fibre Materials: A Review. Prog. Mater. Sci. 2022, 125, 100916. [Google Scholar] [CrossRef]
- Renneckar, S.; Johnson, R.K.; Zink-Sharp, A.; Sun, N.; Glasser, W.G. Fiber Modification by Steam-Explosion: 13C NMR and Dynamic Mechanical Analysis Studies of Co-Refined Wood and Polypropylene. Compos. Interfaces 2005, 12, 559–580. [Google Scholar] [CrossRef]
- Ziegler-Devin, I.; Chrusciel, L.; Brosse, N. Steam Explosion Pretreatment of Lignocellulosic Biomass: A Mini-Review of Theorical and Experimental Approaches. Front. Chem. 2021, 9, 705358. [Google Scholar] [CrossRef] [PubMed]
- Eitzinger, J.; Kössler, C. Microclimatological Characteristics of a Miscanthus (Miscanthus cv. giganteus) Stand during Stable Conditions at Night in the Nonvegetative Winter Period. Theor. Appl. Climatol. 2002, 72, 245–257. [Google Scholar] [CrossRef]
- Muthuraj, R.; Misra, M.; Mohanty, A.K. Biodegradable Biocomposites from Poly(Butylene Adipate-Co-Terephthalate) and Miscanthus: Preparation, Compatibilization, and Performance Evaluation. J. Appl. Polym. Sci. 2017, 134, 45448. [Google Scholar] [CrossRef]
- Eschenhagen, A.; Raj, M.; Rodrigo, N.; Zamora, A.; Labonne, L.; Evon, P.; Welemane, H. Investigation of Miscanthus and Sunflower Stalk Fiber-Reinforced Composites for Insulation Applications. Adv. Civ. Eng. 2019, 2019, 9328087. [Google Scholar] [CrossRef]
- Khalaf, Y.; El Hage, P.; Dimitrova Mihajlova, J.; Bergeret, A.; Lacroix, P.; El Hage, R. Influence of Agricultural Fibers Size on Mechanical and Insulating Properties of Innovative Chitosan-Based Insulators. Constr. Build. Mater. 2021, 287, 123071. [Google Scholar] [CrossRef]
- El Hage, R.; Khalaf, Y.; Lacoste, C.; Nakhl, M.; Lacroix, P.; Bergeret, A. A Flame Retarded Chitosan Binder for Insulating Miscanthus/Recycled Textile Fibers Reinforced Biocomposites. J. Appl. Polym. Sci. 2018, 136, 47306. [Google Scholar] [CrossRef]
- Velásquez, J.A.; Ferrando, F.; Farriol, X.; Salvadó, J. Binderless Fiberboard from Steam Exploded Miscanthus Sinensis. Wood Sci. Technol. 2003, 37, 269–278. [Google Scholar] [CrossRef]
- Salvadó, J.; Velásquez, J.A.; Ferrando, F. Binderless Fiberboard from Steam Exploded Miscanthus Sinensis: Optimization of Pressing and Pretreatment Conditions. Wood Sci. Technol. 2003, 37, 279–286. [Google Scholar] [CrossRef]
- Moll, L.; Klein, A.; Heidemann, S.J.; Völkering, G.; Rumpf, J.; Pude, R. Improving Mechanical Performance of Self-Binding Fiberboards from Untreated Perennial Low-Input Crops by Variation of Particle Size. Materials 2024, 17, 3982. [Google Scholar] [CrossRef]
- Morillo, J.A.; Antizar-Ladislao, B.; Monteoliva-Sánchez, M.; Ramos-Cormenzana, A.; Russell, N.J. Bioremediation and Biovalorisation of Olive-Mill Wastes. Appl. Microbiol. Biotechnol. 2009, 82, 25–39. [Google Scholar] [CrossRef] [PubMed]
- Azbar, N.; Bayram, A.; Filibeli, A.; Muezzinoglu, A.; Sengul, F.; Ozer, A. A Review of Waste Management Options in Olive Oil Production. Crit. Rev. Environ. Sci. Technol. 2004, 34, 209–247. [Google Scholar] [CrossRef]
- Roig, A.; Cayuela, M.L.; Sánchez-Monedero, M.A. An Overview on Olive Mill Wastes and Their Valorisation Methods. Waste Manag. 2006, 26, 960–969. [Google Scholar] [CrossRef]
- Khalaf, Y.; El Hage, P.; Mansour, S.; Brosse, N.; Mihajlova, J.D.; Bergeret, A.; Lacroix, P.; Hage, R. El Eco-Friendly Chitosan Composites: Transforming Miscanthus, Mushroom, Textile and Olive Waste into Sustainable Materials. AppliedChem 2024, 4, 302–319. [Google Scholar] [CrossRef]
- El Kassis, E.; Otazaghine, B.; El Hage, R.; Sonnier, R. Assessment of Olive Pomace Wastes as Fl Ame Retardants. J. Appl. Polym. Sci. 2019, 137, 47715. [Google Scholar] [CrossRef]
- Sørensen, A.; Teller, P.J.; Hilstrøm, T.; Ahring, B.K. Hydrolysis of Miscanthus for Bioethanol Production Using Dilute Acid Presoaking Combined with Wet Explosion Pre-Treatment and Enzymatic Treatment. Bioresour. Technol. 2008, 99, 6602–6607. [Google Scholar] [CrossRef]
- Makarov, I.S.; Budaeva, V.V.; Gismatulina, Y.A.; Kashcheyeva, E.I.; Zolotukhin, V.N.; Gorbatova, P.A.; Sakovich, G.V.; Vinogradov, M.I.; Palchikova, E.E.; Levin, I.S.; et al. Preparation of Lyocell Fibers from Solutions of Miscanthus Cellulose. Polymers 2024, 16, 2915. [Google Scholar] [CrossRef]
- Auxenfans, T.; Crônier, D.; Chabbert, B.; Paës, G. Understanding the Structural and Chemical Changes of Plant Biomass Following Steam Explosion Pretreatment. Biotechnol. Biofuels 2017, 10, 36. [Google Scholar] [CrossRef]
- Bhatia, R.; Winters, A.; Bryant, D.N.; Bosch, M.; Clifton-Brown, J.; Leak, D.; Gallagher, J. Pilot-Scale Production of Xylo-Oligosaccharides and Fermentable Sugars from Miscanthus Using Steam Explosion Pretreatment. Bioresour. Technol. 2020, 296, 122285. [Google Scholar] [CrossRef]
- Moukagni, E.M.; Ziegler-Devin, I.; Safou-Tchima, R.; Aymes, A.; Kapel, R.; Brosse, N. Steam Explosion of Aucoumea Klaineana Sapwood: Membrane Separation of Acetylated Hemicelluloses. Carbohydr. Res. 2022, 519, 108622. [Google Scholar] [CrossRef]
- Jacquet, N.; Vanderghem, C.; Blecker, C.; Paquot, M. La Steam Explosion: Application En Tant Que Prétraitement de La Matière Lignocellulosique. BASE 2010, 14, 561–566. [Google Scholar]
- Widyorini, R.; Xu, J.; Umemura, K.; Kawai, S. Manufacture and Properties of Binderless Particleboard from Bagasse I: Effects of Raw Material Type, Storage Methods, and Manufacturing Process. J. Wood Sci. 2005, 51, 648–654. [Google Scholar] [CrossRef]
- Rol, F.; Sillard, C.; Bardet, M.; Yarava, J.R.; Emsley, L.; Gablin, C.; Léonard, D.; Belgacem, N.; Bras, J. Cellulose Phosphorylation Comparison and Analysis of Phosphorate Position on Cellulose Fibers. Carbohydr. Polym. 2020, 229, 115294. [Google Scholar] [CrossRef]
- Fiss, B.G.; Hatherly, L.; Stein, R.S.; Friščić, T.; Moores, A. Mechanochemical Phosphorylation of Polymers and Synthesis of Flame-Retardant Cellulose Nanocrystals. ACS Sustain. Chem. Eng. 2019, 7, 7951–7959. [Google Scholar] [CrossRef]
- Ghanadpour, M.; Wicklein, B.; Carosio, F.; Wågberg, L. All-Natural and Highly Flame-Resistant Freeze-Cast Foams Based on Phosphorylated Cellulose Nanofibrils. Nanoscale 2018, 10, 4085–4095. [Google Scholar] [CrossRef]
- Ghanadpour, M.; Carosio, F.; Larsson, P.T.; Wågberg, L. Phosphorylated Cellulose Nanofibrils: A Renewable Nanomaterial for the Preparation of Intrinsically Flame-Retardant Materials. Biomacromolecules 2015, 16, 3399–3410. [Google Scholar] [CrossRef]
- Sonnier, R.; Ferry, L.; Lopez-Cuesta, J.-M. Flame Retardancy of Phosphorus-Containing Polymers. In Phosphorus-Based Polymers: From Synthesis to Applications; Monge, S., David, G., Eds.; The Royal Society of Chemistry: London, UK, 2014; pp. 252–270. ISBN 978-1-84973-646-6. [Google Scholar]
- Chu, D.; Mu, J.; Zhang, L.; Li, Y. Promotion Effect of NP Fire Retardant Pre-Treatment on Heat-Treated Poplar Wood. Part 1: Color Generation, Dimensional Stability, and Fire Retardancy. Holzforschung 2017, 71, 207–215. [Google Scholar] [CrossRef]
- Hernandez, N.; Sonnier, R.; Giraud, S. Influence of Grammage on Heat Release Rate of Polypropylene Fabrics. J. Fire Sci. 2017, 36, 30–46. [Google Scholar] [CrossRef]
- Guizani, C.; Haddad, K.; Jeguirim, M.; Colin, B.; Limousy, L. Combustion Characteristics and Kinetics of Torrefied Olive Pomace. Energy 2016, 107, 453–463. [Google Scholar] [CrossRef]
- Kandola, B.K.; Horrocks, A.R. Complex Char Formation in Flame-Retarded Fibre-Intumescent Combinations—II. Thermal Analytical Studies. Polym. Degrad. Stab. 1996, 54, 289–303. [Google Scholar] [CrossRef]
Sample Name | Type of Impregnation | Steam Temperature (°C) | Pretreatment Time (min) |
---|---|---|---|
Mse-B-1 | NaOH 8% | 190 | 4 |
Mse-A-1 | H2SO4 1% | 190 | 4 |
Mse-N4-1 | H2O | 190 | 4 |
Mse-N4-2 | H2O | 190 | 8 |
Mse-N8-1 | H2O | 210 | 4 |
Mse-N8-2 | H2O | 210 | 8 |
Sample Name | Phytic Acid (wt.%) | Urea (wt.%) | Cooking Temperature (°C) | Cooking Duration (h) | Washing 3 Times | N (wt%) | P (wt%) |
---|---|---|---|---|---|---|---|
Mse | 0 | 0 | - | - | - | 0 | 0.01 |
Mse-g1 | 5 | 10 | 150 | 1 | + | 1.05 | 0.49 |
Mse-g2 | 10 | 10 | 150 | 1 | + | 1.07 | 0.66 |
Mse-g3 | 20 | 10 | 150 | 1 | + | 1.03 | 0.76 |
Mse-g4 | 5 | 10 | 150 | 2 | + | 1.23 | 0.64 |
Mse-g5 | 10 | 10 | 150 | 2 | + | 1.39 | 0.96 |
Mse-g6 | 20 | 10 | 150 | 2 | + | 1.25 | 0.99 |
Name of the Formulation | Components Composition | Olive Pomace Ratio (wt%) | Density (kg/m3) |
---|---|---|---|
Mse | Steam exploded Miscanthus | 0 | 699 ± 33 |
MseOP | Steam exploded Miscanthus/olive pomace | 40 | 697 ± 43 |
Mseg | Phosphorous-grafted steam exploded Miscanthus | 0 | 702 ± 53 |
MsegOP | Phosphorous-grafted steam exploded Miscanthus/olive pomace | 40 | 717 ± 30 |
Sample Name | Cellulose (%) | Hemicellulose (%) | Lignin (%) | DCM Extracts (%) |
---|---|---|---|---|
M | 40.07 ± 2.54 | 21.20 ± 1.40 | 26.72 ± 0.37 | 0.95 ± 0.01 |
Mse-B-1 | 62.11 ± 9.73 | 3.09 ± 0.75 | 5.29 ± 0.31 | 2.69 ± 0.21 |
Mse-A-1 | 53.27 ± 2.41 | 3.75 ± 1.15 | 30.5 ± 1.63 | 13.13 ± 0.18 |
Mse-N4-1 | 44.72 ± 1.06 | 21.19 ± 1.54 | 20 ± 0.67 | 6.9 ± 0.34 |
Mse-N4-2 | 46.1 ± 2.17 | 11.5 ± 0.79 | 22.09 ± 0.33 | 0.49 ± 0.02 |
Mse-N8-1 | 45.06 ± 2.25 | 15.29 ± 1.65 | 27.32 ± 0.46 | 1.75 ± 0.1 |
Mse-N8-2 | 47.43 ± 2.75 | 8.55 ± 1.3 | 36.19 ± 1.77 | 5.36 ± 0.42 |
Sample Name | PCFC | ||||
---|---|---|---|---|---|
pHRR (W/g) | TpHRR (°C) | THR (kJ/g) | Residue (%) | ∆H (kJ/g) | |
Mse | 178 | 381 | 12.4 | 7.4 | 13.3 |
Mse-g1 | 136 | 295 | 7.6 | 25.8 | 10.2 |
Mse-g2 | 110 | 290 | 6.3 | 25.6 | 8.4 |
Mse-g3 | 125 | 292 | 6.7 | 26 | 9 |
Mse-g4 | 112 | 290 | 6 | 26.3 | 8 |
Mse-g5 | 108 | 287 | 6.1 | 27.8 | 8.5 |
Mse-g6 | 107 | 288 | 6 | 28 | 8.4 |
Mse | MseOP | Mseg | MsegOP | |
---|---|---|---|---|
TTI (s) | 76 | 32.5 | 192 | 38.5 |
pHRR1 (kW/m2) | 162 | 183 | 56 | 144.5 |
pHRR2 (kW/m2) | 231.5 | 279 | - | 245 |
THR (MJ/m2) | 46.75 | 50.3 | 5.8 | 33.4 |
THR (KJ/g) | 12.6 | 13.7 | 0.7 | 8.6 |
EHC (kJ/g) | 14.1 | 16 | 1.3 | 12.8 |
Residue (%) | 10.5 | 14 | 44.7 | 33.2 |
TSR (m2/m2) | 250 | 373 | 395 | 260 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalaf, Y.; Sonnier, R.; Brosse, N.; El Hage, R. An Extensive Study of an Eco-Friendly Fireproofing Process of Lignocellulosic Miscanthus × giganteus Particles and Their Application in Flame-Retardant Panels. Polymers 2025, 17, 241. https://doi.org/10.3390/polym17020241
Khalaf Y, Sonnier R, Brosse N, El Hage R. An Extensive Study of an Eco-Friendly Fireproofing Process of Lignocellulosic Miscanthus × giganteus Particles and Their Application in Flame-Retardant Panels. Polymers. 2025; 17(2):241. https://doi.org/10.3390/polym17020241
Chicago/Turabian StyleKhalaf, Yasmina, Rodolphe Sonnier, Nicolas Brosse, and Roland El Hage. 2025. "An Extensive Study of an Eco-Friendly Fireproofing Process of Lignocellulosic Miscanthus × giganteus Particles and Their Application in Flame-Retardant Panels" Polymers 17, no. 2: 241. https://doi.org/10.3390/polym17020241
APA StyleKhalaf, Y., Sonnier, R., Brosse, N., & El Hage, R. (2025). An Extensive Study of an Eco-Friendly Fireproofing Process of Lignocellulosic Miscanthus × giganteus Particles and Their Application in Flame-Retardant Panels. Polymers, 17(2), 241. https://doi.org/10.3390/polym17020241